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Iron overload in polytransfused patients without
heart failure is associated with subclinical
alterations of systolic left ventricular function
using cardiovascular magnetic resonance tagging
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Abstract

Background: It remains incompletely understood whether patients with transfusion related cardiac iron overload
without signs of heart failure exhibit already subclinical alterations of systolic left ventricular (LV) dysfunction.
Therefore we performed a comprehensive evaluation of systolic and diastolic cardiac function in such patients
using tagged and phase-contrast CMR.

Methods: 19 patients requiring regular blood transfusions for chronic anemia and 8 healthy volunteers were
investigated using cine, tagged, and phase-contrast and T2* CMR. LV ejection fraction, peak filling rate, end-systolic
global midventricular systolic Eulerian radial thickening and shortening strains as well as left ventricular rotation
and twist, mitral E and A wave velocity, and tissue e’ wave and E/e’ wave velocity ratio, as well as isovolumic
relaxation time and E wave deceleration time were computed and compared to cardiac T2*.

Results: Patients without significant iron overload (T2* > 20 ms, n = 9) had similar parameters of systolic and
diastolic function as normal controls, whereas patients with severe iron overload (T2* < 10 ms, n = 5), had
significant reduction of LV ejection fraction (54 ± 2% vs. 62 ± 6% and 65 ± 6% respectively p < 0.05), of end-
systolic radial thickening (+6 ± 4% vs. +11 ± 2 and +11 ± 4% respectively p < 0.05) and of rotational twist (1.6
± 0.2 degrees vs. 3.0 ± 1.2 and 3.5 ± 0.7 degrees respectively, p < 0.05) than patients without iron overload
(T2* > 20 ms) or normal controls. Patients with moderate iron overload (T2* 10-20 ms, n = 5), had preserved
ejection fraction (59 ± 6%, p = NS vs. pts. with T2* > 20 ms and controls), but showed reduced maximal LV
rotational twist (1.8 ± 0.4 degrees). The magnitude of reduction of LV twist (r = 0.64, p < 0.001), of LV ejection
fraction (r = 0.44, p < 0.001), of peak radial thickening (r = 0.58, p < 0.001) and of systolic (r = 0.50, p < 0.05)
and diastolic twist and untwist rate (r = -0.53, p < 0.001) in patients were directly correlated to the logarithm
of cardiac T2*.

Conclusion: Multiple transfused patients with normal ejection fraction and without heart failure have
subclinical alterations of systolic and diastolic LV function in direct relation to the severity of cardiac iron
overload. Among all parameters, left ventricular twist is affected earliest, and has the highest correlation to log
(T2*), suggesting that this parameter might be used to follow systolic left ventricular function in patients with
iron overload.
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Introduction
Repeated transfusion of packed red cells in patients with
chronic anemia leads to chronic iron overload in many
different organs, and especially the heart. Such chronic
cardiac iron overload can cause heart failure, systolic
[1-3] and diastolic dysfunction, arrhythmias and is a
leading cause of mortality in such patients with multiple
transfusions.
T2* measurement by cardiovascular magnetic reso-

nance (CMR) is a novel technology which allows to
non-invasively assess the severity of hepatic and car-
diac iron overload [4-7]. In the liver, R2* the inverse of
T2*, was shown to directly correlate with iron concen-
tration by biopsy. In the heart, R2* was shown to be
linearly correlated to cardiac iron content quantified in
an animal model of iron overload in gerbils [8] and in
a postmortem study of a thalassemia patient [9]. The
monitoring of cardiac T2* has important clinical
impact for treatment of patients with chronic anemia.
Indeed, severe cardiac iron overload in patients with
cardiac T2* lower than < 10 ms was shown to predict
increased risk of development of heart failure and of
sudden cardiac death [10]. Fortunately iron can be
removed from the body by chelators, and T2* CMR
[11-13] can be used to evaluate the efficacy of such
chelation therapy [11-13], to reduce cardiac iron con-
tent. This was shown to improve ejection fraction
[11-13], and to decrease mortality due to heart failure
and sudden death [14]. Therefore such regular moni-
toring of cardiac iron overload by cardiac T2* is now
recommended [15] for guiding and monitoring the effi-
cacy of iron chelation therapy in chronically transfused
patients.
Yet, the impact of moderate iron overload on altera-

tions of left ventricular function still remains incomple-
tely understood. Indeed an inverse curvilinear relation
between T2* and left ventricular (LV) ejection fraction
(EF) was demonstrated when T2* was smaller than 20
ms [4,16]. Yet, these studies included up to 20% of
patients with overt heart failure and reduced ejection
fraction. Therefore we sought to evaluate whether such
patients with iron overload but without clinical signs of
heart failure, and with apparently preserved LV ejection
fraction, already present subclinical signs of systolic and
diastolic dysfunction. Also we wanted to investigate
whether more sophisticated parameters of systolic car-
diac function, such as strains or rotational twist, would
be affected earlier than LV ejection fraction in patients
with moderate iron overload. Accordingly, in the current
study we performed a comprehensive assessment of sys-
tolic and diastolic function by means of tagged and
phase contrast CMR in 19 patients with anemia and 8
healthy volunteers, and we compared the magnitude of

alteration of these parameters versus the magnitude of
cardiac iron overload.

Materials and methods
Patients and Study Protocol
This prospective study included consecutive patients
with a chronic anemia treated by transfusion of packed
red cells, who underwent a clinically indicated T2* CMR
study to quantify myocardial iron content. Only healthy
patients without clinical signs of heart failure and with
normal cardiac function by echocardiography were con-
sidered for inclusion into this study. Patients with signs
or history of heart failure, depressed LV-function, signif-
icant valve disease, or cardiac arrhythmia were excluded.
We thus studies 19 patients with anemia (Table 1) and
compared them to 8 age matched healthy volunteers
without a hematological disease undergoing the same
CMR protocol. The study protocol was approved by the
Institutional Review Board of our University and partici-
pants gave informed consent to participating in the
study.

MRI acquisition
Acquisitions were performed using a 1.5 Tesla magnet
(Intera CV, Philips) with a 5 element phased array coil.
T2* measurement of the liver was performed using sin-
gle-breath-hold, 20-echo (1.07 to 21 ms) gradient echo
sequence in an 10 mm axial slice through the liver.
Repetition time (TR) was 150 ms, field of view 360 mm,
image matrix 176 × 176 and flip angle 35°. Then, after
horizontal and long-axis localizers, myocardial T2* was
assessed from a midpapillary ventricular short-axis slice
using a cardiac-gated, segmented, multiecho gradient
echo sequence obtained in a single breath-hold, similar
to the technique described by Westwood et al. [17].

Table 1 Characteristics of the study population

Patients (n = 19) Controls (n = 8) P value

Age 24 ± 8 (11-35) 30 ± 3 (26-37) 0.05

Sex 9M/10F 4M/3F (NS)

Weight (kg) 48 ± 11 65 ± 11 <.001

Height (cm) 149 ± 13 175 ± 10 <.001

BSA (m2) 1.4 ± 0.2 1.8 ± 0.2 <.001

BP systolic (mmHg) 105 ± 13 107 ± 15 .96

BP diastolic (mmHg) 62 ± 7 60 ± 10 .42

Heart Rate (bpm) 78 ± 15 64 ± 7 .02

Hb value 9.2 ± 1.2 - -

Ferritin 1686 ± 914 - -

T2* cardiac (ms) 22 ± 11 (6-44) 40 ± 10 (24-59) <.001

T2* hepatic (ms) 6 ± 7 (1-24) 21 ± 4 (15-26) <.001

BP: Blood pressure. BSA: Body surface area. Hb: Hemoglobin
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Eight echoes with a minimum echo time (TE) of 2.0 ms,
an echo spacing of 2.2 ms, and a repetition time of 19.1
ms were obtained. Next, for assessment of cardiac func-
tion, 8-10 contiguous short axis cine images covering
the left-ventricle from base to apex, and 2, 3 and 4
chamber long axis cine-images were acquired using a
retrospective ECG-gated segmented k-space steady state
free precession pulse sequence (SSFP) (slice thickness 8
mm, spacing 2 mm, TR: 3 ms, TE: 1.5 ms, flip angle:
60°, 20 phases/view). Thereafter 8-10 contiguous tagged
short-axis and 2- 3- 4 chamber long axis cine images of
the left ventricle were acquired in the same directions
using a prospective ECG-gated, segmented k-space gra-
dient echo pulse sequence with echo-planar readout and
spatial modulation of magnetization (SPAMM) applied
in a 6 mm grid pattern. Imaging parameters were: slice
thickness: 8 mm, spacing: 2 mm, TR: 12 ms, TE: 2.3 ms,
image matrix: 256 × 160, field of view: 36 cm, flip angle:
12°, echo train length: 7-9. All images were acquired
during short (10-15 seconds) breath holds in end-
expiration.
Finally, mitral inflow velocity and mitral annular

motion velocity were evaluated using a free breathing,
ECG gated segmented K space gradient echo sequence
prescribed in a short-axis orientation at the level of the
mitral valve as described by Paelinck et al. [18]. Images
were acquired with 63 phases encoded per heart beat
resulting in an average temporal resolution of 13 ms
(range 8-16 ms). Other imaging parameters were: TR 12
ms, TE 2.6 ms, matrix 224 × 178 pixels, flip angle 15°.
Mitral inflow velocity imaging was encoded with a velo-
city of 250 cm/s. Mitral annular motion was encoded
with a velocity of 30 cm/s.

Computation of cardiac and hepatic T2* and R2*
Regions of interest were placed in the septal wall of the
heart and in the liver. Cardiac and hepatic T2* times were
computed by mono-exponential fit to the equation y = K e
-TE/T2*. R2* was computed as the reciprocal of T2*.

LV volumes, Ejection fraction and PLVFR
Cine SSFP CMR images were analyzed by a blinded
observer using the freely automated software SEGMENT
[19]. The endocardium and epicardium of the left ven-
tricle were fully automatically contoured on all phases
of the left ventricle, with manual adjustments when
needed. Left ventricular end-diastolic (LV-EDV) and
endsystolic volumes (LV-ESV) were calculated using
Simpson’s method. The first image of the cardiac cycle
was considered to be end-diastole, whereas the smallest
volume of the LV curve was considered end-systolic
volume. Peak LV filling rate (PLVFR) was computed as
maximum of derivate of LV volume curve in diastole
over time. LV mass was computed assuming a

myocardial density of 1.06 and excluding papillary mus-
cles. LV volumes and mass were indexed to body sur-
face area. LVEF was computed as EDV-ESV/EDV.
Left atrial volume was computed at the time of maxi-

mal atrial filling just before mitral valve opening using

the area-length method as LAvol = 8/
3π · ALA2c · ALA4c

lLA
where ALA2c and ALA4c are the areas of the left atrium
planimetered in 2 and 4 chamber views and lLA the
length of the atrium respectively.
CMR Strain
Tagged CMR images were analyzed quantitatively using
Harmonic Phase Imaging Analysis (HARP - Diagnosoft,
CA) as previously described [20] and as illustrated in
Figure 1. End-systolic systolic Eulerian circumferential
shortening strain (Ecc) and radial thickening strain (Err)
as well as circumferential-radial rotation were computed
at the midwall level of each slice. The average of all
slices per patients was used as global radial thickening,
circumferential shortening strain and rotation. By con-
vention, strains were defined to have a negative sign for
shortening (active contraction) and a positive sign for
elongation (passive deformation). LV torsion was com-
puted as difference in rotation between the most apical
and basal slices. LV twist (�) was computed as torsion

corrected for length: i.e. ϕ =
ρbase − ρapex

l
· (rapex + rbase)

2
where r is the rotation at the most basal and most api-
cal slice respectively, l is the apex to base length and r is
the LV radius at apex and base respectively. Strains were
computed in end-systole, determined by the time of aor-
tic valve closure on cine images.
The first derivative of twist versus time was computed

to yield respectively systolic twist rate and diastolic
untwist rate.

Analysis of phase contrast imaging
Phase contrast images were analyzed on a dedicated
work station (Philips Medical Viewforum release 4.1). A
region of interest was placed in the center of the mitral
valve and in the aortic valve outflow tract and mean
velocity of both regions was plotted over time (Figure
2). LV ejection time (LVET) was computed based on
duration of aortic ejection. Isovolumic relaxation time
(IVRT) was measured between the end of aortic ejection
and the start of mitral filling. Peak early (E) inflow and
late atrial (A) velocity were recorded and the E/A ratio
were computed. The descending slope of the E wave
was plotted and the deceleration time of the E wave
(DT) was measured between the peak of the E wave and
the point where the fitted line of descending slope of
the E wave reached 0 velocity. Peak septal and lateral
tissue annular velocity e’s and e’l were computed in
regions of interest placed in septum and lateral wall on
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images encoded with a velocity of 30 cm/s. Ratios of
mitral E wave to tissue e’s and e’l wave velocity were
computed as described by Paelinck et al [18].

Statistical analysis
All continuous values are reported as mean ± one SD.
Patients with anemia were separated into 3 groups
according to cardiac T2* times (< 10 ms, representative
of severe iron overload, 11-20 ms, representative of mod-
erate iron overload and > 20 ms representative of no iron
overload). Mean values of LV dimensions, and various
systolic and diastolic parameters by CMR were compared
among patients with different cardiac T2* values and
controls using one-way ANOVA. Individual comparisons
were performed post-hoc using Bonferroni test. The var-
ious CMR parameters were also compared with cardiac
and hepatic T2* and R2* measurement using Pearson’s
regression analysis. All tests were two sided and a P value
< 0.05 was considered indicative of statistical significance.

Results
Study population
The clinical characteristics of the nineteen patients with
anemia and normal controls are shown in Table 1. Fif-
teen patients had thalassemia major. One of them also
had an associated sickle-cell mutation. Four patients had
refractory anemia (respectively 2 Blackfan-Diamond, and
2 sideroblastic anemias). Patients were transfused an

average of 3.8 ± 2.0 units of packed red cells per month.
All patients had significantly increased plasma ferritin
values and received iron chelation therapy: Seven
patients were treated with SC deferoxamine monother-
apy, 10 with oral deferasirox monotherapy and two were
treated with an association of 2 chelators (respectively
one patient with an association of oral deferiprine and
SC deferoxamine; and another patient with oral defer-
iprine and deferasirox). Controls had no family history
of hemochromatosis. No patient or control was under
medication with cardiac activity.
Controls had significantly larger body size than

patients. Also heart rate was significantly higher in ane-
mia patients than in controls.

T2* values
As expected, patients had significantly higher hepatic
and cardiac T2* values than controls. There was consid-
erable variation of cardiac T2* values in chronically
transfused patients. In 9 patients T2* was normal (car-
diac T2* > 20 ms), 5 others had moderate iron overload
(cardiac T2* 11-20 ms) and 5 patients showed severe
iron overload (cardiac T2* < 10 ms).

Systolic and diastolic function in anemic patients
according to magnitude of iron overload and vs. controls
All tagging studies were successfully completed and
could be evaluated, however data from 4 phase contrast

Figure 1 Illustration of the measurements obtained from tagged MR. Consecutive tagged short-axis planes were acquired from apex to
base. On each short-axis plane, radial thickening (Err, purple) and circumferential shortening strain (Ecc, blue) were computed and the average
of Err and Ecc for the entire left ventricle was recorded. Rotation of the most basal (red) and apical slice (green) slices were computed and left
ventricular torsion (orange) was calculated as difference between apical and basal rotation divided by the length (l) between apex and base and
multiplied by the mean radius of the base (rbase) and apex (rapex) to obtain LV twist (�). The first derivate of LV twist over time was respectively
systolic twist rate and diastolic untwist rate.
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studies was missing or non evaluable. Results are shown
in table 2. Because of their smaller body size, absolute
LV dimensions, volumes and mass of patients with
hematological disease were significantly smaller than
those of controls. However, when adjusted to body sur-
face, LV and atrial volumes and LV mass were not sig-
nificantly different among patients and controls.
By study design, all patients had LV ejection fraction >

50%. In patients without significant iron overload, LV
ejection fraction and strains were not significantly differ-
ent from controls. Rotation of the LV base was similar
in patients and in controls. However the rotation of the
apex and uncorrected LV torsion were significantly
lower in patients than in controls. This was due to
shorter LV length and diameter of the hearts of patients.
Indeed, when corrected for LV length and diameter, LV
twist was similar in patients without significant iron
overload (T2* > 20 ms) and in controls.

Asymptomatic patients with severe cardiac iron over-
load (cardiac T2* < 10 ms) displayed significant reduc-
tions of LV ejection fraction, radial thickening and LV
torsion and LV twist as compared to controls and
patients with T2* > 20 ms. In patients with moderate
cardiac iron overload (cardiac T2* 10-20 ms), LV ejec-
tion fraction was preserved, however LV twist was sig-
nificantly reduced as compared to controls.
Among all diastolic parameters studied, none did

attain statistical significance.

Correlations of parameters versus cardiac and hepatic T2*
and R2* values
The magnitude of reduction of LVEF, of systolic radial
thickening and systolic LV twist and systolic LV twist
rate in patients correlated linearly with the severity of
cardiac but not with hepatic iron overload (Table 3, Fig-
ure 3). Among diastolic parameters, only rotational

Figure 2 Illustration of the prescription and measurements obtained from phase contrast MR. Two identical stacks of phase contrast
images were prescribed on a 3 chamber view of the heart (i). To assess transmitral and aortic flow, a velocity encoding (venc) of 250 cm/s was
used and the center of the slice was positioned perpendicular to mitral inflow, at early diastole (ii, upper panel). To assess tissue MR velocities,
phase-contrast MR was repeated with a velocity encoding of 30 cm/s, (ii, lower panel) To derive aortic and trans-mitral flow (iii, top panel),
circular regions of interest were placed in the aortic (green) and mitral valve (red). On the corresponding mitral flow curve (panel iii, red) the
peak mitral velocity of rapid early (E) filling wave late atrial (A) filling wave were recorded. The deceleration time (DT) of the early (E) wave of the
mitral valve was computed between the peak of the E wave and the point where the fitted line of descending slope of the E wave reached
zero velocity. The isovolumic relaxation time (IVRT) was computed as the delay between the end of the aortic valve flow and the beginning of
the transmitral flow. On the tissue velocity images (ii lower panel, regions of interest were placed on the septal (orange) and lateral wall (yellow)
and corresponding tissue velocity versus time curves were plotted (iii lower panel). From these curves, peak tissue velocity in early diastole in
the septum (e’s) and lateral wall (e’l) was measured and average E/e’ratio was computed.
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Table 2 Size and parameters of systolic and diastolic function and CMR in hearts of patients with multiple transfusion
vs Controls

patients

T2* ≤ 10
ms

(n = 5)

T2* 11-20
ms

(n = 5)

T2* > 20
(n = 9)

Controls (n =
8)

P value
ANOVA

LV mass (g/m2) 78 ± 21 65 ± 12 76 ± 17 68 ± 9 .21 (NS)

Apex-Base lenght (mm) 63 ± 5¶ 67 ± 5¶ 60 ± 10¶ 81 ± 6 <.001

LV diameter base (mm) 41 ± 3 42 ± 5 48 ± 7 50 ± 6 .02

LV Size LV EDVi (ml/m2) 95 ± 16 81 ± 18 83 ± 14 84 ± 7 .63 NS)

LV ESVi (ml/m2) 44 ± 9 35 ± 13 32 ± 9 29 ± 6 .11 (NS)

LA area (ml/m2) 46 ± 11 39 ± 12 35 ± 10 43 ± 16 .42 (NS)

LV EF (%) 54 ± 3¶ 59 ± 7 62 ± 6 65 ± 6 .01

Ejection time (ms) 267 ± 20 280 ± 27 263 ±
35¶

306 ± 13 .06 (NS)

LV Rotation apex (°) 7 ± 2¶ 9 ± 4¶ 11 ± 5¶ 19 ± 6 <.001

Systolic parameters LV Rotation base (°) -2 ± 1 -3 ± 2 -4 ± 3 -3 ± 2 .44 (NS)

LV Torsion uncorrected(°) 10 ± 2¶ 12 ± 4¶ 15 ± 6¶ 23 ± 5 <.001

LV Twist � corrected for LV length and radius
(°)

1.6 ± 0.2¶† 1.9 ± 0.5¶ 3.0 ± 1.2 3.5 ± 0.7 .002

End-systolic Ecc (%) -10 ± 3 -14 ± 3 -12 ± 4 -16 ± 3 .05

End-systolic Err (%) +6 ± 4¶ +9 ± 2 +11 ± 1 +11 ± 4 .05

Peak systolic twist rate
(°/msec)

7 ± 2 9 ± 3 12 ± 5 13 ± 4 .07 (NS)

PFR (ms) 581 ± 188 504 ± 232 643 ±
191

700 ± 134 .27 (NS)

E wave amplitude (cm/s) 77 ± 3 78 ± 12 69 ± 9 64 ± 10 .08 (NS)

A wave amplitude (cm/s) 29 ± 3 34 ± 12 36 ± 6 37 ± 12 .66 (NS)

Diastolic
parameters

E/A ratio 2.7 ± 0.2 2.6 ± 1.1 2.0 ± 0.4 2.2 ± 0.8 .61 (NS)

DT (ms) 131 ± 16 116 ± 20 128 ± 29 154 ± 31 .21(NS)

E’ wave amplitude septum (cm/s) 13 ± 8 10 ± 3 11 ± 5 11 ± 3 .91 (NS)

E’ wave amplitude
lateral wall (cm/s)

19 ± 7 13 ± 5 17 ± 5 15 ± 2 .67 (NS)

E/e’ septum 8 ± 5 8 ± 3 7 ± 2 6 ± 2 .50 (NS)

E/e’ lateral 4 ± 1 7 ± 4 4 ± 2 4 ± 1 .25 (NS)

IVRT (ms) 50 ± 4 71 ± 19 65 ± 10 73 ± 20 .48 (NS)

Peak diastolic untwist rate (°/msec) -7 ± 2 -9 ± 2 -18 ± 11 -17 ± 10 .10 (NS)

LV: Left ventricular, EDVi: indexed End-diastolic volume, ESVi indexed End-systolic volume, LA: Left atrial, EF: Ejection fraction, Ecc: Eulerian circumferential
shortening, Err: Eulerian radial Thickening, PFR Peak filling rate, DT: Mitral E wave deceleration time, IVRT: Isovolumic relaxation time.

¶ p < 0.05 vs controls. † p < 0.05 vs T2* > 20 ms by Bonferroni test

Table 3 Significant correlations of Systolic and Diastolic Parameters with cardiac and hepatic T2* and R2* in patients
with chronic transfusion

r vs.

Parameter Log
cardiac T2*

Cardiac R2 Log hepatic T2* Hepatic R2*

LV twist � 0.64¶ -0.59¶ 0.09 -0.17

LV EF 0.44¶ -0.45¶ 0.33 -0.36

End-systolic Err 0.58¶ -0.64¶ 0.09 -0.18

Peak systolic twist rate 0.50¶ -0.49¶ 0.10 -0.21

Peak diastolic untwist rate -0.53¶ 0.49¶ -0.50¶ 0.39

LV: Left ventricular, EF: Ejection fraction, Err: Eulerian radial Thickening

¶p < 0.05
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untwist rate correlated inversely and significantly both
with the severity of cardiac and hepatic iron overload.

Discussion
This study evaluated systolic and diastolic function by
tagged and phase contrast CMR in patients with
repeated transfusion. The originality of our study is two-
fold: Indeed as opposed to earlier work, we studied only
asymptomatic patients without clinical signs of heart
failure and with preserved ejection fraction. In addition,
we computed myocardial strains from tagged MR to
precisely evaluate myocardial contractility in our
patients.

Alterations of systolic and diastolic function in iron
overload
Earlier work demonstrated that LV ejection fraction is
reduced in patients with severe cardiac iron overload
[1-4,16]. Other studies [21-27] employing tissue Doppler
echocardiography, described reductions of systolic tissue
Doppler velocities in patients with chronic iron over-
load. Hamdy et al [25] also reported reduced systolic
strains using tissue Doppler echocardiography in
patients with iron overload. Our study is the first to

evaluate myocardial strains by tagged CMR in patients
with iron overload.
Our study corroborates earlier reports of reduced sys-

tolic function in severe cardiac iron overload [1-4,16].
Indeed, our study demonstrates significant reductions of
LV ejection fraction and of LV strains in hearts with
severe iron overload (T2* < 10 ms). Furthermore, we
were also able to demonstrate that hearts with moderate
iron overload (T2* 10-20 ms) already presented signifi-
cant reductions of LV rotation twist, even when LV
ejection fraction was still maintained. We also observed
that the magnitude of alterations of all parameters of
systolic function correlated linearly with the severity of
iron overload measured either as log T2* or R2*.
Thereby we confirmed the previously reported inverse
relation between LV ejection fraction and T2*, but
extended this observation to patients with overall pre-
served ejection fraction and without heart failure. Of all
parameters studied, we observed that LV rotational twist
was affected earliest, and had the highest correlation
with the severity of cardiac iron overload. Our study
thus stresses the value of LV strains and in particular of
LV torsion and twist, as early markers of LV systolic
dysfunction in patients with cardiac iron overload. This

Figure 3 Correlation of parameters of systolic function vs. cardiac log T2* and R2* in patients with multiple transfusion.
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finding is consistent with other reports, which demon-
strated that LV rotation and torsion are highly sensitive
indicators of early LV systolic dysfunction in ischemic
heart disease, pressure overload, cardiomyopathy and
diabetes mellitus [28-30].
In contrast to systolic function, our study found no

alterations in diastolic function in patients with iron
overload. The only parameter which correlated signifi-
cantly with the severity of iron overload in patients was
diastolic LV untwisting velocity. Also in the literature,
reports on diastolic dysfunction in patients with iron
overload are conflicting. Indeed some studies using
echocardiography [21,22,24,31,32], reported alterations
of E/A ratio and E/e’ratios in multiple transfused
patients when iron overload by T2* was present. On the
other hand, Leonardi et al. [16] reported, similar to our
findings, poor correlation between various diastolic
parameters by echocardiography and T2* measurement
by CMR in patients with iron overload. Also, Westwood
et al. [33] reported poor correlation between T2* mea-
surement and early and late diastolic filling rates by MR.
Interestingly in the present study we did not observe

increases in atrial volumes, or in LV mass in patients
with iron overload, as reported by others [4,22,34]. A
potential explanation for these discrepancies might be
that our present study excluded patients with heart fail-
ure symptoms and severely depressed cardiac function.

Clinical Implications
The findings of the present study illustrate the harmful
effects of iron overload on systolic function even before
overt cardiac dysfunction or heart failure develops. Con-
ventional echocardiographic techniques have failed to
distinguish LV function of patients with thalassemia and
iron overload from that of normal controls when global
function was examined. Our study suggests that myocar-
dial strains and in particular LV torsion and twist are
more sensitive parameters than global LV ejection frac-
tion for early detection of systolic dysfunction in
patients with iron overload. Also LV untwisting velocity
was the only useful parameter of diastolic dysfunction
correlating with iron overload. This is particularly inter-
esting, since speckle tracking echocardiography can now
evaluate strains and in particular LV torsion and twist
non-invasively. In principle, this technique might thus
also be useful for following patients with chronic iron
overload. Unfortunately, as we have previously shown
[35], 2D echocardiography is limited by the inability to
reliably visualize the true LV apex from parasternal
views. Therefore its reproducibility is poor for evalua-
tion of LV torsion and it may underestimate LV torsion
and twist as opposed to CMR. Recently introduced 3D
speckle tracking techniques [36] can visualize the entire
heart including the true apex and thus promise more

accurate and reproducible quantification of left ventricu-
lar rotation and twist. This might allow echocardio-
graphic assessment of LV twist in patients with iron
overload.

Limitations
Severe iron overload causes magnetic susceptibility
effects which may affect to some extent the image quality
of our tagging sequence with echo-planar readout.
Although the sharpness and persistence of tags were
found to be reduced in some patients with severe iron
overload in late diastole, we could compute strain in sys-
tole and early diastole in all patients. Another limitation
is that we assessed diastolic function using a phase con-
trast imaging, with a lower temporal resolution compared
to Doppler echocardiography. This may have affected our
ability to precisely evaluate parameters of diastolic dys-
function. Yet this approach was shown in a validation
study to provide as accurate measurements of diastolic
function as Doppler echocardiography does [18].

Conclusions
We have shown in a small patient cohort that LV rota-
tional twist is the earliest and most affected parameter
in hearts with moderate iron overload, and shows the
best correlation versus the severity of cardiac iron over-
load. This suggests that this parameter might be useful
to monitor development of LV systolic dysfunction in
patients with cardiac iron overload.
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