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Abstract
Emerging technologies now make it possible to genotype hundreds of thousands of genetic variations in individuals,

across the genome. The study of loci at finer scales will facilitate the understanding of genetic variation at genomic

and geographic levels. We examined global and chromosomal variations across HapMap populations using 3.7

million single nucleotide polymorphisms to search for the most stratified genomic regions of human populations

and linked these regions to ontological annotation and functional network analysis. To achieve this, we used five

complementary statistical and genetic network procedures: principal component (PC), cluster, discriminant, fix-

ation index (FST) and network/pathway analyses. At the global level, the first two PC scores were sufficient to

account for major population structure; however, chromosomal level analysis detected subtle forms of population

structure within continental populations, and as many as 31 PCs were required to classify individuals into homo-

geneous groups. Using recommended population ancestry differentiation measures, a total of 126 regions of the

genome were catalogued. Gene ontology and networks analyses revealed that these regions included the genes

encoding oculocutaneous albinism II (OCA2), hect domain and RLD 2 (HERC2), ectodysplasin A receptor (EDAR)

and solute carrier family 45, member 2 (SLC45A2). These genes are associated with melanin production, which is

involved in the development of skin and hair colour, skin cancer and eye pigmentation. We also identified the genes

encoding interferon-g (IFNG) and death-associated protein kinase 1 (DAPK1), which are associated with cell death,

inflammatory and immunological diseases. An in-depth understanding of these genomic regions may help to explain

variations in adaptation to different environments. Our approach offers a comprehensive strategy for analysing

chromosome-based population structure and differentiation, and demonstrates the application of complementary

statistical and functional network analysis in human genetic variation studies.

Keywords: discriminant analysis, principal component analysis, cluster analysis, fixation index, FST, population structure,

gene network

Introduction

The comprehensive identification and control of

population genetic structure and dissection of poly-

morphism are important steps in genomic studies

aimed at gene mapping through (either directly or

indirectly) linkage disequilibrium (LD).1–4

Previous estimates of population structure have pro-

vided tremendous insight into population genetics

and human evolution, and have increased our

knowledge of the distribution of genetic variation

and relationships among human populations.5–8

Until recently, however, these studies have been

based on limited numbers of loci/genes or small
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fractions of the genome and thus have provided

only average estimates of quantities such as fixation

index (FST) across whole genomes and

populations.9

The study of a few genes with significant popu-

lation differentiation can be extremely efficient —

for example, in screening for potential tumour

markers or drug targets. Such analyses do not reach

the full potential of genome-wide experiments to

increase our understanding of whole biological

processes, however. What is needed instead is a hol-

istic approach to analysing the entire genome

which shows major population differentiation and

allows biologists to develop an integrated under-

standing of the functional networks/pathways

driving population diversity.10 Pääbo11 suggested

that, in variation studies, rather than ‘populations’,

‘ethnicities’ or ‘races’, a more efficient approach for

studying within- and between-individual human

chromosomal variation is to consider the genome

of any particular individual as a mosaic of haplo-

type blocks.

To date, analyses of the relationship between

genetic variation and ancestral geographic origin

have been limited to a few regions or genes

because large-scale, genome-wide single nucleotide

polymorphism (SNP) data from geographically

diverse individuals have not been available. Given

that levels of diversity/polymorphism are directly

related to recombination (meiosis) and mutation

rates that differ within and among chromosomes,12

and that genes are not randomly distributed along

chromosomes, the precise genes contributing to

disease development and genealogy are not the

same on each chromosome or part thereof.13–19

Recently, Grimwood et al.20 showed that the

gene density on chromosome 19 is more than

double the genome-wide average. Hence, the pre-

cision of equal segregation estimates of recombina-

tion fraction for all chromosomes and

population-average values are not reliable, in terms

of chromosome biological and evolutionary signifi-

cance. The Santa Cruz Biotechnology group also

announced a human chromosome database that fea-

tures a chromosome-based index, which includes

the chromosomal location of known human genes

and links to the National Center for Biotechnology

Information (NCBI) mRNA, protein and Online

Mendelian Inheritance in Man (OMIM) databases

(http://www.scbt.com).

With the growing emphasis on dense SNPs and

genome-wide association studies, and the recent

accumulation of large, publicly available data-

sets21,22 — such as the completion of HapMap,23

with over 3.7 million SNPs across the genome —

there is an increasing need not only for fine-scale

resolution of clines of population structure, but also

to identify functional pathways in genomic regions

of major population differentiation with influences

on disease risk.24 The thorough evaluation of the

extent of fine-scale genetic structure among closely

neighbouring populations, as well as the study of

the ability to infer individual membership down to

a particular population within a continent, have

only begun in the past five years.

The objectives of this study were as follows:

(i) to examine the extent and patterns of within-

and between-chromosomal variations; (ii) to deter-

mine population genetics structure and population

membership and (iii) to identify SNPs with major

population differentiation and link this information

with ontological annotation and functional net-

works/pathways.

Materials and methods

Data mining, processing and description

We downloaded the HapMap SNP data (http://

www.hapmap.org, release # 24, on NCBI B36

assembly, dbSNP b126). The HapMap project con-

tains genotypes from 60 unrelated Caucasians from

the USA with northern and western European

ancestry (CEU), 60 unrelated Yoruba individuals

from Ibadan, Nigeria (YRI), 45 Japanese individ-

uals from Tokyo (JPT) and 45 Han Chinese indi-

viduals from Beijing (CHB) (http://www.hapmap.

org). Two criteria were used to filter the SNPs

included in the analysis: (i) locus call rate �95

per cent (ie we excluded all SNPs with more than

5 per cent missing data) and (ii) the SNP should be

shared among populations so that the same sets of

SNPs were used throughout in the population
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comparisons. A computer program using Python

(http://www.python.org) was written to export

and pre-process SNP genotype information from

the databases. Genotypes were summarised for each

population. For each dataset, the number of alleles

per locus (SNP) was coded to a string of numbers

to obtain a full design matrix of alleles (the cells

give the number of copies of each major allele for

each individual: zero, one or two). Figure 1 depicts

our approach to SNP mining, multivariate chromo-

somal and population diversity and network analysis

strategies. Of the total 3.7 million SNPs in the

HapMap data release,23,25 809,000 SNPs fulfilled

the criteria and were used in this analysis.

Statistical analysis

Multivariate statistical techniques (namely, principal

component [PC], cluster, discriminant, network

analyses and FST statistics) were used to examine

chromosomal structure within and between popu-

lations and associated functional networks by esti-

mating chromosomal overall differentiation values.

The analysis was carried out either using all SNPs

together or separately for each chromosome.

Because PC analysis (PCA) does not take into

account group differences in reducing the dataset to

a few representative variables, and it can be difficult

to make appropriate inference about population

relationships from the PC scatter plot, we further

analysed the data using cluster analysis (CA) to clas-

sify individuals into mutually exclusive groups with

high homogeneity within clusters and with low

homogeneity between clusters. In other words, CA

provides a visual assessment and identifies individ-

uals who are similar (or dissimilar) to one another.

To further confirm the grouping obtained in CA,

discriminate analysis (DA) was performed. DA con-

sists of the separation of a priori given classes for

each individual. The variance–covariance between

classes is maximised and the variance–covariance

within classes is minimised under simultaneous

consideration of all analysed data.

PCA was done using the EIGENSOFT software

package (http://genepath.med.harvard.edu/~reich/

Software.htm) either on all SNPs simultaneously (all

loci together) or separately per each chromosome.

The analysis follows singular value decomposition,

a procedure that produces eigenvectors, correspond-

ing eigenvalues and proportions of eigenvalues, as

well as the scores of the PCs.26 Using PCA, we esti-

mated axes of variation corresponding to ancestry.

The first eigenvector separates the samples in a way

that explains the largest amount of variability, while

the second and subsequent ones explain lesser

amounts of variability. The spatial relationships of

populations in each chromosome and all chromo-

somes were presented by plotting the scores of the

first and second PCs. The numbers of significant

PCs (at the level of p , 0.05) were tested using

Tracy–Widom statistics. Pairwise population

genetic diversity was determined by calculation of

Wright’s FST using EIGENSOFT. FST values indi-

cate how much of the genetic variability between

individuals from different populations is due to

population affiliation.

Figure 1. Schematic presentation of single nucleotide

polymorphism (SNP) mining, multivariate chromosomal and

population diversity and network analysis strategies. There are

�3.7 million SNPs in the HapMap data release. Genotypes

were summarised for each population. For each dataset, the

number of alleles per locus (SNP) was coded to a string of

numbers to obtain a full design matrix of alleles (the cells give

the number of copies of each major allele for each individual: 0,

1 or 2). Two criteria were used to filter the SNPs included in

the analysis: (i) locus call rate � 95 per cent (ie we excluded all

SNPs with more than 5 per cent missing data); and (ii) the SNP

should be shared among populations, so that the same sets of

SNPs were used throughout in the population comparisons.

From the total of �3.7 million SNPs in the HapMap data

release, only 809,624 SNPs were eligible for analysis.
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Hierarchical clustering of molecular variance was

followed using the similarity for qualitative data

(SIMQUAL) module with the first 10 PCs that

account for most of the variation. Average taxo-

nomic distance matrices (DIST) were computed as

a measure of genetic distance. This matrix was sub-

jected to unweighted pair-group method analysis

(UPGMA) to generate a dendrogram using the

Sequential, Agglomerative, Hierarchical and Nested

(SAHN) module. Both numerical taxonomic ana-

lyses were performed using the Numerical

Taxonomy and Multivariate Analysis System

Program, version 2.11f (NTSYS-pc).27 The cophe-

netic correlation coefficient was calculated, and

Mantel’s test28 was performed, to check the good-

ness of fit of a CA.

In DA, a linear combination of features that best

separates two or more groups of objects is sought.

The discriminant functions are determined based on

the maximisation of the ratio of the external

(between populations) to the internal (between indi-

viduals within the same population) variability.29

The values of Wilks’ lambda (l) and their X2

statistics are used to evaluate the number of signifi-

cant discriminant functions. In turn, to determine

the most important features of the objects, partial

Wilks’ l and its Fisher statistics were utilised.29

Discriminant function analysis30 was done following

the SAS system31 DISCRIM, CANDISC and

STEPDISC procedures, and significance was tested

using Wilks’ l.32 In order to avoid the limitation of

a large number of alleles compared with the number

of observations and the correlation occur in allele

frequencies, we ran discriminant analysis using the

uncorrelated SNPs in the top significant PCs. This

ensures that variables submitted to DA are perfectly

uncorrelated and that their number is lower than

that of analysed individuals. Linear discriminant

analysis is similar to logistic regression and is useful

for building a predictive model of group member-

ship based on observed characteristics. The pro-

cedure yields a set of discriminant functions based

on the linear combinations of variables that provide

the best discrimination between groups.

In the final set of analyses, a dataset containing a

total of 126 genomic regions linked to SNPs that

differed between populations (FST � 0.5) was

uploaded into the Ingenuity Pathways Analysis

(IPA) 8.7 network analysis (Ingenuity Systems,

Redwood City CA, USA). The network generated

from the 126 input genes (called focus genes) uses

both direct and indirect relationships/connectivity.

These networks were ranked by scores that

measured the probability that the genes were

included in the network by chance alone.

Networks with scores of three or more were classi-

fied as not being generated by random chance.33

The significance threshold for Fisher’s exact test to

determine the probability that each biological func-

tion and/or disease assigned to that network is due

to chance alone was 0.05 or less. Canonical path-

ways associated with input genes were elucidated

with a statistical significance value. The gene ontol-

ogy (GO) analysis was used to identify functional

commonalities between the genes based on the

number of shared ancestors in gene products

(http:gostat.wehi.edu.au).

Results

Estimates of FST differ between chromosomes
and populations

The empirical genome-wide distribution of FST

showed heterogeneity in chromosomal ancestry

across the genome (Figure 2). The average FST

values for autosomes and sex chromosomes were

significantly different (0.120 and 0.210, respect-

ively; t-test, t ¼ 16.1, p, 10215). The higher

average FST for chromosome X compared with

autosomes might indicate differences in inheritance

mechanisms that potentially affect sex chromosomes

and autosomes differently.34–36 Similarly, statistically

significant differences in FST estimates (FST analysis

per chromosome- FST_SNP_CHROM) among

autosomal chromosomes were detected. The varia-

bility that drives FST distribution among autosomes

could be due to variations in natural selection and/

or recombination rates during meiosis.37 Based on

Wright’s qualitative guidelines, FST statistics range

from 0 (no differentiation) to 1 (fixed difference

between populations for different alleles). Values of

FST less than 0.05 represent low or little population
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genetics differentiation, values between 0.05 and

0.15 represent moderate population divergence,

values between 0.15 and 0.25 indicate large popu-

lation differentiation and FST values greater than

0.25 represent very large population divergence.38

Usually, an FST . 0.5 is considered sufficient for

ancestry differentiation.

The global pairwise FST value estimated for the

210 worldwide samples using all loci together

(FST_SNP_ALL) was 0.130 (p , 1026). As FST

increases, populations become more distant and/or

unrelated to each other.39 We observed an average

genetic differentiation between CEU and YRI

(FST ¼ 0.153), CEU and CHB (FST ¼ 0.110),

CEU and JPT (FST ¼ 0.111), YRI and CHB

(FST ¼ 0.190) and YRI and JPT (FST ¼ 0.192)

(Figure 2). It is evident that more divergence has

occurred between YRI and each of the three other

populations than between the other pairs of popu-

lations. Genetic distances between CHB and JPT

populations were low (mean FST ¼ 0.007), indicat-

ing that substantial gene flow compensates for the

effects of genetic drift. This low FST value as a

result of high similarities in allele frequencies

between CHB and JPT samples motivates research-

ers to analyse CHB and JPT populations jointly, as

a single panel.25

Regardless of the populations compared, most of

the variation was observed within populations

(average, 87 per cent versus 13 per cent variation

observed between populations). Within-population

diversity reflects the number of different types

in the population, taking into account their fre-

quencies. By contrast, between-population

differentiation measures variation based on the rela-

tive frequencies of types within these subpopu-

lations and, ideally, measures the average distance of

subpopulations from their respective lumped

remainders. The fact that only 13 per cent of the

total genetic variation results from differences

between populations indicates that alleles present in

one population are also present in other popu-

lations.40–43 The remaining 87 per cent represents

the average difference between members of the

same population. One way to interpret this number

is to say that the expected genetic difference

between unrelated individuals from distant conti-

nents exceeds by 13 per cent the expected differ-

ence between members of the same community.44

An interesting common feature in population gen-

etics studies of humans, animals, plants and other

types of species is that within-population diversity

is greater than between-population diversity.45–48

This estimate is highly consistent for protein poly-

morphisms, blood groups, microsatellites, SNPs and

morphological/phenotypic markers.49,50 Therefore,

it is necessary to quantify and control population

structure, not only for major population differences,

but also for subtle variation/structure arising within

populations.

Significant numbers of PCs vary by
chromosome

As shown in Figure 3, the first component —

which accounted for 50.2 per cent of variation —

separated YRI populations from CEU and CHB/

JPT, while the second (accounting for 24.2 per

Figure 2. Pairwise FST chromosomal and population comparisons of the HapMap SNP dataset. A simple measure of population

differentiation is Wright’s FST, which measures the fraction of total genetic variation due to between-population differences. It could

also represent a matrix of pairwise net distance (divergence) among the population.
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cent of the total variance) could be associated with

an Africa/Europe gradient. The overlap between

the CHB and JPT populations suggests a low level

of genetic differentiation, as shown by the pairwise

FST divergence (Figure 2). Overall, these results

demonstrate a clear partition of the West African

populations considered. On a genome-wide

average scale, about 74 per cent of the diversity in

human samples was explained by the first two PCs.

The eigenvalues for PC3–PC10 showed a plateau,

suggesting that the first two PCs account for most

of the populations’ average substructure in this

analysis. Such a genome-wide level of population

structure may lead to an erroneous conclusion that

the samples are genetically homogeneous. Thus,

correction for population structure is only as good

as the level of structure (at a finer or coarser level)

that one wishes to correct.

In order to obtain fine-scale resolution of popu-

lation membership, PCA was performed on each

chromosome. Our analysis showed that the contri-

bution of the first two PCs in classifying geographi-

cal regions varied among chromosomes, ranging

from 65 per cent (Chr X) to 76 per cent (Chr 15).

The contribution of PC1 ranged from 47 per cent

(Chr X) to 51 per cent (Chr 3, Chr 8). The con-

tribution of PC2 to the total variation ranged from

18 per cent (Chr X) to 27 per cent for Chr 15

(Supplementary Figure S1). As shown in Figure 4,

on a finer scale, the number of significant PCs

accounting for population differentiation varies

from 2 (Chr 2) to 31 (Chr X) among chromo-

somes. The higher number of significant PCs on

Chr X explains why it has the lowest chromosome-

wise contribution to the first two PCs

(Supplementary Figure S1).

We next characterised the genetic relationships

existing among the four different populations. The

diagrammatic output of CA (constructed from PCs)

for the mean of 210 individuals indicated that these

individuals could be clustered into groups that basi-

cally coincided with their geographical distribution

(data not shown). The analysis confirmed the dis-

tinctiveness of the CEU and YRI populations and

the close average genetic distance between the

CHB and JPT populations (Supplementary

Figure S2). The results of the chromosomal-based

CA (data not shown) were comparable to those of

the PCA, and both methods classified racial popu-

lations into separate groups.

DA predicts population membership for 70
per cent of individuals

Although the overall population differentiation

between the CHB and JPT populations appeared

low using PCA and FST analysis, DA51 indicated

that �30 per cent of the two populations were

misclassified (Table 1). Thirty of the CHB individ-

uals (n ¼ 45) were correctly classified (67 per cent),

while among the JPT individuals (n ¼ 45), 38 were

correctly classified (Table 1). The European and

African populations were 100 per cent correctly

Figure 4. Significant numbers of PCs among chromosomes in

the HapMap dataset. On a finer scale, the number of significant

PCs that account for population differentiations vary from 2 to

31 among chromosomes.

Figure 3. Plot for the first two principal components (PCs)

for HapMap individual for the genome-wide average shows the

relationships between human populations in terms of their

geographical origin. On a genome-wide average scale, about 74

per cent of the diversity in human population was explained on

the basis of the first two PCs.
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classified to their respective groups. The classifi-

cation matrix presented in Table 1 summarises the

predictive ability of DA when each sample is

assigned to a particular geographical region. Given

the growing interest in high-density whole-genome

association and admixture studies, DA is informa-

tive because misclassified individuals can be ident-

ified and assigned to their appropriate ancestral

populations. Levels of correct and incorrect classifi-

cation of human populations to their geographical

regions of origin differed for each chromosome

(Supplementary Table 1). For example, correct

classifications of the 45 CHB individuals to their

geographical regions of origin ranged from 23 (for

Chr 6) to 35 (for Chr X). Chr 9 had the highest

number of misclassified individuals and Chr X had

the lowest. On the other hand, correctly classified

individuals in the JPT population ranged from 25

(for Chr 9) to 36 (for Chr 19). Chr 18 had the

lowest and Chr 9 the highest number of misclassi-

fied individuals in the JPT population. Chr 9 had

the highest number of misclassifications in both the

CHB and JPT populations. The variation in mis-

classification rate might indicate the existence of

mosaic chromosomal blocks derived from other

populations as a result of common ancestry or

admixture. The use of more PCs might improve

classification accuracy.

The summarised results of a stepwise DA to

select variables with the most classification power

are shown in Table 2. Wilks’ l and associated

F-values are used as indices of discriminatory

power and are presented for each successive step. To

test the statistical significance of the discriminant

function, the value of Wilks’ l (� 0.00) was

assessed.52 The Wilks’ l test showed that the ratio

of the within-groups sum of squares to the total

sum of squares was significant (Wilks’ l 9.53E-5,

p, 0.001); thus, the null hypothesis of CEU ¼

CHB ¼ JPT ¼ YRI was rejected.

The eigenvalue is the ratio of the between-groups

sum of squares to the within-groups sum of

squares.52 This value measures the spread of the

group centroids in the dimension of multivariate

space (eigenvalue 10587.53; p , 0.0001). The

canonical correlation measures the association

between discriminant scores and groups. This

association appeared to be statistically significant

Table 2. Stepwise order of inclusion of variables in the DA that distinguishes between human populations

Variance (%)

Step Entered Eigenvalue Proportion Cumulative

Wilks’

lambda

Canonical

correlation F value df Pr >F

1 PC1 10587.53 80.7 80.7 9.53 � 1025 0.99 720717.4 3, 206 ,0.0001

2 PC2 2532.22 19.3 100.0 4.10 � 1028 0.96 353836.8 6, 410 ,0.0001

PC1, PC2, principal components 1 and 2; df, degrees of freedom; Pr . F, (probability level) associated with the F statistic.

Table 1. Classification matrix for HapMap individuals based on SNP markers using DA

Population n Predicted population group

1 2 3 4 % correct

CEU - European ancestry [1] 60 60 0 0 0 100

CHB - Chinese from Beijing [2] 45 0 30 15 0 67

JPT - Japanese from Tokyo [3] 45 0 7 38 0 84

YRI - Nigerian from Yorubans [4] 60 0 0 0 60 100

Total 210 60 37 53 60 90

Average accuracy, 89%, n ¼ number of individuals in each HapMap population. Numbers from 1 to 4 represent the four populations which are described on the left-hand side
of the table.
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Table 3. IPA summary of associated networks, molecular and cellular functions, diseases and disorders and canonical pathways for the

126 genes mapped to significantly differentiated genomic regions.

IPA categories Statistical measures Associated gene(s)

No Top networks Network score* No. of candidate

genes

1 Cancer, cell death, dermatological diseases and conditions 33 19

2 Carbohydrate metabolism, dermatological diseases and conditions, lipid

metabolism

24 14

3 Post-translational modification, embryonic development, tissue development 24 13

4 Inflammatory response, immunological disease, carbohydrate metabolism 20 12

5 Cell cycle, hair and skin development and function, nervous system

development and function

19 12

Molecular and cellular functions p value1 No. of candidate

genes

1 Cell death 2.55E-04 - 3.60E-02 19

2 Cell-to-cell signalling and interaction 6.33E-04 - 3.25E-02 6

3 Cellular assembly and organisation 6.33E-04 - 3.36E-02 18

4 Cellular compromise 6.33E-04 - 3.25E-02 8

5 Gene expression 1.50E-03 - 3.25E-02 7

Associated disease and disorders p value No. of candidate

genes

1 Inflammatory disease 1.43E-07 - 3.25E-02 47

2 Gastrointestinal disease 1.22E-06 - 3.39E-02 29

3 Genetic disorder 1.22E-06 - 3.25E-02 69

4 Endocrine system disorders 1.72E-05 - 3.25E-02 35

5 Metabolic disease 1.72E-05 - 1.31E-02 39

Top canonical pathways p value No. of candidate

genes

1 Androgen and oestrogen metabolism 2.15E-02 3

2 Neuroprotective role of THOP1 in Alzheimer’s disease 2.85E-02 2

3 Alanine and aspartate metabolism 3.39E-02 2

4 Retinol metabolism 3.39E-02 2

5 Pentose and glucuronate interconversions 4.76E-02 2

Physiological system development and function p value No. of candidate

genes

1 Hair and skin development and function 6.26E-05 - 3.25E-02 9

Continued
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(stepwise elimination, R2 ¼ 0.99, 0.96;

p, 0.0001), and the data were subjected to the

stepwise procedure. The first canonical discriminant

function had a high eigenvalue, accounting for

more than 81 per cent of the total variance. The

first and second functions together accounted for

100 per cent of the variance.

Functional networks and pathways in highly
stratified genomic regions

To characterise the main functional networks/path-

ways underlying genes with substantial population

differentiation, we carried out network analysis (see

Materials and methods) for between-population

comparisons (between CEU–YRI, CEU–CHB/

Table 3. Continued

IPA categories Statistical measures Associated gene(s)

No Top networks Network score* No. of candidate

genes

2 Nervous system development and function 7.22E-04 - 3.36E-02 15

3 Connective tissue development and function 1.17E-03 - 3.25E-02 6

4 Skeletal and muscular system development and function 1.17E-03 - 3.25E-02 11

5 Tissue development 1.17E-03 - 3.25E-02 14

*Networks with scores �3 have a 99.9 per cent confidence of not being generated randomly.
þThe IPA computes p values of statistically significant findings by comparing the number of molecules of interest relative to the total number of occurrences of these molecules
in all functional/pathway annotations stored in the Ingenuity Pathways Knowledge Base (Fisher’s exact test with p value adjusted using the Benjamini–Hochberg multiple testing
correction).

Figure 5. IPA network analysis for 126 genes mapped to significantly differentiated genomic regions. Genes with red nodes are focus

genes in our analysis, the others are generated through the network analysis from the Ingenuity Pathways Knowledge Base (http://www.

ingenuity.com). Edges are displayed with labels that describe the nature of the relationship between the nodes. The lines between

genes represent known interactions, with solid lines representing direct interactions and dashed lines representing indirect interactions.

Nodes are displayed using various shapes that represent the functional class of the gene product.
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JPT and YRI–CHB/JPT). A summary of net-

works, molecular and cellular functions, diseases

and disorders and canonical pathways associated

with the genomic regions are presented in

Table 3. A total of 126 genes were significantly

differentiated among populations and eligible for

Table 4. Gene Ontology analysis for the 126 genes mapped to significantly differentiated genomic regions

GO category GO ID p value GO term name Overrepresented genes

Molecular

function

GO:0005516 0.00138 Calmodulin binding MAP6, MYH9, MYLK, DAPK1, MYO5C

Molecular

function

GO:0016462 0.001431 Pyrophosphatase activity TGM3, ABCB7, MYH9, DYNC1LI1, DUT, MYO5C,

MCM6, ATAD3B, ZRANB3, DNAH5, ATAD3C, IQCA1

Molecular

function

GO:0016818 0.001478 Hydrolase activity,

acid anhydrides, phosphorus-

containing anhydrides

TGM3, ABCB7, MYH9, DYNC1LI1, DUT, MYO5C,

MCM6, ATAD3B, ZRANB3, DNAH5, ATAD3C, IQCA1

Molecular

function

GO:0016817 0.001509 Hydrolase activity,

acting on acid anhydrides

TGM3, ABCB7, MYH9, DYNC1LI1, DUT, MYO5C,

MCM6, ATAD3B, ZRANB3, DNAH5, ATAD3C, IQCA1

Molecular

function

GO:0003779 0.002797 Actin binding MYH9, MYLK, MKL1, MKL2, MYO5C, SYNE2, HIP1

Biological

process

GO:0006582 0.000032 Melanin metabolic process SLC45A2, OCA2, CITED1

Biological

process

GO:0043473 0.000574 Pigmentation SLC45A2, OCA2, EDAR, CITED1

Biological

process

GO:0031641 0.00078 Regulation of myelination IFNG, CDH2

Biological

process

GO:0048066 0.001018 Developmental pigmentation SLC45A2, OCA2, CITED1

Biological

process

GO:0015701 0.001245 Bicarbonate transport PTGER3, SLC4A5

Cellular

component

GO:0000299 0.000209 Integral to membrane

of membrane fraction

ARSA, MLC1, SEMA4F

Cellular

component

GO:0045009 0.000983 Chitosome SLC45A2, OCA2

Cellular

component

GO:0033162 0.000983 Melanosome membrane SLC45A2, OCA2

Cellular

component

GO:0048770 0.001653 Pigment granule SLC45A2, OCA2, YWHAE, SLC24A5

Cellular

component

GO:0042470 0.001653 Melanosome SLC45A2, OCA2, YWHAE, SLC24A5

Abbreviations
MAP6, microtubule-associated protein 6 gene; MYH9, myosin, heavy chain 9 non-muscle gene; MYLK, Myosin light chain kinase gene, MYO5C, myosin VC gene; TGM3,
transglutaminase 3 gene; ABCB7, gene for ATP-binding cassette sub-family B, member 7; DYNC1L11, cytoplasmic dynein 1 light intermediate chain 11 gene; DUT, deoxyuridine
5’-triphosphate nucleotidohydrodase gene; MCM6, minichromosome maintenance complex component 6 gene; ATAD3C, AAA domain-containing 3C gene, ZRANNB3, zinc
finger RAN-binding domain-containing 3 gene; DNAH5, dynein axonemal heavy chain 5 gene; ATAD3B, AAA domain-containing 3B gene; IQCAI, IQ motif containing with AAA
domain gene; MKL1, megakavyoblastic leukaemia (translocation) 1 gene; MKL2, megakavyoblastic leukaemia (translocation) 2 gene; SYNE2, spectrin repeat containing nuclear
envelope 2 gene; HIP1, Huntingtin interacting protein 1 gene; SLC45A2, gene for solute carrier family 45, member 2; CDH2, cadherin 2 gene; PTGER3, prostaglandin E receptor
3 (subtype EP3) gene; SLC4AS, gene for solute carrier family 4 sodium bicarbonate cotransporter member 5; ARSA, arylsulfatase 4 gene; MLC1, megalencephalic
leukoencephalopathy with subcortical cysts 1 gene; SEMA4F, semaphorin 4F gene; YWHAE, 14-3-3 protein epsilon gene, CITED1 cbp/p300-interacting transactivator 1 gene;
OCA2, p protein gene; EDAR, ectodysphasin A receptor gene.
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network analysis, which led to the identification of

five significant networks (Figure 5). Network 1 was

centred on the nuclear factor (NF)-kB complex

and had 19 focus genes; network 2 was centred on

tumour necrosis factor (TNF) and had 14 focus

genes; network 3 was centred on v-myc myelocy-

tomatosis viral oncogene homologue (MYC) and

had 13 focus genes; network 4 was centred on

interferon-g (IFNG) and had 12 focus genes; and

network 5 was centred on hepatocyte nuclear

factor-4a and had 12 focus genes. Interestingly,

although no genes were shared among all these five

different networks, two networks (networks 1 and

2) contained chloride intracellular channel 4

(CLIC4), which plays a role in apoptosis, differen-

tiation and diabetes. The overlap of this gene

suggests that similar biological pathways were

targeted by selection in these populations. In

addition, the gene involved in skin, hair and eye

pigmentation — including oculocutaneous albinism

II (OCA2), hect domain and RLD 2 (HERC2),

ectodysplasin A receptor (EDAR) and solute carrier

family 45, member 2 (SLC45A2) were over-

represented in our GO analysis (http:gostat.wehi.

edu.au) (Table 4). Enriched GO biological function

terms include cytoskeletal protein binding (p ¼

1.1 � 1026), actin binding (p ¼ 1.0 � 1026) and

fibroblast growth factor receptor antagonist activity

(p ¼ 6.2 � 1025).

In conclusion, our approach offers a complemen-

tary statistical strategy for summarising overall varia-

bility and global versus chromosomal structure,

assessing population structure and identifying

genomic regions driving genetic divergence among

populations. We first used PCA (to reduce data

dimensionality); however, because PCA does not

take into account group differences in reducing the

dataset to a few representative variables, we further

analysed the data using CA to classify individuals

into mutually exclusive groups with high homogen-

eity within clusters and low homogeneity between

clusters. To further confirm and predict group

membership, DA was performed using the top sig-

nificant PCs. PCs were used to ensure that variables

submitted to DA were perfectly uncorrelated, and

that their number was lower than that of analysed

individuals. Finally, using FST (to study population

differentiation) analysis, we described the impor-

tance of chromosome-based population genetic

structure to identify differing genomic regions

driven by natural selection. We followed the target

genomic regions using network/pathway analysis to

elucidate their roles and functional implications in

human genetic variations and diseases.

Discussion

Although most researchers traditionally focus on the

top few axes of variation in a dataset, substantial

information about population structure exists in

lower-ranked chromosomal level PCs. Adjustment of

global ancestry between study subjects may lead to

false positives when chromosomal (local) population

structure is an important confounding factor.53

Using chromosome-based analysis, fine-scale sub-

structure was detectable beyond the broad population

level classifications that previously have been

explored using genome-wide average estimates in

this dataset. The study of population structure in

terms of chromosomes has broader practical rel-

evance to researchers who use genetics and genomics

approaches in gene mapping because genetic diver-

sity is directly related to recombination rate (meiosis),

which differs among chromosomes, and genes are

not randomly distributed along chromosomes.

By restricting our analysis to each chromosome

independently, instead of using global average esti-

mates, we have reported for the first time that the

number of fine-scale subpopulations is chromosome

dependent. For example, chromosome 2 has two

significant PCs which account for population

differentiation, whereas chromosome X has 31.

This result suggests that one has to examine a large

enough number of PCs in order to find all the sig-

nificant population differences. Thus, the variation

in the number of chromosome-specific significant

PCs might indicate the detection of a population

structure that could have been missed if the average

of all chromosomes was used. Even though

chromosome 1 is the largest chromosome, followed

by chromosome 2, the number of significant PCs

that account for structure is lower in both of these
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chromosomes than in the rest of the chromosomes,

indicating that genome size does not correlate with

the biological complexity of organisms.54

Interestingly, similar results were reported by

Becquet et al 55 in their study of chimpanzee popu-

lation genetics structure. In plants, a recent study

showed that the optimal number of subpopulations

required to correct population structure is trait

dependent.56 This study reminded us that the

number of subpopulations for one trait may not be

optimal for other traits. The current analytical

approach using genome-wide average PCs as a cov-

ariate will control for confounding due to global

ancestry but will not control for confounding due

to the local (chromosome-based) ancestry effect. It

is increasingly important to recognise intra-

chromosomal variation, especially when popu-

lations have been recently admixed.

Similar to the results of chromosome-based PCA

analysis, DA shows that the classification of popu-

lations to their correct geographical regions of

origin is chromosome dependent. For example, in

our analysis, the number of CHB individuals cor-

rectly classified to their geographical regions of

origin ranged from 23 (for Chr 6) to 35 (for Chr

X), while correctly classified individuals in the JPT

population ranged from 25 (for Chr 9) to 36 (for

Chr 19). Given the growing interest in tracing

ancestral origins or contributions in genetically

mixed populations, DA is informative and appeal-

ing because misclassified individuals can be ident-

ified and grouped into appropriate populations

prior to large-scale genotyping.

To avoid single-marker FST-based inferences for

selection, which can be misleading,57 we ran an

in-depth investigation of the patterns of genetic

variation in and around the highly differentiated

loci and their effects on the phenotype using

network/ontology analyses. We overlaid 126 genes

(selected based on FST . 0.5) onto the Ingenuity

Pathways Knowledge Database (http://www.inge-

nuity.com). Using this analytical approach, we con-

firmed the over-representation of genes implicated

in hair and skin development (OCA2, HERC2,

EDAR and SLC45A2) in two of the top networks

(Table 3). EDA-A1 and EDA-A2 are two isoforms

of ectodysplasin that are encoded by the anhidrotic

ectodermal dysplasia (EDA) gene. Genetic variabil-

ity in the EDA ligand has been associated with loss

of hair, sweat glands and teeth.58 The non-

synonymous SNP rs1385699 identified within the

EDA2 receptor gene (EDA2R) is fixed in both

Asian populations, where as an R57K substitution

in EDA2R has derived-allele (T) frequencies of 100

per cent. The EDA2R gene product is involved in

the positive regulation of NF-kB transcription

factor activity specifically within the hair follicle,

TNF receptor activity, embryonic development and

apoptosis.60 These genes were previously reported

as candidates involved in human pigmentation phe-

notypes and in the development of skin cancer.61

The most striking difference provided by our

more direct approach was the over-representation of

canonical pathways related to androgen and oestro-

gen metabolism (Supplementary Figure S3) and

gene groups implicated in the functional category

of inflammation, as well as hair and skin develop-

ment (Figure S4).

In critically evaluating our results, it is important

to note that our analyses, and hence interpretations,

are subject to several limitations. First, an important

caveat in the use of population-level genetic data-

bases such as HapMap is the ascertainment criterion

that was imposed during the initial selection of poly-

morphic SNPs to be assayed,62 and the subsequent

release of the HapMap database primarily focused

on SNPs that were common. The fundamental

theorem underpinning HapMap is the common

disease common variance (CD/CV) hypothesis.63

Secondly, the HapMap study (Phase III) is cur-

rently being extended to include additional samples

and diverse populations (http://www.hapmap.org).

The number of SNPs genotyped in Phase III is sub-

stantially fewer (�1.5 million SNPs) than in the

present study, however, thereby providing less

density and coverage. Such low coverage may miss

important loci in regions of elevated molecular

divergence in related populations, such as between

CHB and JPT.64 When whole-genome sequences

(such as www.1000genomes.org) become widely

available, the ability to use many rare variants to

identify short shared genomic segments will perhaps
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allow routine identification of geographical regional

or village-level ancestries, given a suitably large and

carefully collected reference sample.65,66 The 1000

Genomes Project, which aims to provide a whole-

genome sequence resource for at least 1,200 individ-

uals sampled from multiple population groups glob-

ally, will be invaluable for understanding the

practical consequences of SNP ascertainment biases.

Thirdly, a SNP with a large difference in allele

frequency between populations is a strong candidate

to explain large differences in disease prevalence

between populations.67,68 This is because disease is

tightly linked to survival and reproductive success,

and genes responsible for variation in disease

should have the most differentiated SNP frequen-

cies between human populations. Indeed, studies

have suggested that genes associated with complex

diseases such as cardiovascular disease and type 2

diabetes have been targets for positive natural selec-

tion.69 If disease genes have often been targeted by

selection, then identifying loci that have experi-

enced selection may aid in disease-related research.68

Further studies are required to determine the

extent to which differences in allele frequencies

between populations predict disease prevalence

differences between populations, however.

The study of population genetic structure between

chromosomes is a fundamental issue in population

biology because it helps us to obtain a deeper

understanding of the ancestral population and

associated evolutionary processes. For example,

understanding heterogeneity in chromosomal

ancestry in an admixed population is important

because it can be a confounding factor when vari-

ation in admixture levels among individuals across

chromosomes causes false-positive associations in

genetic association studies. In addition, this analysis

can be a source of statistical power for ancestry —

phenotype correlation studies that use observed

racial/ethnic differences to find mosaic regions of

the genome and map loci influencing complex

phenotypes.70 The distribution of SNP density

along chromosomes will inform us about chromo-

somal segments that are more susceptible to selec-

tive pressures or differential patterns. Understanding

how chromosomal variations in ancestry relate to

disease risk is a major challenge to the biomedical

research community.71 Particularly, in the USA,

there has been a significant intermixing among

racial/ethnic groups, thereby creating a complex

pattern of ancestral populations which are a mosaic

of multiple continental populations. The develop-

ment of population structure adjustment based on

chromosome will provide higher-resolution geno-

graphic maps and offer investigators designing

genetic association studies more powerful tools for

detecting stratification.

The final question we need to answer is, what

causes population differentiation? Humans have

wide altitudinal and latitudinal distribution ranges,

and hence, different individuals may face very

different environmental constraints and selection

pressures. Population differentiation could arise as a

result of geographical separation and subsequent

drift and/or bottlenecks; natural selection (ie the

local adaptation process by which organisms

become adapted to their environments); differential

admixture with other populations; and (possibly)

different mutation rates (eg differential exposure to

ionising radiation, environmental toxins, etc.).

A central theme in evolutionary biology is that

natural selection acting on heritable phenotypic

variation will result in adaptation and differentiation

among local populations inhabiting environments

differing in their selective regimes.72 Natural selec-

tion may confer an adaptive advantage to individ-

uals in a specific environment if an allele provides a

competitive advantage. Alleles under selection are

likely to occur only in those geographical regions

where they confer an advantage. Alleles associated

with harmful traits decrease in frequency, while

those associated with beneficial traits become more

common. Local adaptation acting in concert with

other processes (eg recombination) is sufficiently

pervasive to confound measurements of population

differentiation, making a single such genome-wide

measurement somewhat unreliable, especially when

applied to any specific chromosome or region.

In summary: population differentiation, at a

genetic level, is the result of numerous processes;

differentiation is measurable and quantifiable by a

variety of approaches; and most of the processes
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leading to differentiation affect all autosomes equally,

except for natural selection, which leads to extreme

values that reflect local adaptation due to natural

selection. We also note that rather than some

‘normal’ distribution of FST values, with exceptional

values occasionally reflecting natural selection, there

is substantial inter-chromosomal variation in the

inferred patterns and characteristics of population

structure. These inter- and intra-chromosomal vari-

ations, either across the genome as a whole or along

single chromosomes, may directly affect population

divergence. This study underlines the potential of

chromosome-based analysis of genome-wide data to

quantify substructure in populations that might

otherwise appear relatively homogeneous. Before

embarking on a large-scale genomic study, proper

control of chromosome-wise stratification/confound-

ing, predicting population memberships is crucial.
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Appendix 1

Principal component analysis (PCA)

PCA was performed using a correlation matrix,

which was then subjected to eigenvector analysis to

extract the principal components (PCs) that can sum-

marise the variation in a data matrix X, consisting of

N rows (samples) and K columns (variables: single

nuclear polymorphisms [SNPs]), in terms of a few

underlying and informative scores or latent vari-

ables.73 The X-matrix is decomposed as the product

of two matrices, the (N � A) score matrix, T, and the
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(A � K) loading matrix, P’, where A is the number

of PCs, plus a (N � K) ‘noise’ matrix of residuals E.

X ¼ TP0 þ E ¼
XA

a¼1

tap
0
a þ E;

where T is the score matrix summarising the

X-variables and P0 is the loading matrix showing the

influence of the variables on the projection model. E

is the residual matrix expressing the deviations

between the original values and the projections. In

general, PCA transforms a number of correlated allele

frequencies into a smaller number of uncorrelated

synthetic variables, or PCs.

Cluster analysis (CA)

For the HapMap SNP dataset that was found to be

polymorphic among CEU, CHB, JPT and YRI

samples, Pearson correlation coefficients were com-

puted for the 210 individuals. The individuals were

then grouped by a hierarchical clustering algorithm

using the average linkage method, which was

implemented using NTSYS v2.1 software.27

The genetic distance between each pair of individ-

uals, m and m0, was summarised by the allele-

sharing method, D (m, m0), as follows:

Dðm;m0Þ ¼
1

l

Xl

i¼1

dðm;m0Þ

where l is the number of loci for which both indi-

viduals have been tested.

Discriminant function analysis

Discriminant functions based on population group-

ing were obtained by the stepwise inclusion of SNPs

to minimise Wilks’ lambda (l) between groups, as

described by Rechner29 and as follows: L ¼ b1x1 þ
b2x2 þ b3x3 . . . þ bzxz; where x1 through xz rep-

resent the various predictor variables (SNPs);

b1 through bz represent the weight associated with

each of the predictor variables; and L is the object’s

resultant qualitative discrimination score, with a

cut-off score to assign objects to one group or

another. Objects with L . X are assigned to one

group, and those with L , X are assigned to

another group,51 based on allele frequency differ-

ences. L represents classifying variables.

Fixation index (FST) estimates between
populations

Global FST values for pairwise population compari-

sons were calculated using genome-wide SNP allele

frequency variances estimated from the unrelated

individuals in each HapMap population (CEU,

CHB, JPT and YRI), following Wright.9 The

formula used was as follows:

FSTðglobal genome wideÞ ¼

Pm

i¼1

P�
i ð1 � P�

i Þ � Fi

Pm

i¼1

P�
i ð1 � P�

i Þ

where pi* is the average allele frequency (over all

populations) of the i-th allele, m is the number of

alleles and Fi is the value of FST for each allele.

SNP-specific FST measures of population genetic

differentiation based on allele frequencies in two

populations, a metric of variation within a popu-

lation versus between populations, are outlined

below, following McKeigue.74 In this formula, p1
and p2 denote the frequencies of a particular allele

in population 1 and population 2, respectively.

FSTðindividual SNPÞ ¼
ðP1 � P2Þ2

ðP1 þ P2Þð2 � P1 � P2Þ

Network and gene ontology analysis of genes
showing differentiation between populations

Ingenuity Pathways Analysis (IPA) was used to organ-

ise genes showing evidence of selection into networks

of interacting genes and to identify pathways contain-

ing functionally related genes.33 More precisely,

network analysis consists of searching for direct and

indirect interactions between candidate genes and all

other molecules (genes, gene products or small mol-

ecules) contained in the Ingenuity Pathways

Knowledge Base (IPKB). The complete list of gene

identifiers was uploaded into IPA, and each was

mapped to its corresponding IPKB gene object.
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Candidate genes are eligible for network generation if

there is at least one wild-type IPKB interacting mol-

ecule. Based on the information available for eligible

candidate genes (focus genes), IPA further constructs

networks by maximising the number of focus genes

and their inter-connectivity within the limit of 35

molecules per network. Note that additional highly

connected non-focus molecules are also included.

Finally, for each network, a right-tailed Fisher exact

test is implemented to evaluate how likely it is that

the focus genes it contains might be found together

by chance. Only those networks with a score

(–log[p value]) greater than three were considered

as significant.75 In addition, networks might be

inter-connected (ie sharing at least one molecule),

which strengthens the importance for the under-

lying biological functions. Networks are graphically

represented by nodes with various shapes (accord-

ing to the molecule type) and edges (according to

their biological relationships).

The likelihood for a gene pair to be regulated

in the same manner increases with the similarity

of their gene ontology (GO) description. The

GO similarity score between two gene products

is based on the number of shared ancestors. As

a gene product might be assigned with multiple

GO terms, we seek the maximum similarity score

between all possible combinations. As we seek to

discover gene–gene interactions, we reformulate

the GO approach as follows. Let gene i and gene

j be assigned hi and hj GO terms, respectively.

Then, the GO similarity for the gene (i,j) pair is

taken to be the maximum number of shared

ancestors for all combinations of the hi and hj.
76

IPA essentially evaluates the enrichment of par-

ticular biological processes and molecular func-

tions of gene sets by examining information

collected by databases such as GO, Kyoto

Encyclopedia of Genes and Genomes or the

IPKB.
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Figure S1. Chromosome-wise principal component analysis (PCA) analysis of the entire HapMap dataset. The first PC accounted for

more than double the variance of the second PC. The level of contribution of the first two PCs across chromosomes in classifying

geographical regions are presented here. The chromosome-wise contribution of the first two PCs ranges from 65 per cent (Chr X) to

76 per cent (Chr 15). The contribution of PC1 ranges from 47 per cent (Chr X) to 51 per cent (Chr 3, Chr 8). The contribution of

PC2 to the total variation ranges from 18 per cent (Chr X) to 27 per cent for Chr 15.
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Figure S2. Unweighted pair-group method analysis dendrogram (a branching diagram used to show the relationships between

members of a group) based on average taxonomic distance matrices among population means of HapMap SNP datasets. The cluster

analysis (CA; constructed from principal components) for the mean of 210 individuals indicates the distance at which the various

groups are formed and join together. CA, which is based on the means for all individuals from each geographical origin, was used to

obtain similarities among individuals according to their correlation measures across all SNP datasets. Branch height represents

dissimilarity. Note that, compared with YRI and CEU branch height, the CHB and JPT branch height is much shorter, representing that

the genetic distance between these two populations is relatively close.

Table S1. Discriminant analysis classification accuracy and associated percentage across the genome and population. Correct and

misclassification of CHB and JPT individuals to their correct geographical region of origin differs for each chromosome. For example, correct

classification to their regions of origin for CHB individuals range from 23 per cent (for Chr 6) to 33 per cent (for Chr X and Chr 22).

CEU (60) CHB (45) JPT (45) YRI (60)

Chr Correct

classification

Correct

classification

Correct

classification

Correct

classification

N * % N % N % N %

1 60 100 28 62.22 27 60.00 60 100

2 60 100 27 60.00 30 66.67 60 100

3 60 100 26 57.78 32 71.11 60 100

4 60 100 30 66.67 27 60.00 60 100

5 60 100 28 62.22 29 64.44 60 100

6 60 100 23 51.11 28 62.22 60 100

7 60 100 25 55.56 26 57.78 60 100

8 60 100 25 55.56 26 57.78 60 100

9 60 100 25 55.56 25 55.56 60 100

10 60 100 25 55.56 30 66.67 60 100

11 60 100 27 60.00 29 64.44 60 100

12 60 100 29 64.44 26 57.78 60 100

Continued
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Table S1. Continued

CEU (60) CHB (45) JPT (45) YRI (60)

Chr Correct

classification

Correct

classification

Correct

classification

Correct

classification

13 60 100 24 53.33 26 57.78 60 100

14 60 100 26 57.78 32 71.11 60 100

15 60 100 30 66.67 31 68.89 60 100

16 60 100 29 64.44 28 62.22 60 100

17 60 100 29 64.44 29 64.44 60 100

18 60 100 29 64.44 36 80.00 60 100

19 60 100 31 68.89 33 73.33 60 100

20 60 100 29 64.44 25 55.56 60 100

21 60 100 27 60.00 32 71.11 60 100

22 60 100 33 73.33 31 68.89 60 100

X 60 100 33 73.33 32 71.11 60 100

All 60 100 32 71.11 38 84.44 60 100

Mean 60 100 28 62.00 29 64.44 60 100

N*¼ number of individuals in each population group, % ¼ % classification accuracy; CEU ¼ Caucasian, CHB ¼ Chinese,
JPT¼ Japanese, YRI ¼ Yoruba

Figure S3. Global canonical pathways of the 126 genes linked to genomic regions of major population differentiation. The significance

threshold, shown in yellow, represents a p value of greater than 0.05. The first four sets of functions shown represent a p-value of less

than 0.01. Bars that are above the line indicate significant enrichment of a pathway.
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Figure S4. The 16 most significant functional categories from IPA linked to the 126 genes of major population differentiation. The

significance threshold, shown in yellow, represents a p value of greater than 0.05. Bars that are above the line indicate significant

enrichment of a function.
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