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Abstract

The estimation of genetic ancestry in human populations has important applications in medical genetic studies.
Genetic ancestry is used to control for population stratification in genetic association studies, and is used to
understand the genetic basis for ethnic differences in disease susceptibility. In this review, we present an overview
of genetic ancestry estimation in human disease studies, followed by a review of popular softwares and methods
used for this estimation.
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Introduction
The analysis of population structure based on genetic an-
cestry is an increasingly important component of many
genetic studies. Genetic ancestry estimation is a broad
term which is concerned with a number of different popu-
lation genetics problems, including: (1) detection of popu-
lation structure (2) defining the number of subpopulations
in a sample (3) assigning individuals to subpopulations (4)
defining the number of ancestral populations in admixed
populations (5) assigning ancestral population proportions
to admixed individuals and (6) identifying the genetic an-
cestry of distinct chromosomal segments within an indi-
vidual [1]. No single method or software can optimally
solve all of these problems. This review will present a
number of softwares for defining these various facets of
genetic ancestry, with an emphasis on their use in medical
genetic studies.
Genetic ancestry arose from the biogeographical distri-

bution of human populations, and is a concept distinct
from ethnicity, which is a social construct with no clear
genetic definition [2]. The establishment of inexpensive
single nucleotide polymorphism (SNP) genotyping plat-
forms in the previous decade has allowed for relatively fa-
cile collection of markers to assess genetic ancestry in
human populations. With prior knowledge of population-
specific allele frequencies, panels of SNPs referred to as
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ancestry informative markers (AIMs) can be used to esti-
mate genetic ancestry [3-6]. AIMs are markers whose fre-
quencies are significantly different, and thus able to
distinguish, between two or more populations [7]. Panels
of AIMs vary in size, depending on the intended purpose.
Relatively small panels numbering in the dozens to hun-
dreds of SNPs can be used when the purpose is to define
continental genetic ancestry, whereas hundreds or thou-
sands of SNPs are required for more refined sub continen-
tal estimation or for traditional mapping by admixture
linkage disequilibrium (MALD) [8-10]. Alternatively, the
advent of genome-wide association studies (GWAS) has
made it increasingly common to use the large amount of
SNP data already present on genome-wide arrays to esti-
mate genetic ancestry [11]. Some of the methods pre-
sented in this review do not require the use of specific
AIM panels, but work more effectively with dense genotyp-
ing data, though different softwares are more or less adept
at handling different sized marker sets. Subsets of AIMs
can also be selected from GWAS data using traditional
approaches based on SNP informativeness [12] or more re-
cent principal components analysis (PCA) approaches [13].
In medical genetics, perhaps the most common use of

estimated genetic ancestry is as a control against cryptic
population stratification in genetic association studies
[8,14]. Confounding by population stratification can occur
when (a) the allele frequencies of a disease causing SNP
are substantially different between populations (b) popula-
tion proportions are not matched in cases and controls (c)
population structure isn’t accounted for in the statistical
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modeling of genetic association. Self-identified ethnicity
can be used to control for this potential confounding,
often by simply including individual ethnicity as a covari-
ate in the regression models or by performing population
stratified analyses. However, using self-identified ethnicity
can result in misclassification [15], and also cannot
account for varying degrees of admixture within self-
identified ethnic groups. Direct estimates of genetic ances-
try based on genotype data are therefore preferred as a
control for population substructure, given the advantage
in precision and informativeness over self-identified ethni-
city [16]. In addition to serving as a control for population
stratification, estimation of genetic ancestry has become
particularly important in studies of recently admixed
populations, such as African-Americans and Latinos
[3,17]. Admixed populations which show protection or
susceptibility to common diseases provide an unprece-
dented opportunity for disease gene mapping [18,19].
Genetic ancestry can be divided into “local” and “global”

estimates [20]. Local estimates are concerned with identi-
fying the ancestral origin of distinct chromosomal seg-
ments within an individual genome, and these methods
are a more recent development in the field. Global esti-
mates seek to establish ancestral proportions averaged
across the genome of an individual, so that proportions of
each ancestry (summing to 1) can be assigned to each in-
dividual. In general, the softwares for estimating genetic
ancestry can also be divided into methods that rely on
multivariate statistical methods (like PCA and cluster ana-
lysis) versus methods that make use of explicit genetic
models, although this distinction does not imply that there
aren’t important similarities between algorithmic and
model-based methods. The purpose of this survey is to
describe some of the better known algorithmic and
model-based programs for estimating both local and glo-
bal genetic ancestry. Table 1 contains a list of the softwares
under discussion, usefulness in estimating global or local
Table 1 Softwares for estimating genetic ancestry

Software Global/local estimation Operating Environmen

STRUCTURE Global Windows/DOS/Linux/So

frappe Global Windows/Linux/Mac

ADMIXTURE Global Linux/Mac

EIGENSTRAT/smartpca Global Linux

ipPCA/EigenDev Global Windows/Linux (MatLab

GEMTools Global Windows/Linux

PLINK Global Windows/Linux/Mac/C/C

LAMP Local and Global Windows/Linux

SABER Local and Global Linux

HAPMIX Local and Global Unix/Linux/Windows

ANCESTRYMAP Local and Global Unix/Linux
ancestry, the computing environment, and a link to soft-
ware website. All softwares presented in this review are
free to academic users.

Estimating global ancestry
Structure
STRUCTURE, perhaps the most widely used program for
estimating global genetic ancestry, was developed by
Pritchard et. al. in 2000 [1]. STRUCTURE is a model-
based clustering approach which utilizes genotype data to
infer the presence of distinct populations, assign indivi-
duals to populations, identify admixture proportions at
the individual level, and to estimate ancestral population
allele frequencies in admixed populations. There are four
main models within STRUCTURE: (1) No admixture
model, which assumes individuals come from distinct
populations (2) admixture model (3) linkage model [21],
which accounts for admixture linkage disequilibrium (i.e.
the phenomenon whereby recently admixed populations
have larger regions of LD between loci), and (4) prior
population information models, which can use location or
self-identified ethnicity (if they are informative) to enhance
the detection of population structure [22]. The model
which utilizes prior population information is particularly
useful when working with a small number of markers or
when population structure is weak.
Prior to running STRUCTURE, parameters must be

set, with perhaps the most critical being K, the number
of populations. The authors took an ad hoc approach for
K, estimating the conditional mean and variance of
Bayesian deviance based on the data [1]. It is also useful
to consider known information on the populations
under study when choosing an appropriate K. As with
any method used to estimate global ancestry proportions,
a highly informative marker set and better representation
of ancestral populations allows for more exquisite reso-
lution of population structure, and thus will influence the
ts Link

laris/Mac http://pritch.bsd.uchicago.edu/structure.html

http://med.stanford.edu/tanglab/software/frappe.html

http://www.genetics.ucla.edu/software/admixture/index.html

http://www.hsph.harvard.edu/faculty/alkes-price/software/

) http://www4a.biotec.or.th/GI/tools/ippca

http://www.wpic.pitt.edu/wpiccompgen/GemTools/GemTools.htm

++ http://pngu.mgh.harvard.edu/~purcell/plink/

http://lamp.icsi.berkeley.edu/lamp/

http://med.stanford.edu/tanglab/software/saber.html

http://www.stats.ox.ac.uk/~myers/software.html

http://genepath.med.harvard.edu/~reich/Software.htm

http://pritch.bsd.uchicago.edu/structure.html
http://med.stanford.edu/tanglab/software/frappe.html
http://www.genetics.ucla.edu/software/admixture/index.html
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selection of K. In order to run STRUCTURE, individual
genotypes are required as input. For the linkage model,
phase and genetic map data can also be used.
Briefly, STRUCTURE models the probability of observed

genotypes given the individual ancestry proportions and
ancestral population allele frequencies. The program
assigns individuals to ancestral populations (or proportions
of individuals in the case of the admixture model) based
on genotype data, while simultaneously estimating the al-
lele frequencies of those populations. Given prior informa-
tion about the probability of the populations of origin for
individuals and the probability of allele frequencies for all
populations, traditional Bayesian methods using Markov
chain Monte Carlo (MCMC) and Gibbs Sampling are used
to obtain the corresponding posterior distribution [1]. A
burn-in period is required to reach a stationary posterior
distribution, and this burn-in period (and the number of
MCMC iterations) is set by the user. MCMC methods are
useful in obtaining samples from a posterior distribution
when direct sampling is not possible. The method utilizes
the Metropolis-Hastings algorithm to obtain a sequence of
random samplings which can approximate the distribution.

Admixture
Similar to STRUCTURE, the ADMIXTURE program
models the probability of observed genotypes using ances-
try proportions and population allele frequencies, simul-
taneously estimating population allele frequencies along
with ancestry proportions. An input file of genotypes from
unrelated individuals is required, as is an estimate of K.
The ADMIXTURE program uses a cross-validation ap-
proach to help estimate K, unlike STRUCTURE which
computes the model evidence for each value of K. The
ADMIXTURE cross validation procedure helps identify
which value of K has the best predictive value, by masking
or holding out a subset of genotype data and then predict-
ing those masked genotypes.
Unlike STRUCTURE, ADMIXTURE focuses on max-

imum likelihood estimation (MLE) rather than sampling
the posterior distribution using MCMC, and calculates the
estimates via a block relaxation approach which results in
improvements in speed [20,23]. This computational effi-
ciency provides an advantage over STRUCTURE when
using very large numbers of markers, for example when
using dense GWAS data instead of smaller AIM panels.
Briefly, ADMIXTURE updates the allele frequency param-
eter and ancestry fraction parameter alternatively by ma-
ximizing the second-order Taylor’s expansion of the
likelihood function. It does this iteratively, based on allele
frequencies and ancestry proportions associated with the
current parameter values. This is typically known as se-
quential quadratic programming and coincides with
Newton’s method in the absence of constraints [24].
Newton’s method can be used to find the optimal point
to solve x-M(x) =0. However, obtaining the differential of
M(x) is challenging; therefore a quasi-Newton method is
used. This accelerates the convergence, and has been
shown to provide an advantage in speed over conver-
gence methods like the Expectation Maximization (EM)
algorithm, as employed in the MLE-based program
frappe (discussed below). Alexander and coworkers
showed that on real world datasets, ADMIXTURE is
much faster than STRUCTURE but with comparable es-
timation, and has been shown to be faster and more ac-
curate than frappe [20].

Frappe Frappe uses a full maximum likelihood approach
to estimate individual admixture [25]. frappe requires a
genotype and parameter file, containing individual geno-
types and a specification of K. Unlike STRUCTURE and
ADMIXTURE, frappe does not provide measures to
choose an optimal K value. frappe is far more computa-
tionally efficient than STRUCTURE [25], but as stated
above, less computationally efficient than ADMIXTURE.
In simulations using few SNPs (n=60), few individuals
from ancestral populations (n=20 and n=60), and low
information content of the SNPs (average delta=0.33),
frappe produced significantly less biased estimates than
STRUCTURE [25]. Thus, frappe appears to perform
well when population structure is weak. However,
STRUCTURE can use population information to inform
the prior probabilities, and this model is also effective in
the case of weak population structure [22].

Eigenstrat and ipPCA
PCA can be used for dimensionality reduction to group
those with similar genetic ancestry together [26]. PCA is a
computationally efficient method which can handle large
numbers of markers, and is useful for visualizing popula-
tion structure [27,28]. The first few principal components
are often used to correct for population stratification in
genetic association studies. The EIGENSOFT software
package contains EIGENSTRAT (and its helper routine
smartpca), and is the most cited PCA method for popula-
tion structure applications [29].
Briefly, the PCA methods focus on the spectral decom-

position of a variance covariance matrix for dimensionality
reduction. Both the eigenvalues and eigenvectors are im-
portant for underlying population structure identification.
The eigenvectors present the linear combination of the
covariates which in turn serve as the new dimensions. All
the dimensions are orthogonal to each other. These linear
combinations are known as the principal components. If
there is underlying structure among populations, PCA
tends to separate them based on the principal compo-
nents. A question, however, is when to stop dividing indi-
viduals into subpopulations. Patterson and colleagues
provided an answer which allows determination of the
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probability of structure based on the Tracy-Widom distri-
bution [29]. The Tracy-Widom theory considers that
when the dimension for a matrix M is suitably large, the
distribution of the largest eigenvalue follows approxi-
mately the Tracy Widom distribution as identified by
Johnstone [30]. This allows assessment of the probability
that the largest eigenvalue is random, and thus, whether
or not structure exists [29].
In large, highly structured samples, particularly when

subpopulations are closely related or when there is a
genetically distant subpopulation, traditional PCA meth-
ods have difficulty assigning individuals to the correct
subpopulation [31]. However, ipPCA (and an extension
termed EigenDev-ipPCA) is a refinement of the PCA
method which efficiently assigns individuals to popula-
tions and provides accurate estimates of K, even in
highly structured populations [31,32]. Although there is
no general agreement on what constitutes a subpopula-
tion, on simulated and real datasets, ipPCA was more
accurate (ie. fit better with population assignments based
on prior knowledge of population structure) than
STRUCTURE in determining K, particularly as the num-
ber of subpopulations increased [31].
Plink and GEMTools
Other algorithmic approaches statistically related to the
PCA exist as well. PLINK implements multidimensional
scaling (MDS) to assess population structure. Given that
PLINK is commonly used for genetic association testing, it
is convenient that the output file from MDS analysis in
PLINK can be directly used as a covariate file in PLINK-
based association testing. In the current version of PLINK,
genome-wide coverage of SNPs is required to perform the
MDS analysis. MDS is a class of statistical analysis that
provides a view of the proximities for objects. Therefore,
the similarities of people based on genetic ancestry can be
viewed using MDS. Theoretically, the MDS method tries
to find a matrix from the dissimilarity matrix that pre-
serves the distances, allowing the data to be projected into
low dimensional space [33]. PLINK utilizes a distance
measure based on genome-wide pairwise IBS (identity-
by-state) to construct an MDS plot. In a comparative study,
PCA structure analysis as implemented in EIGENSOFT
performed slightly better than PLINK-based MDS analysis
in correcting for population stratification in a GWAS data-
set [34].
Another algorithmic approach is a recently introduced

package called GEMTools which uses spectral graph
theory for dimensionality reduction and clustering by
genetic ancestry [35]. This approach may be more flex-
ible than PCA [36], and the package contains a conveni-
ent function for matching cases and controls based on
genetic similarity.
Estimating local ancestry
Lamp
LAMP (Local Ancestry in adMixed Populations) is a
program used to infer locus-specific ancestry in admixed
populations using sliding windows of contiguous SNPs
[37,38]. A significant advantage of LAMP relative to
other methods for local ancestry is that it does not re-
quire genotypes from unadmixed ancestral populations
as input. This is advantageous when working with an
uncharacterized populations or when ancestral geno-
types aren’t available. When available, ancestral genotype
information can be utilized by the LAMP program using
LAMP-ANC. The LAMP-ANC program then infers
local ancestry based on the ancestral populations, rather
than the de novo inference used by LAMP.
Similar to other local ancestry programs, LAMP does

require input parameters, including the recombination
rate, global ancestry proportion, and an upper limit on
time since admixture. Global recombination rates have
previously been calculated [39], and global ancestral pro-
portion can be calculated using a program such as
STRUCTURE. Simulations indicate that LAMP is more
robust to inaccuracies in time since admixture and less
so to inaccuracies in global ancestral proportions, and
performs somewhat less well as this proportion nears 0.5
[37]. On simulated admixed populations representing
African-Americans, LAMP and LAMP-ANC were on
average more accurate and considerably faster than
SABER (discussed below) [37]. However on simulations
of admixed populations with very closely related ances-
tral populations (Chinese and Japanese), SABER was
more accurate than LAMP but less accurate than
LAMP-ANC. However, all methods perform rather
poorly when the ancestral populations are very closely
related. All of the local ancestry methods can be used to
estimate global ancestry by chromosomal or genome-
wide averaging of the local ancestry estimates. On simu-
lated data, relative to STRUCTURE, LAMP was more
accurate in estimating global genetic ancestry [37]. Again
on simulated data, LAMP is capable of accurately esti-
mating admixture proportions in cases of three-way, and
presumably greater, admixture. In contrast to SABER
and HAPMIX (reviewed in following sections), LAMP
does not model LD and assumes uncorrelated SNPs,
though the program is somewhat robust to this assump-
tion [37].
Briefly, the idea of LAMP is to select a suitable win-

dow length, and then a clustering algorithm known as
Iterated Conditional Modes (ICM) is used to estimate
the likelihood that an individual chromosome has a par-
ticular ancestry within this window. The ancestry of in-
dividual SNPs is determined by majority vote using all
such overlapping windows containing that SNP [37]. For
this procedure, the most important step is the Iterated
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Conditional Modes. This algorithm differs from the trad-
itional Expectation Maximization (EM) algorithm in the
E step [37]. In the EM algorithm, the expected classifica-
tion based on the minor allele frequencies of the SNPs
within the given window will be obtained; in contrast, in
the ICM algorithm, the maximized posterior estimate
for the classification based on the minor allele frequen-
cies and genotype will be obtained instead, assuming the
initial classification is reasonable [37]. Therefore, ICM
can have a greatly accelerated convergence compared to
the EM algorithm. Since this algorithm involves the ac-
curate estimation of the minor allele frequency as the
starting point, the authors of this software considered
two scenarios: (1) in the case of two ancestral popula-
tions with unknown allele frequencies in the ancestral
population, the MAXVAR algorithm will be used, in
which the individuals will be grouped according to the
measurement of similarity (2) in the case when there are
two or more ancestral populations and the minor allele
frequency is known, the question is simpler and the
given ancestral allele frequencies will be used [37].
Hapmix
HAPMIX is an extension of a Hidden Markov Model
(HMM) [40] used to model linkage disequilibrium in
population genetic data [41]. HAPMIX requires as input
phased data from ancestral populations, unphased data
from the admixed population, and a recombination rate
file which give the physical and genetic position (in cM)
of each SNP. Like LAMP and SABER, HAPMIX is used
to determine genetic ancestry for each chromosomal
position or segment in the genome. Unlike those other
programs, HAPMIX makes use of haplotype informa-
tion. This requires the use of phased genotype data from
unadmixed ancestral populations, and the current ver-
sion of HAPMIX can only handle two-way admixture.
In admixed populations, linkage disequilibrium exists at

a coarse scale and fine scale [41]. Course scale admixture
linkage disequilibrium is due to relatively recent recom-
bination events which result in individual genomes being
comprised of distinct chromosomal segments inherited
from particular ancestral populations. Fine scale linkage
disequilibrium is based on historical recombination events
in the ancestral populations. Modeling of both, using a
program such as HAPMIX, may increase the power of gen-
etic association testing [41], as demonstrated in a recent
study of breast cancer in African-American women [11].
Full modeling of the ancestral LD may also lead to more ac-
curate estimates of local genetic ancestry, as demonstrated
using simulated and real world data of African-Americans,
where HAPMIX outperformed both ANCESTRYMAP and
LAMP-ANC [41]. Further simulations demonstrated that
the HAPMIX performance advantage increased with
increasing time since admixture, indicating its utility across
a range of admixed populations [41].
Briefly, in HAPMIX the haplotype of an individual is

viewed as a mosaic of the haplotypes from the ancestral
populations. At each position in the genome the likeli-
hood that the haplotype arises from a particular ances-
tral population is estimated, and a Hidden Markov
Model combines these likelihoods with information from
neighboring loci to give probabilistic evidence that par-
ticular segments come from one ancestral population
versus another [41]. Importantly, HAPMIX treats the
ancestral population as unambiguously phased, but uses
a built in phasing algorithm on the admixed population
and doesn’t assume that any one haplotype phasing is
correct. This flexible approach can help avoid inappro-
priate inferences of ancestry transitions [41]. Additional
advantages of HAPMIX are very accurate inferences of
date of admixture and the ability to accurately estimate
0, 1, or 2 ancestral alleles at each locus [41].

Saber
SABER is a program suitable for genome-scale data
which uses a “Markov-hidden Markov model” to esti-
mate local ancestry [42]. This local ancestry is referred
to as “ancestral blocks”. Like HAPMIX, it models the an-
cestral LD; however it does not model haplotype struc-
ture. Input files are typical and include genotype data
from ancestral and admixed individuals, global ancestry
estimates of admixed individuals, and physical map loca-
tion of the SNPs. In addition to providing localized an-
cestry (with graphical output), SABER can be used to
estimate time since admixture.

Ancestrymap, admixmap, and maldsoft
A number of other methods can infer local (and global)
ancestry, but are not computationally efficient when
working with genome-scale data. These include ANCES-
TRYMAP [43], ADMIXMAP [44], and MALDSOFT
[45]. These are all well-established methods which use
Hidden Markov Models to combine data across loci to
infer ancestry at each locus, and these programs require
that there be no LD between markers. The primary
focus of these programs is for traditional admixture
mapping on AIM panels, and not the evaluation of local
genetic ancestry using dense panels of markers [25].

Conclusion
The programs presented here offer tools to deal with a
number of population genetics problems related to gen-
etic ancestry. No single program is sufficient for dealing
with the variety of research questions being asked, and
using combinations of these programs may be most
helpful for the next generation of medical genetics stud-
ies. For example, while global ancestry has historically
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been used to control for population stratification in associ-
ation studies, it may be more appropriate to control for
both local and global ancestry [46], which may be opti-
mally resolved using separate programs. New uses for
these programs are also arising. Several recent studies
have assessed the correlation of individual ancestry pro-
portions with disease risk or treatment response [47-50].
For example, it was reported that the percent Native
American genetic ancestry in a cohort of children was asso-
ciated with risk for relapse after chemotherapeutic treat-
ment of acute lymphoblastic leukemia [49]. Understanding
why ancestry proportions in admixed populations correl-
ate with phenotypes will require precise identification of
the ancestry specific loci that are responsible. Recent
reports have demonstrated that statistical tests combining
admixture and ancestral linkage disequilibrium signals is a
more powerful method of testing for genetic association
than MALD or traditional LD mapping individually [11,41].
Genetic ancestry softwares which give refined and accurate
estimates of local ancestry are critically important to this
next generation of genetic studies in admixed populations.
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