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Abstract

The Kelch-like (KLHL) gene family encodes a group of proteins that generally possess a BTB/POZ domain, a BACK
domain, and five to six Kelch motifs. BTB domains facilitate protein binding and dimerization. The BACK domain has
no known function yet is of functional importance since mutations in this domain are associated with disease.
Kelch domains form a tertiary structure of β-propellers that have a role in extracellular functions, morphology, and
binding to other proteins. Presently, 42 KLHL genes have been classified by the HUGO Gene Nomenclature
Committee (HGNC), and they are found across multiple human chromosomes. The KLHL family is conserved
throughout evolution. Phylogenetic analysis of KLHL family members suggests that it can be subdivided into three
subgroups with KLHL11 as the oldest member and KLHL9 as the youngest. Several KLHL proteins bind to the E3
ligase cullin 3 and are known to be involved in ubiquitination. KLHL genes are responsible for several Mendelian
diseases and have been associated with cancer. Further investigation of this family of proteins will likely provide
valuable insights into basic biology and human disease.
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Introduction
The KLHL (Kelch-like) gene family encodes proteins
that constitute a subgroup at the intersection between
the BTB/POZ domain and Kelch domain superfamilies.
First identified in the vaccinia virus [1], the BTB motif
was named based on a homologous domain of 115
amino acids in Drosophila melanogaster bric à brac 1,
tramtrack, and broad-complex proteins (BTB) [2]. BTB
domain-containing zinc finger proteins are conserved
evolutionarily from Drosophila to humans and mice with
more than 49 family members in the latter two [3]. The
POZ domain was initially named after the 120 amino
acid motifs present at the amino terminus in poxvirus
proteins and zinc finger proteins [4]. The BTB/POZ
domain facilitates protein binding [5] as reviewed in
Perez-Torrado et al. [6]. Functions observed to be as-
sociated with other BTB-containing proteins involve a
variety of cellular mechanisms such as control of cytoskel-
etal organization [7], ion channel gating [8], transcription
suppression [9], and protein targeting for ubiquitination
through cullin E3 ligases [10,11].
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The Kelch repeat or domain is also an evolutionarily
conserved structure that can be found from Drosophila
melanogaster to Homo sapiens [12]. Based on sequence
identity, it has been suggested that each four-stranded
β-sheet of the Kelch motif forms one blade of a β-propeller
structure [12]. The Kelch superfamily of proteins can be
subdivided into five groups. These subgroups include (1)
N-propeller, C-dimer proteins, (2) N-propeller proteins, (3)
propeller proteins, (4) N-dimer, C-propeller proteins, and
(5) C-propeller proteins [12]. Kelch-containing proteins
have roles in extracellular communication/interaction,
cell morphology, gene expression, actin binding, and
can be co-opted by virus post-infection [12]. KLHL family
members belong to the N-dimer, C-propeller subclass of
Kelch repeat proteins.
In addition to BTB/POZ and Kelch domains, the KLHL

family members contain a BACK domain, first described as
a 130-residue region of conservation observed amongst
BTB-Kelch proteins [13]. Although no function has been
assigned to the BACK domain, it is likely to be of functional
significance because mutations in this region have been
shown to cause human disease [14-19].
The BTB superfamily includes KLHL, KBTBD, and

KLHDC subfamilies, which encompass structurally related
molecules that differ in the types and numbers of their
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protein domains. In general, KLHL proteins contain one
BTB/POZ domain, one BACK domain, and five to six Kelch
motifs (BTB, BACK, 5/6 Kelch). KBTBD proteins have one
BTB/POZ domain, occasionally a BACK domain, and two
to four Kelch motifs (BTB/POZ, (BACK), 2/4 Kelch). Most
KLHDC family members contain only three to seven Kelch
motifs and usually do not have BTB or BACK domains
(3/7 Kelch). Herein, we describe the evolutionary structure
of the human KLHL family, discuss examples of KLHL
family member biology, and present an overview of KLHL
protein relationship to human disease.

Evolutionary structure of the human KLHL family
There are nine KBTBD genes in the human genome, and
their encoded proteins typically possess a BTB and BACK
domain and two to four Kelch motifs. Ten KLHDC genes
have been defined by the HUGO Gene Nomenclature
Committee (HGNC) in the human genome. KLHDC
proteins generally do not have BTB or BACK domains
and have three to seven Kelch motifs. These subfamilies
will not be discussed further in this review.
KLHL proteins generally have a BTB/POZ domain, a

BACK domain, and five to six Kelch domains. However,
the domain composition for this family can appear to
vary depending on the protein domain prediction program
used to examine their protein sequences. The KLHL
family protein structure is shown in Figure 1. It should
be noted that KLHL29, KLHL31, KLHL40, and KLHL41
were previously assigned within the KBTBD family and
were listed as KBTBD1 (KLHL31), KBTBD5 (KLHL40),
KBTBD9 (KLHL29), and KBTBD10 (KLHL41). When
these genes were originally named, they appeared to
encode less than the five to six Kelch domains in the
standard KLHL (BTB, BACK, 5/6 Kelch) structure.
Therefore, they were classified as part of the KBTBD
family; however, reannotation has shown that these
genes do encode 5/6 Kelch domains. Likewise, the
reannotation of KLHDC5 (KLHL42) has shown that it
encodes the standard KLHL (BTB, BACK, 5/6 Kelch)
structure. Consequently, they have since been placed
within the KLHL family.
The HGNC presently defines 42 KLHL genes. They

are spread over different chromosomes, though several
are located on chromosomes 1, 4, and X (Additional file 1).
The number of exons is not conserved and ranges from
a single coding exon to 15 coding exons. However the
number of KLHL genes is conserved between mammalian
species (e.g., Homo sapiens and Mus musculus). ClustalO
and phylogenetic analyses of KLHL family members
suggest that they can be subdivided into multiple subgroups
(Figure 2). KLHL11 appears the oldest to diverge, followed
by KLHL42 and KLHL16. The most recent divergences ap-
pear to have happened for KLHL9 and KLHL13, followed
by KLHL25 and KLHL37 (Figure 2).
Examples of KLHL family members
KEAP1 (KLHL19)
The KEAP1 gene is clearly a member of the KLHL family.
While the well-used KEAP1 symbol has been retained as
the official gene nomenclature; it has also been assigned
the KLHL19 synonym to clearly group it within the KLHL
family. The human KEAP1 (Kelch-like ECH-associated
protein 1 gene is located on chromosome 19p13, and the
mouse ortholog is located on chromosome 9. KEAP1 was
originally identified as a nuclear factor erythroid 2-related
factor 2 (NRF2) interacting protein. NRF2 is a transcription
factor that is essential for the cellular reaction to elec-
trophiles and binds to the antioxidant response element
(ARE) present in promoters of genes involved in phase
II detoxifying and oxidative stress enzyme response [24].
KEAP1 was shown to negatively control NRF2 transactiva-
tion potential [25]. Some of the genes controlled by NRF2
are important for cellular defense against harmful oxidative
stresses that could result in carcinogenesis (as reviewed
in Motohashi and Yamamoto [26]). NRF2 interacts as a
heterodimer with Maf transcription factor protein that
binds to the ARE and activates transcription through the
Maf recognition element (MARE) (reviewed in Motohashi
and Yamamoto [26]).
KEAP1's ability to repress NRF2's downstream target ac-

tivation was demonstrated in zebrafish by gain-of-function
and loss-of-function experiments in which transcriptional
control by NRF2 of glutathione S-transferase gene (gstp) in-
duction was tested in the absence and presence of KEAP1.
NRF2-induced gstp expression was repressed when KEAP1
was also overexpressed [27]. KEAP1 was found to promote
NRF2 degradation by targeting it for ubiquitination through
the cullin 3 ligase complex [28,29], thus preventing NRF2
activity under normal cellular conditions [30]. Domain
function analysis of KEAP1 revealed that NRF2 degradation
requires both BTB and intervening domains [28].
KEAP1 is localized primarily in the cytoplasm of cells,

with a minimal amount in the nucleus and endoplasmic
reticulum [31]. KEAP1 scaffolding to the actin skeleton is
crucial for effective sequestering of NRF2 into the cyto-
plasm [7]. Electrophiles promote the nuclear accumulation
of NRF2 without altering the subcellular localization of
KEAP1 [31]. Furthermore, KEAP1 appears to regulate both
translational and post-translational responses to oxidative
stress [32,33].
The crystal structure of mouse KEAP1 was resolved

to reveal a six-bladed propeller tertiary structure
encompassing the Kelch domain [34]. The analysis
showed which bonds are needed for structural integrity
and proper association between KEAP1 and NRF2 [34].
NRF2 has been suggested to be involved in susceptibility
of lungs to cigarette smoke through the induction of
antioxidant genes [35]. KEAP1's relationship with cancer
is described below.



Figure 1 Schematic diagram of KLHL family members drawn to scale with amino acid numbers listed on the right. ‘BTB,’ ‘BACK,’ and ‘K’
indicate the BTB domain, BACK domain, and Kelch domains, respectively. In case of multiple isoforms, only the first one is depicted. Data was
collected from [20] using a motif scan with Pfam HMMs (global or local models).
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KLHL2 (Mayven)
KLHL2/Mayven is an actin-binding protein that shares
63% identity (77% similarity) with the Drosophila ring
canal (Kelch) protein [36]. The human gene is localized
on chromosome 4q21.1, and its murine ortholog is on
chromosome 8 [36]. KLHL2 RNA can be detected in
developing and adult brain, heart, spleen, lung and liver,
and adult kidney but most predominantly throughout the
brain including the hippocampus, caudate nucleus, corpus
callosum, and amygdala [36]. The KLHL2 protein has been
shown to be constitutively expressed in developing and
mature oligodendrocytes and neurons where it binds
directly to F-actin through its Kelch repeats and plays
an important role in the organization of the actin
cytoskeleton [36,37]. In developing oligodendrocytes,
KLHL2 is upregulated during differentiation [38], and it
localizes to lamellipodia (but not filipodia) [39]. KLHL2
overexpression in oligodendrocyte progenitors accelerates
neurite outgrowth and leads to longer processes. Con-
versely, downregulation inhibits process extension [37,38].
KLHL2 co-localizes and associates with FYN oncogene re-
lated to SRC, FGR, and YES (FYN) tyrosine kinase through
its SH3-binding domain at the N-terminus. This interaction
increases upon differentiation, suggesting a role in promot-
ing oligodendrocyte process outgrowth and strengthening
of the initial axonal-glial contact mediated by FYN signal-
ing. Based on the type of interaction, it has been suggested
that KLHL2 acts as a linker between FYN and actin [38].
Upon depolarization of primary hippocampal neurons with
KCl, association of KLHL with actin is enhanced, resulting



Figure 2 Phylogenetic tree of KLHL proteins with evolutionary distances shown next to each protein. Amino acid sequences were
obtained from [21], and the alignment was created with ClustalO from [22]. The Cladogram was created using ClustalW2-Phylogeny from [23].
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in re-distribution and translocation along the axonal
processes [36]. The functional significance of these findings
needs further investigation.
Recently, independent interactions with two different

proteins have underscored KLHL2 involvement in
ubiquitination. KLHL2 binds to nucleus accumbens-
associated 1 (NACC1), a transcriptional repressor protein
that interacts also with another KLHL family member,
ectodermal-neural cortex 1 (ENC1/KLHL37). KLHL2 may
form part of the ubiquitin complex through which
NACC1 affects degradation of specific gene products and
promotes proteasome activity and trafficking [40]. Finally,
interactions of KLHL2 have been shown with neuronal
pentraxin with chromo domain (NPCD, encoded by the
Npcd gene in mouse which is a read-through between
Cbx6 and Nptxr) and with cullin 3. In this case, KLHL2
appears to function as a specific adapter for NPCD
ubquitination via cullin 3. Notably, overexpression of
NPCD in hippocampal neurons leads to apoptosis [41].
KLHL family members and inherited disease
KLHL members associated with inherited forms of human
disease include KLHL3, KLHL7, KLHL9, KLHL12, and
GAN (KLHL16). Mutations in KLHL3 have been identified
in patients with familial hyperkalemic hypertension.
Molecular analyses have shown that most mutations
increase the activity of the Na+Cl− symporter in the
distal convoluted tubule portion of the nephron. The
increased activity causes more Na+ and Cl- reabsorption,
increasing blood pressure and culminating in hypertension.
Although mutations were identified in this familial disease,
screening for single nucleotide polymorphisms (SNPs)
in KLHL3 did not reveal any significant association
with blood pressure measurements in human subjects,
indicating that common variants are not responsible
for variations in blood pressure [19].
Patients with autosomal dominant retinitis pigmentosa

(adRP), a neurodegenerative disease that leads to loss of
rod and cone photoreceptors, carry mutations in KLHL7
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[18]. Early and often rapid alteration of rod function is a
characteristic of the classic form of adRP, but the phenotype
observed in the KLHL7 patients differs because of its late
onset and preserved rod function in older family members
[42,43]. Recent work suggests that KLHL7 protein binds to
cullin 3 and that a single mutation in the BACK domain
leads to reduced efficiency of cullin 3's ubiquitin ligase
activity [44]. KLHL7 and KLHL12 have also been identified
as autoantigens in Sjögren's syndrome, an autoimmune
disease that causes damage to the salivary and lachrymal
glands [45]. No significant immunological response to
either KLHL7 or KLHL12 was observed in the sera of
healthy individuals [45].
A missense mutation in KLHL9 leads to the development

of distal myopathy in human patients. Distal myopathy is a
degenerative disease that initially causes atrophy of distal
limb muscles and subsequently extends to proximal
limbs [46]. Mutations in GAN (KLHL16), or gigaxonin,
are linked to human giant axonal neuropathy, an auto-
somal recessive disorder [14]. Giant axonal neuropathy
affects the central and peripheral nervous system that
becomes populated with large, dysfunctional axons
[16]. Compound heterozygous missense mutations in
the Kelch-coding region of gigaxonin have recently
been reported in Chinese cases [47].

KLHL family members and cancer
Four KLHL family members are associated with cancer:
KLHL6, KEAP1 (KLHL19), KLHL20, and ENC1 (KLHL37).
Mutations in KLHL6 are recurrent in cases of chronic
lymphocytic leukemia (CLL), a type of leukemia that is
predominant in adults. Six mutations were identified
within KLHL6 in CLL patients, and all disrupt KLHL6
function in germinal center B cell formation [48,49].
Insertion, missense, frameshift, and missense mutations in
KEAP1 [17,35] have been identified in cancerous cells of
the liver, gallbladder, and lung. Mutations that result in
KEAP1 loss of function are thought to facilitate cancer
cell expansion. Decreased KEAP1 expression releases
the block on the transcriptional activity of NRF2, resulting
in increased expression of oxidative stress enzymes and
proteins that favor cancer cells survival and proliferation
[33,50]. KLHL20 is an important KLHL family member
related to cancer progression. KLHL20 is induced by
HIF-1α protein and forms a KLHL20-cullin 3 complex
that degrades the promyelocytic leukemia protein (PML)
leading to prostate cancer progression [51]. Mutations
in ENC1 (KLHL37), also called NRP/B, are associated
with brain tumors. Mutations reported in KLHL37 are
primarily located in the Kelch domain but also exist in
the BTB and BACK domains [15]. KLHL37 protein is
normally expressed in neurons but not in astrocytes;
however, brain tumor cells that arise from astrocytes
express KLHL37. It is hypothesized that mutated KLHL37
promotes cell growth, prevents apoptosis, and alters
the cytoskeleton [15].

Conclusions
There are 42 KLHL family members encoded in the human
genome, containing conserved BTB, BACK, and Kelch
domains. KLHL proteins are known to be involved in the
ubiquitination process, but the specific roles for each family
member have not yet been elucidated. KLHL proteins will
likely have multiple substrates. KEAP1 (KLHL19), for
example, has at least three (NRF2, IKKβ and BCL-2) as
reviewed in Tian et al. [52]. Similar protein motifs amongst
substrates such as the ETGE region in NRF2 and IKKβ
could be one way to explain how a KLHL protein can bind
to more than one protein [52]. Another potential source of
substrate diversity is possible through the BTB domain.
BTB cross-dimerization between different KLHL proteins
could theoretically allow for differential substrate binding
depending on the spatial and temporal expression of KLHL
proteins. Mutations in certain KLHL genes are detrimental
and result in either Mendelian disease or human cancers.
We anticipate that further studies will reveal that most, if
not all, KLHL proteins have fundamental impacts on
human biological processes and disease.
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