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Abstract

For population case-control association studies, the false-positive rates can be high due to inappropriate controls, which can occur if there is
population admixture or stratification. Moreover, it is not always clear how to choose appropriate controls. Alternatively, the parents or
normal sibs can be used as controls of affected sibs. For late-onset complex diseases, parental data are not usually available. One way to
study late-onset disorders is to perform sib-pair or sibship analyses. This paper proposes sibship-based Hotelling’s T 2 test statistics for high-
resolution linkage disequilibrium mapping of complex diseases. For a sample of sibships, suppose that each sibship consists of at least one
affected sib and at least one normal sib. Assume that genotype data of multiple tightly linked markers/haplotypes are available for each
individual in the sample. Paired Hotelling’s T? test statistics are proposed for high-resolution association studies using normal sibs as
controls for affected sibs, based on two coding methods: ‘haplotype/allele coding’ and ‘genotype coding’. The paired Hotelling’s T2 tests take
into account not only the correlation among the markers, but also take the correlation within each sib-pair. The validity of the proposed
method is justified by rigorous mathematical and statistical proofs under the large sample theory. The non-centrality parameter approxi-
mations of the test statistics are calculated for power and sample size calculations. By carrying out power and simulation studies, it was
found that the non-centrality parameter approximations of the test statistics were accurate. By power and type | error analysis, the test
statistics based on the ‘haplotype/allele coding’ method were found to be advantageous in comparison to the test statistics based on the
‘genotype coding’ method. The test statistics based on multiple markers can have higher power than those based on a single marker. The test
statistics can be applied not only for bi-allelic markers, but also for multi-allelic markers. In addition, the test statistics can be applied to
analyse the genetic data of multiple markers which contain double heterozygotes — that is, unknown linkage phase data. An SAS macro,
Hotel_sibs.sas, is written to implement the method for data analysis.
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Introduction

In recent years, there has been great interest in the research of
association studies of complex diseases.' ~® By association
studies, we mean linkage disequilibrium (LD) mapping of
genetic traits. For population case-control studies, the marker
allele frequency in cases can be compared with that of controls
using x * test statistics.” ' If there is association between one
marker and the trait locus, it is expected that the x * tests would
lead to significant results. Essentially, this method can be applied
to analyse the data for one marker at a time. For multiple
markers, the linkage phase may be unknown,'* and the method
cannot be applied simultaneously to analyse the data of multiple
markers which contain double heterozygotes. With the devel-
opment of dense maps such as single nucleotide polymorphisms
(SNPs), haplotype maps and high-resolution micro-satellites

in the human genome, enormous amounts of genetic data
on human chromosomes are becoming available."> "> It is
interesting when building appropriate models and useful
algorithms in association mapping of complex diseases to have
the ability to use multiple markers/haplotypes simultaneously.
For tightly linked genetic markers, one may perform
association studies of complex diseases based on the Hotelling’s
T2 test statistics.'® For population case-control data,
Xiong et al. proposed two sample Hotelling’s T~ test statistics
to analyse genotype data of multiple bi-allelic markers such as
SNPs;'” in addition, logistic regression models were pro-
posed.”'® To analyse the multi-allelic micro-satellite or hap-
lotype data, Fan and Knapp extended Xiong ef al. method
using two coding methods — ‘haplotype/allele coding’
and ‘genotype coding’.'” For the genetic data of nuclear
families or parent—offspring pairs, paired Hotelling’s T test
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statistics were proposed, in order to perform association studies
based on multiple markers/haplotypes.*”

For late-onset complex diseases, parental data are usually not
available. One way to study late-onset disorders is to perform
sib-pair or sibship analyses.*'** This paper proposes sibship-
based paired Hotelling’s T test statistics for high-resolution LD
mapping of complex diseases. For a sample of sibships, suppose
that each sibship consists of at least one affected sib and at least
one normal sib. Assume that genotype data for multiple mar-
kers are available for each individual in the sample. Paired
Hotelling’s T test statistics are proposed for high-resolution
association studies, using normal sibs as controls for affected
sibs. The paired Hotelling’s T tests not only take the corre-
lation among the markers into account, but also the correlation
within each sib-pair. The validity of the proposed method is
justified by rigorous mathematical and statistical proofs under
the large sample theory. The non-centrality parameter
approximations of the test statistics are calculated for power
calculations and comparisons; these are included in the section:
Supplementary information: Non-centrality parameters. Type |
error rates are calculated by simulations to evaluate the per-
formance of the proposed test statistics. In the section: Sup-
plementary information: Simulation study, the results from the
simulation study are presented, to show that the non-centrality
parameter approximations of the test statistics are accurate. An
SAS macro, Hotel_sibs.sas, was written to implement the
method and can be downloaded from the authors” website
(http://www.stat.tamu.edu/~ rfan/software.html/).

Methods

We assume that a disease locus D is located in a chromosome

region. Suppose that the disease locus has two alleles D and d.
Allele D is disease susceptible and d is normal. Assume that the
disease-susceptible allele D has population frequency Pp, and
the normal allele d has population frequency Py.

Paired Hotelling’s T test statistics

In the region of the disease locus D, assume that | tightly
linked markers Hy, ..., Hj are typed. By tightly linked, we
mean that the markers are so close to each other that the
recombination fractions among markers are 0. Let us denote
the alleles of marker H; by Hji, ..., Hj,, where n; denotes the
number of its alleles. Here, markers can be micro-satellites or
di-allelic markers such as SNPs or haplotypes. If Hy,..., Hj
are phase-known haplotypes, the methods developed in this
paper are still valid, since the haplotypes can be treated as
markers; but the related terminology needs to be changed
accordingly. Usually, haplotypes consist of phase-unknown
markers; in these cases, we prefer to analyse the genotype
marker data directly, instead of estimating the haplotypes first
and then analysing the haplotype data. The method developed
in this paper can be used to analyse phase-unknown genotype

i=1,..

data directly. Consider N sib-pairs, each consisting of an
affected sibling and a normal sibling. We define coding vectors
XSA) and YEU) for the aftected sibling and normal sibling of the
i-th sib-pair, respectively, by one of the following two ways.'**

(1) Haplotype/allele coding: For the affected sibling of the
i-th sib-pair, let G ) be his/her genotype at marker H,

(A4) _ (1‘1) A (A) L)
Define X;™ = ({1, - s 2{i(p— 1)1+ - - SR Fijy— 1))T
where 4(‘,‘3 is the number of alleles Hy, for the affected sibling

of the i-th sib-pair — that is,

2 if G(A)— Hj Hj,
A0 =<1 if G;4>=HkHj,,z¢k
0 else

Here and hereafter, the superscript 7 denotes the transposition
of a matrix or a vector. The dimension of X(A)
m =D+ +m-D= Z — J, which is usually
smaller than dimension Zj=1 nj(nj + 1) /2 — ] of the following
genotype coding method.

(i) Genotype coding: Note that G,(jA) can be one of
ni(n; + 1)/2 possible choices: n; homozygous genotypes
HyHy, and ny(n; — Hyk <.
Depending on the genotype, let us define an indicator

1)/2 heterozygous genotypes H,

(A _ D AD KD KD AD
vector X (xyﬂ 10t 1;(;1,71)’ 17127 e Aﬂﬂj ) 11(11,71)11,)7
Here, x4 k) is the indicator variable of genotype H;.H,

“ 1 if GV = HyHy, “
defined by x;;’ = ;and x,, k <
Y ij
0 else

is the indicator variable of genotype

1 1fG(A) = ka
51/121) = . The dimension of ijA) is
0 else

ni(n; + 1)/2 — 1—that is, the total number n(n; + 1)/2 of

genotypes of marker H; minus 1 to remove the redundancy.

Let X0 = (x(, X&'y

coding of the J markers H17 ..
f_mj(nj +1/2-].

For the unaffected sibling of the i-th sib-pair, let G( " be

his/her genotype at marker H;. One may define a Vector YfU)

HjHj; defined by

be the combined genotype
.Hj. The dimension of XSA)

in the same way, based on either the ‘genotype coding’ or
‘haplotype/allele coding’ method. Table 1 in reference 19
gives an example of ‘genotype coding’ and ‘haplotype/allele
coding’ for a marker with three alleles, to illustrate the above
two coding methods.

Let X =N XY/N and Y =7 v!V/N be
average coding vectors of affected and unaftected siblings,
respectively. Intuitively, XD and YY) should be similar vec-
tors if the disease locus D is not associated with markers H,,
.,J. In the Appendix we prove that the expected value
of X — ¥ i5 0 if there is no association. Hence, one may
build a test statistic based on the difference XD — V() o test
the association between disease locus D and markers H;. To do
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Table I. Type | error rates of N = 200 or 300 sib-pairs at a significance level @ = 0.01 using one marker, H,, or two markers, H, and H,.
In model |, one bi-allelic marker H, is used, P(H,) = P(H,3) = 0.50. In model Il, two bi-allelic markers H, and H, are used, P(H;) = 0.5,
i,j=1,2, A, H, = 0.05. In model lll, one quadric-allelic marker H, is used, P(H,|) = P(H,) = 0.35, P(H»3) = P(H,4) = 0.15.

Abbreviations: df = degrees of freedom; Std Dev = standard deviation.

I Ty I 100 0.010808 0.0014264 0.0066 0.0140
N=200 Te 2 100 0.011240 0.0013923 0.0082 0.0152
Il Ty 2 100 0.011286 0.0014717 0.0070 0.0146
N=200 T 4 100 0.012352 0.0015899 0.0088 0.0160
n Ty 3 100 0.011660 0.0014348 0.0078 0.0146
N=200 Te 9 100 0.014352 0.0018710 0.0102 0.0196
n Ty 3 100 0.011186 0.0015669 0.0074 0.0160
N=300 T 9 100 0.013076 0.0017027 0.0084 0.0176

this, one needs to consider the variance—covariance matrix of
X — ¥ Since siblings’ marker genotypes are related to
each other, X and YY) are not independent. Moreover,
X,(-A) and YEU) are paired with each other in a sib-pair.
Therefore, paired T2 test statistics can be used to test the
association between disease locus D and markers H; as follows.
Define a paired-sample variance—covariance matrix by

1 & i, _
S=N ~ 12 [(XSA) _ YEU)) _ (X(A) _ Y(U))][(XI(A) _ YgU))
i=1
_ (X(A) _ Y(U))]T

1 N _ _
- Z(XEA) _ X(A))(XEA) — Xy
=1

N
i=1

N
_Z(Y,(‘U) _ ?(U))(XEA) _ X(A))’T
i=1

N
3 — POy — Oy
i=1

A paired Hotelling’s T statistic can be defined as

T2 = N(XW — yW)yTs (XA — ¢ 1623 [ ot ys denote
the above Hotelling’s T'? statistic for ‘haplotype/allele coding’
as Ty, and the Hotelling’s T2 statistic for ‘genotype coding’ as
Ta. Assume that the sample size N is sufficiently large that the
large-sample theory applies. Under the null hypothesis of no
association, the statistic Ty (or T) is asymptotically distrib-
uted as central y* with Zfz]nj -] (orZ{zmj(nj +1/2-))
degrees of freedom. Under the alternative hypothesis of
association, Ty (or T¢) is asymptotically distributed as

non-central x . For power calculation and comparison, the
non-centrality parameter of statistic Ty or T can be derived
under the alternative hypothesis of association.

For general sibships each containing at least one affected
sibling and at least one normal sibling, the Hotelling’s T test
statistics Tpy and T above can be generalised as follows.
Assume that N sibships are available. In the i-th sibship, assume
that n; siblings are affected and m; siblings are normal. Let XEA)
and Y?U) be average coding vectors of affected and normal
siblings, respectively. To be precise, let ijA),j =1,"n
be the coding vectors of the affected siblings of the i-th sibship.
Then, XfA) = 27':1 X,('J'A) /s Yl(.U) is defined, accordingly.
Utilising XfA) to replace XEA) and Yt(.U) to replace YEU) in the
above paragraph and defining X = ZfileA) /N and
Y = Zfll }_’gu)/N, we may define the related Hotelling’s
T? test statistics Ty and Tg..

Non-centrality parameters

The derivation of non-centrality parameters of sib-pairs is
provided in the section Supplementary information:
Non-centrality parameters.

Results

Type I errors

Tables 1, 2 and 3 show type I error rates of test statistics

Ty and T at a significance level @ = 0.01, using one marker
H, or two markers H; and H,. Three models are considered.
In model I, one marker H; is used in analysis: Hj is a
bi-allelic marker with equal allele frequency P(H,) =

P(Hj,) = 0.50. In model II, two bi-allelic markers H;

and H, are used in analysis, where P(H;) = 0.5, i, j =1, 2,
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Table 2. Type | error rates of N = 200 or 300 sibships at a significance level « = 0.01 using one marker, H,, or two markers, H, and H,.

The number of sib-pairs is equal to N/2; in each sib-pair, one sibling is affected and the other is normal. The number of sibships of size 3
is N/2; in each of N/4 sibships of size 3, one is affected and the other two are normal; in the remaining N/4 sibships of size 3, two are
affected and the other one is normal. The other parameters of each model are the same as those of Table |. Abbreviations: df = degrees

of freedom; Std Dev = standard deviation.

| Th | 100 0.010642 0.0014406 0.0062 0.0134
N=200 Ts 2 100 0.011278 0.0015023 0.0076 0.0154
Il Ty 2 100 0.011096 0.0014418 0.0078 0.0154
N=200 T 4 100 0.012138 0.0014825 0.0082 0.0154
1] Th 3 100 0.011536 0.0014156 0.070 0.0158
N=200 T 9 100 0.014202 0.0016562 0.096 0.0182
N Ty 3 100 0.011098 0.0015214 0.0076 0.0152
N=300 T 9 100 0.012790 0.0016883 0.0086 0.0186

Ay, 1, = 0.05. In model III, one marker H; is used in
analysis, where Hj is a quadri-allelic marker with allele fre-
quencies P(H,;) = P(H») = 0.35, P(H3) = P(H,4) = 0.15.
Each time, 5,000 simulated datasets are generated and each
dataset contains N = 200 or 300 sibships under the assumption
that there is no association between the marker(s) and the
disease locus; a type I error rate is then calculated as the
proportion of the 5,000 datasets for which the empirical test
statistics are greater than, or equal to, the cut-off point at the

significance level @ = 0.01. The process is repeated 100 times.
Thus, 100 type I error rates are calculated. The mean, standard
deviation, minimum and maximum of the 100 type I error
rates are presented in the entries of Tables 1, 2 and 3. Since the
disease locus is not associated with the marker(s), the empirical
test statistics which are greater than or equal to the cut-off
point at the significance level @ = 0.01 are treated as false
positives. Thus, the type I error rates of Tables 1, 2 and 3 are
empirical results.

Table 3. Type | error rates of N = 200 or 300 sibships at a significance level « = 0.01 using one marker, H,, or two markers, H, and H,.
The number of sib-pairs is equal to N/2; the number of sibships of size 3 is N/5; and the number of sibships of size 4 is 3N/10. In each sib-
pair, one sibling is affected and the other is normal. In each of N/10 sibships of size 3, one is affected and the other two are normal; in the
remaining N/10 sibships of size 3, two are affected and the other is normal. In each of N/10 sibships of size 4, one is affected and the
other three are normal; in each of N/10 sibships of size 4, two are affected and the other two are normal; in the remaining N/10 sibships
of size 4, three are affected and the other one is normal. The other parameters of each model are the same as those of Table |. Abbrevi-

ations: df = degrees of freedom; Std Dev = standard deviation.

| Th | 100 0.010670 0.0014040 0.0072 0.0136
N=200 T 2 100 0.011156 0.0015397 0.0066 0.0142
Il Th 2 100 0.011218 0.0014678 0.0078 0.0166
N=200 T 4 100 0.012304 0.0011921 0.0092 0.0156
N Ty 3 100 0.011518 0.0014639 0.0082 0.015

N=200 Te 9 100 0.014356 0.0015381 0.0102 0.018

]l Th 3 100 0.011228 0.0013312 0.0078 0.0160
N=300 Ts 9 100 0.012544 0.0015203 0.0086 0.0182
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In Table 1, only sib-pairs are used in the calculations.

In each sib-pair, one sibling is affected and the other one is
normal. In Table 2, combinations of both sib-pairs and sibships
of size 3 are used: the number of sib-pairs is equal to N/2; the
number of sibships of size 3 is N/2; in each of N/4 sibships of
size 3, one is affected and the other two are normal; in the
remaining N/4 sibships of size 3, two are affected and the
other one is normal. In Table 3, combinations of sib-pairs and
sibships of sizes 3 and 4 are used: the number of sib-pairs is
equal to N/2; the number of sibships of size 3 is N/5; and the
number of sibships of size 4 is 3N/10; in each of N/10 sibships
of size 3, one is affected and the other two are normal; in the
remaining N/10 sibships of size 3, two are affected and the
other one is normal; in each of N/10 sibships of size 4, one is
affected and the other three are normal; in each of N/10
sibships of size 4, two are affected and the other two are
normal; in the remaining N/10 sibships of size 4, three are
affected and the other one is normal.

From the results presented in Tables 1, 2 and 3, it is clear
that T has a lower type I error than T, That is, the test
statistic of the ‘haplotype/allele coding’ method has a lower
type I error than the test statistic of the ‘genotype coding’
method. The ‘haplotype/allele coding’ method leads to more
robust and reliable test statistics. The type I error rates of the
test statistic of the ‘haplotype/allele coding’ method are
reasonable for models I, II and III when N = 200. In addition,
the type I error rates of the test statistic of the ‘genotype
coding’ method are reasonable for models I and II when
N = 200. The type I error rates of the test statistic for the
‘genotype coding’ method are slightly higher than the nominal
level 0.01 for model III when N = 200 and become lower
when N = 300. Note that the number of degrees of freedom
for tests T and Ty is 3 and 9, respectively, for model III.
Hence, the number of degrees of freedom for test T is large
for model III. When the number of degrees of freedom for
tests is large, the asymptotic criteria can be problematic. In this
case, a large sample is necessary to keep the type I error rates in
a reasonable range.

The results are similar in Tables 1, 2 and 3. Thus, the type I
error rates are little affected by the varying structure of the
sibships. The reason for this is that we basically take averages of
the coding vectors for sibships whose size is larger than 2.

Power calculation and comparison

To make power comparisons, we consider four genetic models:
heterogeneous recessive, heterogeneous dominant, additive
and multiplicative. For optimistic models, Table 4 gives
penetrance probabilities taken from Nielsen ef al. or Fan and
Knapp.'"'? For less optimistic models, Table 5 lists penetrance
probabilities taken from Fan and Knapp.'” For j=1,...,], let
us denote the measures of LD between allele Hj, of the marker
H; and the disease locus D by Ay, = P(HyD) — P(Hy)Pp, k=
1,...,n. Here, P(H;.D) is the frequency of haplotype H;.D,

Table 4. First set of parameters of simulated genetic models.

Model type fop fbd fad
Heterogeneous recessive 1.00 0.05 0.05
Heterogeneous dominant 1.00 0.95 0.05
Additive 1.00 0.50 0.0
Multiplicative 0.8 0.045 0.0025

and P(Hj,) is the frequency of allele Hj.. For two bi-allelic
markers H; and Ho, let Ay, y, = P(H1Hy) — P(Hy1)P(H21)
be the measure of LD between the two markers, where

P(H 1H>)) is the frequency of haplotype H;{H>;. Assume that
the two markers H; and H, flank the disease locus D in the
order H1DH2. Let A1D2 = P(H]1DH21) - P(H]1)A21 -
PpAp, g, — P(H21)A1y — P(Hy1)PpP(H>) be the measure of
the third order LD.** Here, P(H{1DH,,) is the frequency of
haplotype H;1DH,;.

Figure 1 shows power curves of Ty and T against the
measure of LD Ay at a significance level & = 0.05 using two
bi-allelic marker H; and H,, when P(H;;) = P(H;;) = 0.50,
i=1,2, Pp=0.15 and N = 200 sib-pairs for the first set of
parameters of the four genetic models of Table 4. The power
curves of Ty and Ty are calculated based on one marker Hj.
In the graphs, Delta_11 = Ay;; the other parameters are given
in the legend of the Figure. Figure 2 shows power curves of
Ty and T against the measure of LD A;; at a significance
level & = 0.05 using two bi-allelic marker H; and H,, when
P(H;) = P(Hp) = 0.50, i=1, 2, Pp, = 0.15 and N = 600
sib-pairs for the second set of parameters of the four genetic
models listed in Table 5. Similarly to Figure 1, the power
curves of Ty and Ty are calculated based on one marker Hj.
The other parameters are the same as those of Figure 1.

From Figures 1 and 2, it is clear that T} generally has a
higher power than that of T(s. This is consistent with the
results of Fan and Knapp for population case-control studies
and Fan et al. for nuclear family data.'”” This is most likely
due to the large number of degrees of freedom of the test
statistic T's. The power of Ty (or T) based on two markers
H; and H, is generally higher than that of Ty (or Tgy),
which is only based on one marker H;. Hence, it is advan-
tageous to use two markers rather than one marker in the
analysis. This observation can be generalised — that is, it is

Table 5. Second set of parameters of simulated genetic models.

Model type foo fod fad
Heterogeneous recessive 0.16 0.04 0.04
Heterogeneous dominant 0.08 0.08 0.02
Additive 0.108 0.0675 0.027
Multiplicative 0.12 0.06 0.03
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Figure |. Power curves of T and T at a significance level a = 0.05, using two bi-allelic markers H, and H,, when
P(H;)) = P(Hp) = 0.50, i = 1,2, P, = 0.15, and N = 200 sib-pairs for the first set of parameters of the four genetic models of Table 4.
The power curves of Ty and T, are calculated based on one marker H,. In the graphs, Delta_I| = A, = P(H,|D) — P(H,|)Pp is a
measure of linkage disequilibrium (LD) between marker H, and disease locus D; in addition, the other parameters are given by
Ay = P(Hy D) — P(H21)Po = Ay, Ay, = P(Hi1Hap) — P(H11)P(Ha1) = 0.05, and Ajpy = P(H,1DHy ) — P(Hi1)A21 — PoApm, —
P(H21)A 11 = P(H1)PpP(Hy) = A||/3 .

advantageous to use multiple tightly linked markers in analysis.
Note that the number of degrees of freedom of test statistic T
can increase rapidly as the number of markers increases. This
is particularly true when multi-allelic markers are used in
analysis; but the number of degrees of freedom of Ty only
increases by one if one more bi-allelic marker is added to the
analysis. Thus, Ty has the advantage of high power when
multiple markers are used; in addition, the number of degrees
of freedom of Ty would be not very large. For optimistic

models in Table 4, the sample sizes required to achieve certain
power levels are lower than those of the less optimistic models
in Table 5.

Not only can the test statistics T and T be applied to
analyse the genetic data of the bi-allelic markers, but they can
also be applied to analyse the genetic data of the multi-allelic
markers. Figure 3 shows the power curves of Ty and T against
the measure of LD Ay at a significance level @ = 0.05 using a
quadri-allelic marker Hy, when P(H;) = P(H;,) = 0.35,
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Figure 2. Power curves of T and T at a significance level a = 0.05, using two bi-allelic markers H, and H,, when
P(H;)) = P(Hp) = 0.50, i = 1,2, P, = 0.15 and N = 600 sib-pairs for the second set of parameters of the four genetic models of Table 5.
The power curves of Ty, and T, are calculated based on one marker H,. In the graphs, Delta_I| = A}, = P(H, D) — P(H,|)Pp is a
measure of linkage disequilibrium (LD) between marker H, and disease locus D; in addition, the other parameters are given by
Ay = P(Hy D) — P(H21)Pp = Ay, Apyp, = P(Hi1Hap) — P(H 1)P(Hy ) = 0.05, and Apy = P(H | DHy ) — P(H11)A21 — PoApiw, —
P(Ha)A 1 — P(Hi)DPoP(Ha1) = A |/3 .

P(Hy3) = P(Hy4) = 0.15, Pp = 0.15 and N = 200 sib-pairs for
the first set of parameters of the four genetic models of Table 4.
The other parameters are given in the legend of the Figure.
Figure 4 shows power curves of Tyand T at asignificance level
a = 0.05 using a quadri-allelic marker H;, when

P(H,y) = P(H,,) = 0.35, P(H,3) = P(Hy4) = 0.15, P, = 0.15
and N = 600 sib-pairs for the second set of parameters of the
four genetic models of Table 5. Similarly to Figures 1 and 2, Ty
generally has a higher power than that of T¢,.

In addition to the power curves of Ty and T, which are
based on sib-pair data, Figures 3 and 4 show the simulated
power curves of STy and ST, which are based on sibships
of varying structures. In Figure 3, combinations of both sib-
pairs and sibships of size 3 are used to calculate the simulated
power curves of STy and ST: the number of sib-pairs is
equal to N/2 = 100; the number of sibships of size 3 is
N/2 = 100; in each of N/4 = 50 sibships of size 3, one is
affected and the other two are normal; in the remaining
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other one is normal.

Figure 3. Power curves of T and T at a significance level a = 0.05 using a quadric-allelic marker H|, when P(H,|) = P(H,,) = 0.35,
P(H3) = P(H,4) = 0.15 Pp = 0.15 and N = 200 sib-pairs for the first set of parameters of the four genetic models of Table 4.

Delta_Il = Ay, = P(H, D) — P(H,|)Pp is a measure of linkage disequilibrium (LD) between marker H, and disease locus D. In addition,
A =—Ay, A3 =—A4= A /2. The simulated power curves of STy and ST are calculated using combinations of both sib-pairs
and sibships of size 3: the number of sib-pairs is equal to N/2 = 100; the number of sibships of size 3 is N/2 = 100; in each of N/4 = 50
sibships of size 3, one is affected and the other two are normal; in the remaining N/4 = 50 sibships of size 3, two are affected and the

Il. Heterogeneous dominant
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N/4 = 50 sibships of size 3, two are affected and the other
one is normal. In Figure 4, combinations of sib-pairs and
sibships of sizes 3 and 4 are used to calculate the simulated
power curves of STy and ST the number of sib-pairs is equal
to N/2 = 300; the number of sibships of size 3 is N/5 = 120;
and the number of sibships of size 4 is 3N/10 = 180; in each
of N/10 = 60 sibships of size 3, one is affected and the

other two are normal; in the remaining N/10 = 60 sibships

of size 3, two are affected and the other one is normal; in
each of N/10 = 60 sibships of size 4, one is affected and the
other three are normal; in each of N/10 = 60 sibships of size 4,
two are affected and the other two are normal; in the
remaining N/10 = 60 sibships of size 4, three are affected
and the other one is normal.

To calculate the simulated power curves STy and ST,
the interval (0, 0.045) of the LD measure A;; of LD is
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Figure 4. Power curves of T and T at a significance level a = 0.05 using a quadric-allelic marker H,, when P(H,,) = P(H,,) = 0.35,
P(H3) = P(H,4) = 0.15, P, = 0.15 and N = 600 sib-pairs for the second set of parameters of the four genetic models of Table 5.
Delta_I| = Ay, = P(H;,D) — P(H,|)Pp is 2 measure of linkage disequilibrium (LD) between marker H, and disease locus D. In addition,
A= —A, Aj3 = —A4= A} /2. The simulated power curves of STy, and ST are calculated using combinations of both sib-pairs
and sibships of size 3 and sibships of size 4; the number of sib-pairs is equal to N/2 = 300; the number of sibships of size 3 is
N/2 = 120; and the number of sibships of size 4 is 3N/10 = 180; in each of N/I0 = 60 sibships of size 3, one is affected and the other
two are normal; in the remaining N/10 = 60 sibships of size 3, two are affected and the other one is normal; in each of N/10 = 60
sibships of size 4, one is affected and the other three are normal; in each of N/10 = 60 sibships of size 4, two are affected and the
other two are normal; in the remaining N/10 = 60 sibships of size 4, three are affected and the other one is normal.

uniformly divided into 20 subintervals in Figures 3 and 4. proportion of the 2,500 simulated datasets for which the
Correspondingly, the 20 subintervals lead to 21 endpoints.
For each endpoint, there is a set of parameters for each power

curve. Using the set of parameters, 2,500 datasets are simulated

empirical statistic is larger than the cut-off point of the
corresponding x >~distribution at a 0.05 significance level.
From Figures 3 and 4, it can be seen that the simulated
power STy is generally higher than the power of Ty, and the
simulated power ST is generally higher than the power of

for each endpoint. For each dataset, the empirical statistics
Ty and T were calculated. The simulated power is the
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T¢. Intuitively, sibships of large size contain more information
than that of a sib-pair. The test statistics Ty and T can
accurately capture the information contained in sibships of
large size. Moreover, it can also be seen in Tables 1, 2 and 3
that the type I error is not inflated by including sibships of
varying structure.

Simulation study

To evaluate the accuracy of the non-centrality parameter
approximations, we performed simulations for the power
curves in Figures 1, 2, 3 and 4. The results are presented in the
section: Supplementary information: Simulation study. It can
be seen that the approximations are excellent.

Discussion

The goal of this study was to develop sibship-based Hotelling’s
T? test statistics for high-resolution association mapping of
complex diseases. This extends our previous research of paired
Hotelling’s T test statistics of nuclear family data or parent—
offspring pairs.”” For late-onset complex diseases, parental data
are usually not available. This motivated us to perform sib-pair
or sibship analyses to study late-onset disorders. Based an two
coding methods—‘haplotype/allele coding’ and ‘genotype
coding’—paired Hotelling’s T test statistics Ty and T are
proposed for high-resolution association studies, using normal
sibs as controls for affected sibs. The test statistics can be
applied to any number of markers, which can be either bi-
allelic or multi-allelic. After power calculation and compari-
son, it was found that it is advantageous to use two markers
rather than one marker in the analysis. This observation can be
generalised — that is, it is advantageous to use multiple tightly
linked markers in analysis. The test statistic Ty based on the
‘haplotype/allele coding’ method is generally more powerful
than the test statistic T's based on the ‘genotype coding’
method. This is most likely due to the large number of degrees
of freedom of T Moreover, the type I error rates of the test
statistic Ty are lower than those of test statistic T,

For population case-control association studies, false-posi-
tive rates can be high due to inappropriate controls, which can
occur if there is population admixture or stratification.?
Moreover, it is not always clear how to choose the appropriate
controls. Alternatively, the parents or normal sibs can be used as
controls of affected sibs.****~*’ For parental/sibling controls,
the methods proposed by Fan and Knapp'” and Xiong et al."’
are not valid, since cases and controls are correlated with each
other. The two sample Hotelling’s T test statistics only take
719 For sibship
data, not only the correlation among the markers but also

into account the correlation among markers.

the correlation within each sib-pair needs to be taken
into account. The paired Hotelling’s T2 test statistics T
and T developed in this paper correctly take both the
correlation among the markers and the correlation within

each sib-pair into account. The proposed method is potentially
useful in association mapping of late-onset complex diseases.

Cordell and Clayton® and Chapman ef al.'® proposed
logistic regression models for population-based case control
studies or family studies. Both our proposed method and the
logistic regression models can be used in association studies of
multi-locus marker data. One advantage of the logistic
regression models is that it is easy to add covariates to model
the environmental effects, in addition to the genetic effects;
however, it is not clear how to incorporate the environmental
effects into our Hotelling’s T test statistics. While we are able
to calculate the non-centrality parameters for our T~ test
statistics for power and sample size calculations, it is not clear if
one might get similar results for the logistic regression models.
In the study by Cordell and Clayton,” the authors mainly
discuss the analysis of SNP data and only briefly describe a way
to analyse the multi-allelic markers data. We feel that more
investigations are necessary in order for multi-allelic markers
data to be used in the logistic regression models. By contrast,
our proposed T2 can be used to analyse either bi-allelic or
multi-allelic marker data, or both simultaneously. Moreover,
more investigations are needed to make power comparisons of
the two methods.

In Figures 3 and 4, we show that the power of test statistics
Ty and T based on combinations of sibships of varying
structures are generally higher than the power of the test
statistics based on sib-pairs. This is because the test statistics Ty
and T use the average coding vectors for sibships whose sizes
are larger than 2. This averaging strategy does not affect the
mean of the coding vectors XD and YV, but it will lead
to a variance—covariance matrix S, which increases the test
statistics. Moreover, it can be seen from Tables 1, 2 and 3
that the type I error is not inflated by including sibships of
varying structure. Although the proposed test statistics benefit
from this, it is unlikely that they are optimal. One way
would be to use weighted sibships in constructing test statistics.
In this paper, we assume that there are no missing data. For
practical genotype data, genotypic information may be missing
at some markers for a portion of the sample.”® As a result,
the methods used here need to be updated to address the
problem of missing data. Another issue is that it is not clear
how to combine population data, the nuclear family data and
sibship data in one single analysis. In practice, the three
types of genetic data can be available. They can be analysed
separately, but it would be preferable to combine them in a
unified analysis, which may lead to higher power. These issues
needs more in-depth investigation.
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Appendix

Consider a sib-pair in which one sibling is affected and the
other is unaffected/normal. For convenience, assume that the
first sibling is affected and the second sibling is normal. Let us
denote Ay = (the first sibling is affected), U, = (the second sibling
is unaffected). Let fpp, fpd = fap and fyq be the probabilities
that an individual with genotypes DD, Dd and dd is

affected with the disease, respectively. Since allele D is
disease susceptible, one may assume that fpp = fpy = fy4. Let
fDD =1 —fDD,fDd =1—fpa andfdd =1 — fas- Denote the
disease prevalence in population by A = fppP% +

2fpaPpPy + faaP3, and A = fppP3 + 2fpaPpPy + f1P3 =

1 — A. Assume that the affected status of an individual
depends only on his/her own genotype at the disease locus.
Let us denote the event (i IBD) = the sib-pair share i gene
identical by descent (IBD) at the disease locus D. Then the joint
probability

P(A1, Uy) = P(Ay, Us|2  IBD)/4 + P(Ay, Uy|1  IBD)/2
+ P(A1, Us|0 IBD)/4
1 , -
=1 S fiduPPi+2 Y fufiyPPP

s,tE€{D,d} 5,6,q€E{D,d}

+ > fuyPPPP,

s,t,q,rE{D,d}

= % S FduPPi+2 > fufyP PP+ AA|,
JETD,d} sHLgELD,d}

(D
where s, t, g, r take values of disease allele D and d. To calculate
the above equations, we consider the three partitions (2 IBD),
(1 IBD) and (0 IBD). These three partitions have probabilities
1/4, 1/2 and 1/4, respectively. Conditional on each partition,
the corresponding conditional probabilities are then calcu-
lated. The frequency of homozygous genotype Hj.Hj, in an
affected sibling is given by:

ajkk:P[G;‘A): . H | Ay, U]
= P[G{"=Hj.Hj., A, Uz, (2 IBD)U(1 IBD)U(0 IBD)]/
P(A;,U,)

| Z fscfsrP(HjIeS)P(ijt)
4 stE{D,d}

1 _
+5 > FufuP(Hp)P(H)P,

rgETD.d}

1 -
= Y fuP(Hus)P(HnA| [P(A1,Uo).
45,rE{D,d}

(2

Similarly, the frequency of homozygous genotype Hj.Hj. in
an unaffected sibling is given by:

ﬁj/el«ZP[G,(jU)Z ijjk|A17U2]=P[G,(jU)= i Hje, A1, U,
(2 IBD)U(1 IBD)U (0 IBD)]/P(A;,U»)

> Ff «P(Hps) P(Ht)

€D}

ENII

1 _
+= > JfuPHROP(HS)P,

56qE{D,d}

+ SaP(Hjps) P(HRA | / P(A1,U>). 3

stETD,d}

ENIE.

Note that @ can be calculated by the formula for aj, by
substituting f;; with f; and vice versa. Note that the haplotype
frequencies P(HyD) = Ay, + P(Hy)Pp, P(Hyd) = — Ay +
P(Hj)P;. Under the null hypothesis of no association
between the markers H;, i = 1,2,...,], and the disease locus
D — that is, A; =0 for all j, the haplotype frequencies are
equal to the product of allele frequencies; for example,
P(Hj.D) = P(Hj)) Pp and P(Hj.d) = P(Hj) Py. From
equations (4) and (5), aj. = G = P(ij)z.

Similarly, the frequency of the heterozygous genotype
Hjy.Hy, k 7 1, in an aftected sibling can be calculated as follows:

ajkIZP[fol)Z ijﬂ|A1,U2]=P[GEA)= i Hj, A1, Uz,
(2 IBD)U(1 IBD)U(0 IBD)]/P(A;, U>)

|1

T D el PO P(H )+ PCH ) P(Hs)

stED, )

1 -
+= > fufu(PUHOP(H )+ P(H ) P(H ) Py
s,t,qE{D,d}

+= > ful P(Hs) P(H )+ P(H ) P(Hs)) A | /[P(A1,Us).

1E1D,d}

Pl s

“)
The frequency of the heterozygous genotype HyHy, k 7 I,
in an unaffected sibling can be calculated as follows:

= P[G;‘U) =H;HylA;,Us]= P[Gg,'U) =H;Hj,A1,U>,

(2 IBD)U(1 IBD)U(0 IBD)]/P(A,,Us)
1 _
7 D Jaf u(PCH) PCH )+ P(H ) P(H,)

StE{D,d}

1 -
5 > fifu(PH O P(H )+ P(H ) PCH ) Py
5,t,qE{D,d}

1 -
+y DSl P(Hj) P(H; )+ P(H O P(H) A | /P(A1, Us).
s,tE{D,d}

)

100 © HENRY STEWART PUBLICATIONS 1479-7364. HUMAN GENOMICS. VOL 2. NO 2. 90-112 JUNE 2005



Sibship T? association tests

Note that @y, can be calculated by the formula for ay,
by substituting f;, using f;, and vice versa. Under the
null hypothesis of no association between the markers H;,
i=1,2,...,], and the disease locus D — that is, A,:,v =0
for all j, the haplotype frequencies are equal to the
product of the allele frequencies; for example, P(H;.D) =
P(Hy)Pp, P(Hjd) = P(Hj,) Py, P(H;D) = P(Hj;)Pp and
P(H;d) = P(H;)P,. From equations (4) and (5),
ajp = ajpy = 2P(Hj)P(Hj). Therefore, the expectation
E(XW — YA}, U,) = 0 for the ‘genotype coding’
method.

For the ‘haplotype/allele coding’ method, equations (2),
(3), (4) and (5) imply

E(Zfﬁ:”/lu Uz) = 2aj + Zajkh E(Zf»,g)h‘h, Us)

1#k
- Zflj/e[e + Zajkl. (6)
2k
: : 4 _ _(U) _
From equation (6), expectation E(Ziﬂe ik Ay, Us) =

2P(Hj) — 2P(Hj) = 0 by ‘haplotype/allele coding’ method,
under the null hypothesis of no association between the
markers H;, j = 1,...,J and disease locus D.
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Supplementary information:
Non-centrality parameters

Consider N sib-pairs, each consisting of an aftected sibling
and a normal sibling. For convenience, assume that the first
sibling is affected and the second sibling is normal in each sib-
pair. Let us denote A, = (the first sibling is affected), U, = (the
second sibling is unaffected). For ‘haplotype/allele coding’, the
coding vector of the aftected sibling in the i-th sib-pair

(A A A A A .

is X:(‘ ) = (2511)7 e 251(11,1), cen zfﬂ), e zfj(ir,l))T. Similarly,
(U) _ () (U) (U) (U) : :

Y = (R Ry =1y 0 R e ZU(HJ—U)T is the coding

vector of the normal sibling. Denote the variance—covariance
matrix of XEA) - YEU) by Zhap = Var(Xl(-A) — YEU)|A1, U,) =
Var(XP Ay, Uy) — Cov(X? Y4, U,) —

COV(YEU)7 XEA)|A1, U,) + Var(Y§lj)|A1, U,). The elements
of the above variance—covariance matrices are given in
Appendices A, B, and C: Var(X,(»A)|A1, U,) and
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Var(Y{"| 41, Us) in Appendix A, and Cov(X\?, Y<”’|A Us)
|41, Ua)
and E(z ik |A1, Us) in the Appendix to the manuscript,
E(X(A) Y(L)|A17 U,) can be calculated. The non-
centrality parameter A of Hotelling’s statistics Ty is given
by A = NE(X{? = Y14, Un) [ 3] "B = Y7
Ay, Uy).

For the ‘genotype coding’ method, the coding vector of
the affected sibling in the i-th sib-pair is XS.A) =

in Appendlces B and C. Using quantities of E(zyk

(A) (A) (A) (A) (/‘1) -
(xlﬂ IR} 11(’1(!71)7 x1)127 e ’xtﬂn [ [_]T(njfl)n,)(:]-)] - L(U)J
SnnllarlY’ ( L]l LA y(nf1)’ g127 o yln7 79(,'”(%71)"])7-
is the codmg vector of the normal sibling. Let aj, and aj, be

HyHj in affected and unaffected
siblings given in the Appendix to the manuscript. Then,

the frequencies of genotype

A
E[Xfl )|A17U2]:(aj117-~- aaj(nj*1)n,)73

)

s @i = 1) (= 1)1 G125+« 3 Bjlpgy 5o e

U _ _ _ _
E[ij )|A17U2]:(a_]'117"'7a]'(ﬂ1*1)(}’{f*1)7qflza"'7aj1ﬂ/7"'7

(2

Using E[X{"| A, U,] and E[Y{"|A;, U], one may cal-
culate the expectatlon E(XW — (U)|A1 U,) = (E[Xffl)
YiPlAy, Ual”, . LEIXGY = Y14, U] Let 3y, =
Cov(X? — Y(U)lAl Uz) —Var(X( Ay, Us) —

Cov(X?, YfU)IAl, Us,) — cov(YfU>, XW14,, Uy) +
Var(YgU) |4y, U,) be the variance—covariance matrix of
XEA) - YEU) . Then the non-centrality parameter Ag of
Hotelling’s statistics T¢; is given by A = NE[XW —
Y|4y, UZ]T[ZgC,w]ﬂE[)_((A) — YA, U,]. The elements
of the above variance—covariance matrices are given in
Appendices D and E: Var(XSA)|A1, U,) and Var( Y,(4U)|Al7 U,)
in Appendix D, and COV(XI(»A), Yl(.U)|A17 U,) in Appendix E.

Appendix A

Consider the ‘haplotype/allele coding’ method. The var-
lance—covariance matrices are
Var(X{?| 4, Us)
A A A A
—Var[(Zf1 1)7 72,(1(371—1)7 72(]1)7 721(1(,)1]—1))T|A17U2]>

Var[ Y4, U,)

V[, 2V (N (3)

i it — 1) =i e gy — 1))T|A17U2]

The variance of the number of the alleles Hj, in the affected
sibling and unaffected sibling can be calculated as

Var(zj |41, Ua) = E[(2 ' A1, Ua] = [E(2{ 1A, Ua)T
2

= 4ajp. + Zajkl — | 2aje + Zajkl ;

1#k I#k

- T
Aj(nj— 1)nj) .

Var(2yi |41, Us) = EI(=}}) 2|41, U] = [E(2 1Ay, Un)P?
2

= 4a + Zﬁﬂez = |28 + Zajkl

I#k 1#k

Similarly, the covariance between the number of alleles Hj,
and the number of alleles Hj;, [ # k, in the affected sibling and
unaffected sibling can be calculated as

A A
COV(Zka)v ;] )|A1 ) UQ)

= E(ijf) fj,‘l)|/117 U,)
- E(Z,ﬂe A1, Uz)E(ZUI Ay, Us)

= P(G(A) ij/llAla UZ)

2a + g apge | | 2am + E ay

7k =]
= ap — |2apk + E A | | 2am + E a |
7k =]

COV(fo[eJ)7 ;l]])lAh UZ)
U) (U
= E(z}) 2141, U2)
— E(z3 | A1, UnE(z" 144, Un)
2ay + Zajll’

2a + E it

Wl Il

= djk —

For j # g, assume that markers H; and H, flank disease locus
D in the order of H;DH,. Let P(H;.DH,,) be frequencies of
haplotype Hj.DH,,. The frequencies of other haplotypes are
denoted accordmgly For the i-th sib-pair, let G(l) be the
disease genotype of the unaffected sibling and GfD) be
the disease genotype of the affected sibling. To calculate the

covariance between zf,,\% ,gh denote forj # g, k # K, h # It,

(Ajo) _
Skkhl = E[l(Gfﬁ:HLHL)l((‘(A)—Hk/H/)|A1’ Uz]
= PIG}" = HyHy, Gy = HyHg,, Ay, Uy,

(2IBD) U (1 IBD) U (0IBD)]/P(A;, Us)

Zf” L PLGy"

stE D,d}

G(A) HyHy, Giy) = st, Gip) = si]

Zfﬁffqp[GA)

rr,qE{D d}
GV = HyHy, Gy = st, G, = tq]

1

2 Zf"quP[GA) ijﬂea

s,t,q,rE{D,d}

G(A) HyHg, Gy = st, Gy = ¢rl| / P(Ay, Us)
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1 -
. - S PG =H Hyy, G = Hy, H
4 Zfst_f;tP(ijSth)P(Hﬂetth) +4”q;g( ;éfq' [Gj”=HuHjy, G gh T ghs

4s,tE{D,a’}

- (4) _ (V) _
ZfstﬁqP(Hjlethh)P(Hj}eSth)Pq G =3t G qi’] /P(A1 ’ U2)

s,t,qE{D,d}
_ Z Zfsrf;‘r(P(HﬂeSth)P( k"thh)
+ > fuP(HusHg)P(HtHy)A | /P(Ay, Uy) uETB.d)
V 1E{D.d} +P( lethh)P( k"Sth))
Sy = EI G(A):H.H.A)1<G<A>:Hk,, i U] 5 S P sH ) P H )
: s,t,qE{D,d}
_ (A) _
= P[G;; HjHj G = HygHgyy, A1, Ua, _|_p( tH ) P(HjesH )P,
2IBD) U (11IBD) U (0IBD)]/P(A,, U
( ) ( ) ( )]/ ( 1 2) + var(P( kSth)P(H W thh)
£ PIGY = HyHy, G = H,H il
Z for st [ i ks Sxjg - — Hgh Mgl _
SIELD} +P(HjetH,,)P(H i sHg))A | / P(A1,Us)
Gy = st, Gy = s
- (A _
Zf”ﬁflp[Gf)A) = HJkHik, Ggl) = thHXh’a gkklhh E[l(ijA):HJAH ’)1((;(‘4):H9/H ’)|A1 ’ UZ]
"”*qE{Dﬁ) . = P[G" = HyHy, Gy = HyHyy, A1, Us,
Gip' = st, Gip” = 1] (ZIBD)U(lIBD)U(OIBD)]/P(A1,U2)
fafuPLGy" = HyHy, G’ = HyHgy,
u,q,;p,d} ! ‘ E ffuPLGy" = HyH
< JE{D, d}
G =51, G0 = qr| /P(A1, Us) G = HyH gy, G =, G5 = 1]
i I
+§ qutﬁqP[ij ):Hj/erk’7
vat vt(P( kSth)P(ijtth’) $64&{D,d}
4 EDa
(A) _ (A) _ (U) _
+ P(H j.tH ) P(H jt.sH g1y )) Gie” = HaHar, Gip = st, Gip” = tq]
1 _
1 - (A) _
+= > ful(P(HjsH ) P(H it Hyy ). +7 > falyPIG;" =HyHy,
s,1,qE{D,d} ’ ‘ s,t,q,rE{D,d}
P(H.tH,;,)P(H .sH ,))P,
;{_ ( jk gh) ( kST g} ) q G(A)_ thqh’ G( =t G(U)zqi’] /P(A1,U2)
+- Zf;r(P(ijSHQh)P(ijtHQh’)
s,tE{D,d}
Zfstf;t(P(H/kSth)P( ik tth)

s,tE{D,d}
+ P(ijtth)P(ij/Sth/)
+ P(ijSth’)P(ij" tI_Igh) + p(Hj/etth')p(ij"Sth))
fsc/?tq(P(H h)P( k’t )
= P[G" = HyHj, Gy,” = Hy,Hy,, Ay, Us, S,t,qez{;a,d}

(2IBD) U (11BD) U (0IBD)]/P(A1, U») + P(HtH ) P(Hjw sH gy )
+P(ij5th’)P(ij’ tth)+P(Hiktth’)P(ij'ngh))pq

+P(Hj.tH ) P(H.sHgy))A | / P(A;, Us)

(Ajo) _
Lrwn = EU(CH)*HLH ,)1(C<4LH/H,)|A1,U2]

Z ZfA[fSIP[Gl(JA) = ijjle'7 G,(;) = thqh; 1
< ETD.d} +7 > ful P(HjsH ) P(H o tH gy)
G(A) =st, G(D) =st] SIS
1 _ + P(ijtth)P(HjHSth’) + P(H]kSth’)P(HJH tth)
+= Zfs(f;qp[cf] - H/kH;/e’ G thgh7
s6a€{Dd) +P(ijthh’)P(Hj gh))A /P(Al7 UZ)

G(A) =st, G(U) =1q]
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For k=1,...,n;—1and h=1,. —1,j# g, the
covariance
COV(Z{(-’.k 5 lgh)lAly U>)

= E[fo)zﬁ)|1‘11, Us] — E[Z;/Z)Mu Uz]E[Z,gh |4y, Us]

_ 4i9) (Ajg) (Ajg)
4gkkhh +2§ :glekhh’ +2§ :glele’hh

ih KFk
"
+Z E gik/ﬁ)/ = | 2a51k +Zaj1ek/ 2agp +quhh' .
Kkl #h K#k W#h
Similarly, for k= 1,. —land h=1,. —1,j# g, the
covariance
U U
Cov(zly, 24 141, U>)
Uy _(U U
=El2}) 2}, |41, Usl = El2y, |41, U2]E[2})| A1, U]
— 45U0) ~(Uyjo) ~(Uyjo)
= 48t +Zzgkkhh/ +zzgkk’hh
W=Zh Wk
(U _ _ _ _
+ ZZ géy,,‘,i/ = | 2au.+ Zajlele’ 2ag,+ Z%hh’
WELITZh Kk W

U0 S(Uijg) (Uije) 5Us2)
where 3,07y Suani > i, And Zyiyy are the expected genotype

frequencies in the normal sibling as follows:

SWUsjg)
e = B =m0 0= 1) |41, U2],

(U,jo) _ : .
Skknid = EU(G;“’:Hme1(65;:”:%,#?,,/)"41 »Ual,
(U,jo) _

it = B0 —py i L= 141, U2,

(U,jo) _ )
Lreht = E[l((;f’b):ijH,-L/)l(Gf; ):Hq,,Hq,,/)|A1 Uzl

S (Usjo) (U, jo) (U0
To caleulate gy, s L+ Zwis, A0 Zjyy > ONE may use

; A A, ;
the formulae of qkkhj,f), ggekhﬁ) , giyiﬁ) and gLMZZ,) by substituting

fi using J{t

Appendix B

The conditional covariance
Cov(Y'V, XD 4,, Uy) = B[V XY 4, U]
— E[Y{V |4, USJE[XV |4y, Us)
CEYYX 1, 10,
- P(A;, Uy)
— E[Y{”|4;, USJE[XY |4y, Us).

For the ‘haplotype/allele coding’ method, the expectations
E[Yfl])|A1, Us,] and E[X(A) |Ai, Us] are given by two quan-

tities E(z |A1, U,) and E(szk)k‘h, Us) (see Appendix to the

paper). To get E[Y(U) X(A)Tl 10,1, we will calculate

E[szk]) ,(Jf)ullu»] and E[Zf]lk]) ffll)lAllv] [ # k in this

Appendix. In Appendix C, we will calculate the expectation
E[ZI(JIJ:)Z,(@ 14,1u,] for j # g. Note that:

U) (A
[ 25 14, 10,]

=E 2-1(foli>:ijij) + Zl(ijﬁ)ZHb,’L’H,,‘z)
: I#k 3)

2'1(GLA):H,'L,H,L,) + ;l(cf):H,kaﬂ) 14,10,

Since the siblings can share 2, 1 and O genes identical by
descent (IBD) at the disease locus D with probabilities 1/4,
1/2 and 1/4, respectively, the expectation

E[1(G§,‘U):HJL:HJL:)l(GfJ‘/I)ZHvaHfb)1A1 1U2]
= PG = HyHy, GV = HyHy, Ay, Ua,
(2IBD) U (11IBD) U (0IBD)]

Z ﬁtﬁrp[cfjw: ijjIwG,(’]A)

stE(D,d}

=2 =H;Hj,

G(vU) =st Gfg) =st]

U A
S Y JufuPLGY” = HyHy, Gy = Hy Hy,
;th{D d}

U 4
Gl =st,Gip) =1q]

1 _
+o Y RfuPIGY = HyHy, G = HyHy,
s,tq,rE{D,d}
Gl =st,Gipy = qr]
1 _
=1 S FhP(Hyo)P(Hpt)
s,tE{D,d}
= > JutuyPHOP(H) P(Hjg)
qu{Dd}
1
+1 D T PHPHOPH)PHn). (4

s,tg,r€{D,d}

For [ # k, one may calculate the expectation
Bl =l =y 1 1021

_ U) _ (A)
= P[Gij = Hy.Hp, Gij

= HyH;, Ay, U»,(2IBD) U (11BD) U (0IBD)]
=~ > LAPIGY = HyHy, G = HyHy, G
457rE{D,d} ! ’ y
= G(A) = sl + thfth[G(L) Hj.Hj, G 4)
sth{D d}
WH, G = st, G = 1q]
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SRSy PIGY = HyHy, G

s,t,q,rE{D,d}

U
eH i, G( ) = = st, G,(D) = qr]

Zﬁtfq 2P(Hjt) P(Hjes) P(Hq)

s,LqE€{D,d}

1 _
4- Zﬁrfq,P(ijs)P(ijt) P(Hj.q)P(Hr)

s,6,q,r€{D,d}

+P(HP(H) 5)

Similarly, one has the following expectation

B O =mumn N a=umn 1 102

1 _
=37, 20

G(U) = HyHy,, G =
gl

]

HyHy, ,

G =, G =«

Zﬂ,fqP[G D = Jk Jho Gl(’f )= HJka’Z’

s6qE1D.d}
Gy = st, Gy = 1q]
Zﬁ,fqrp[c(” = HyH;,, G = HyH,,
5 t,q,rE{D,d}

G(w = st, G( ) = = qr]

Zﬁt tq

> FafulP(Hs)P(Hy, 1) + P(Ht)P(Hy, 5)]

- 2P(H,t)P(H ;, s)P(H 1, q)

Hj,r) + P(H,r)P(Hj,q)].

Ell2: ](GZU):HMH,‘L’) + Zl(q/z»‘): e Hjn)
m#*=k ’

x 2'1<Gf,4>:H,1H,1)+Zl<cf;‘“:H,fH,,,> Lalu,
’ o n#l ’ ’

= 4E[1((3;L"):HJkHJAf)1(Cfvf):HuH,1)1A1 1(]2]

(G(U)=Hka-k)1(G(4):H,Hk)1A1 1 Uz]

+ ZZE[l G(l )= H,H, )l(GM’*H,H )1A11U2]

+ 2B 0 00—y, 11 iy L 1]

—I-ZZE[l(G(z), L, )1(G<A)*H1H )1 o,

+ ZE“ &=ttt V6= 14 10, ]

+ ZE“(G“ ’*H/LH,,Jl(c“’fH ol 1u,]

1
S Fofi - 2P(H ) PO P(H ) 2udSTba
2 s,,qE{D,d}
1
+3 D [P( k) P(H;i1) shar€{Dd}
4S,r,q,rE{D d}
+ P(ijt)P(HﬂS)} P(Hjrq) P(H ji1).
For [ # k, one may calculate the expectation E[zzi)zf]‘z)
E[1, ~w_ 1, 14,10,
[ (Gf/()_H,ff\’Hﬂ’) (fo.“_HJL’HJl) 4 [‘] E[Z(U) (A)lA 1y ]
ik =il 2
= PIGY = HyHy, G g
«Hji, A, Us, (2TBD) U (11BD) U (01BD)] _
I, U A U)
=12 JufuPIG” = HyHy, G = HyHy, Gip)
stE{D,d}
1 -
=, G =« +§Zf“ fuPLGY” = HyHy, G
s,L,qE{D,d}
1 - ;
A U
WHi, G = st, G = tq]+ZZﬁ,fq,.P[G,§ )
s,6,qrE{D,d} + 2E[1
Hy, G = HyHy, Gip) = st, Gip) = gr]
1 T n
=3 DSl P(Hs) (o) + P(H;) P(H o) mH
stE{D d}
+5 qu ful PCH 0 [P(H ) P(H i) + P(H )
St qG{D d} mF=k,l
X [P(H ) P(Hg)]] + Zf,fq,[P( 5) P(Ht)
SlqrE{Da'} m#=k,l
+ P(H . t) P(H )] P(H joq) P(H 1)
+ P(ijf)p(Hﬂq)]. (7) m#=k,l

For I} # b, |} # k and I, # k, one may calculate the
expectation

E[l(G;U)ZH,'L,H,‘Il )1(Gf;4):HJL’H/lz) 1A1 1 Uz]

+> > EN
m#k, nFm,k,l

+ E[l((}(.u):HkHv,

(G=H,.H,) 1 (Gy"=H;H,) 1410.]

)1(G(A):H’Hk)1A]1UZ]

(©))

By using equations (4), (5), (6), (7) and (8), we may calculate
14,1u,] in (3). If k # 1, then

_ ) _ (A)
= P[G{” = H;H;,, G} + D BN 0y =iy L 10 ©)
= HyHj,, A1, Us, (21BD) U (11BD) U (0IBD)] w=h
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First, one may calculate the expectation

1
= Z Zﬂr_pr[c([ D= ]leHjmv G

jIHjlv
s,tE€{D,d}
E“(c@: jL,HL,)l(G(.14):H-,Hv,)]A1]Uz] G(U) =, Gfg) =«
= PIGY” = HyHy., G = H;H,
[ etk i L wafqp[c ijjma G lejla
Ay, Us, (21BD) U (11BD) U (0 IBD)] wE;D)d} "
U A
1 _ ; Gp =st, Gp = tq]
1 Zﬂtﬁtp [GS‘JU = HjeHje, GfJA) = HyHjy, z (U) (A)
€D} Zfszfqu[Gg,' = HyH;u, G~ = H;Hj,
s,t,q,rE{D,d}
G(,U) = t G(A) = st )
sty Gip' = si] CY) = s, G = gr]
(U) _ 1
5 SOTSPIGY = Hydty, GV = HyH, == ST f PO P(H 0
2, et 1 / /
s,t,q,rE{D,d}
Gip' = st, Gip = 1q] + P(H;ut)P(Hjs)\P(Hig) P(HLjr). (12)
_f_l Z]_[wfqrp[c(b) = HyHy, G = H;H, For m # k,I,n 7 m,k,l, one way have the following
S,t,qq‘E{D;d} ! ! expectation:
Gfg) = st, Gx(g) = qr] E[1(G},‘l’"= ij,n,)l(Gﬁf‘): j/H,,,)lf‘h 1u,]
. =p[GY = HH,,, GY = H,H,,
> " Fofy P(HL ) P(HL ) P(HL ) P(FL ) (10) (G = el G = HiH
sit,q,rE{D,d} Ay, U, (2IBD) U (11BD) U (0IBD)]
U) _
For n # k, I, one may have the following expectation E{ZDﬁrfwP[G jeHjm» G jiHjny
(U) _ (A _
E“(GE,.U):Hﬂ,Hﬂ,)1(Gf:,.’/”:H,1H,ﬂ,,)1A1 1[]2] Gip’ =st, Gp = st]
(U) _
= P[G(U) = H'IQH-]€7 G(A) = H'[H',,7 Zﬁtfqp[c ijjma G Hjﬂ}
v SR I 2 €Dy
Ay, Us,(21BD) U (11BD) U (0IBD)] GO = o GW = 1)
(U) _ — 1
Zﬁrﬁ’P[G J G - HﬂHf”’ + - Zf;tf;jrp[ca]) == jIeHm//) GA) = Hlejm
stELD,d} s,6,q,rE{D,d}
Gy = st, Gy = st Gip) = st, Gip) = qr]
1 -
Z FifuPIGY = HyHy, GV = HyH,, Xo Y Fuful PCH ) P(Hj0)
s,1,qE{D,d} s,t,q,rE{D,d}
G = 51, G = 4q] + P(Hjt) P(H,,u)1[P(Hj1q) P(H ju 1)
1 . - " + P(H;r)P(H,juq)]- (13)
T Zﬁ;pr [Gy " = HpHje, Gii* = HjHj, Using equations (5) (6), (7), (8), (9), (10), (11) and (13), we
shar €04 may calculate terms of equation (7).
G,(vl) st, G(A) qr]
Sy PCH) PO [PCFLig) PCHL ) Appendix C
sharEiD.d} For j # g, the expectation
+ P(H;r)P(H;,9)]. (11) o o
E[Zuk Zigh 1AI 1Uz]
For m # k, [, one may have the following expectation
=E||2- 1((,;f/U):ijH/-k) +I;1((;§/‘”'>:H/m,y>
E[l(qu»‘): ,L,Hjm)1(G§;/1):HJIHJI)1A] 1(]2] >k
[ ij Jle At iy i JEL X[ 2- 1(G(A)—Hk/,H/, Zl(G(A)_Hh Hy) Talu, |- (14)
Ay, U, (2IBD) U (11BD) U (0IBD)] Wh
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Suppose that blocks/markers H; and H, flank disease locus  If k # K, the expectation

D in the order H;DH,. The expectation
o l A, o E[l(cﬁf“):HﬂHﬂ)1(Gf;)=H‘QI,H‘Q/,)1A11U2]

(G =HyHy)  (G'= ,Hg/) AU, 4
= P[G = H H/k, G Hgleglm

g

1 D FfwPIGY = HyHy, G = HyHy, Z Jf PIGY" = HyHyy, G = HyHyy,
€D} 4 EDa
Gt(lgl) = st, Gr(llg) = st] G(U) = s, G(A) = sf]
1
(U) _ A)
+= [G; " = HjH, G[ iwH gy 1 -
2, t,qEZ{D dJ}[Lftq e ‘ o + 2 Z S g [fou) = HjHjy, Gz(gA) = HyHg,
(U) (A) 5,,q€E{D,d}
Gip’ = st, Gip = tq] o w _
1 Gy’ = st, Gy = tq]
+ - PIG” = HyHy., GiY = Hy,Hy,
4, s ;D j;tfq : o 1 W _
U ) + - Z f{fqr G = /c’ G glngha
Gy = st, Gip) = qr] sharED,d}
1 _
=7 > Jf«P(HusHy)P(HytHg,) Gip =st, G’ = qr]
1ETD.}
1 _
1 2 =- of st [P(HjisH ) P(H o tH. g1,)
3 Z{j TP HuH ) PR o) 1, B S AP His ) P(He 1
5,t,qE{D.
+ P(HjptH ) P(H v sH g,)]
< > Ry P(Hs)P(H,) P(qH ) P(rH ). ) 1 ST
3 t,q,rE{D,d} -
+5 Jstf g P(HptH ,) P(H g 5) P(qH 1)
If i # h, the expectation $7,_’qez{D1d} 5 e ! e
Bl o L=y % LaTe.] + P(HtH ) P(H) P(gH )]
=pGY = H Hy, G = H,Hy, 1
if JRETRY Mg Lh==ghts -
+- of o [P(Hjps) P(Hjp t) + P(H jpt) P(H o 5)]
Ay, U,,(2IBD) U (11BD) U (0IBD)] 4“7%;&{;‘ e ! ! /
7 (U) _ (A) _
4-”;1;‘1{:&@[@,; = HjHj,, Gi;° = HgHgr, X P(qH ) P(rH ). (17)
Gl(,g) = s, Gl(,g) = ] Ifk# K, h# Il the expectation
1 _
4- ) c(” HjHy., G2 = Hy,Hyy
25-t~462{;3.d{tfw : “ « E[1 "= }LHU)l(GM)*H\lHH)lAl1172]
G =51, G = 1q) = PIG” = HyHy, G” = HyHy,
1 _
+1 > FfuPIGY = HyHy, GJ¥ = HyHy, Ay, Us,(21BD) U (11BD) U (01BD)]
s,t,q,r€{D,d
14g,r€{D,d} 1 o
G(U) = s, G(A) = qr] Z f;cfstp[cg,‘ =H;.Hjy, G Hy,Hgy,

stED,d}

= ”E;d_}f[fcr[P(H kSHQh)P(H ktth) G(U) =, G(A) . St]

+ P(H tH,;,) P(H ji.sH 1
1( ! 8") ( e ! Z f(fth[G(U) = Gr(;) = HgHgy,
+5 D T gl POHH ) P(H ) PgH ) st

s,1,qE{D,d} G(»U) = G(g) — tq]
+ p(Hj[etth')P(HjleS)P(quh)]

1 - PG\ =H, Hy, G = H,,H,y
+5 > Ff o P(Hs) P(H [ P(qH ) P(rH gy ) M;D{ o PLG; WHj, Gy” = HoHy,
s,t,q,rE{D,d}
+ P(rHg,) P(qH gi)]. (16) G\ =51, G = gr]
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1 _
=~ N FfulP(HusHy)P(H,p tHgy)
45,lE{D,d}
+ P(HjptH ) P(H jjo sH g1 ) + P(H s H g1y ) P(H g tH g1,)
+ P( jktth’)P(Hﬂe’S il

> R ol PCHptH ) P(Hos)P(¢H )

5,4 (Dyd}

+ P( k’tth)P( kS)P(q ]7’) + P(H,kt ,,/)P(H,-k/s)P(qu;,)
+ P(kal th’h/)P(kas)P(quh)]
> R w[P(Hs)P(Ho)
5,t,q,rE{D,d}
+ P(H o) P(H ) [ P(qH ) P(rH ) + P(rH 3,) P(qH )]
(18)

Appendix D

For the ‘genotype coding’ method, the coding vector of the
(A) AD

affected sibling in the i-th sib—pair is Xf.jA) = (x50 -+ S

(A) (A) (A) P U) _
X125 -+ o Xty > -+ o y(ﬂl,l)nj) j= ., J. Similarly, YU

(&) (V) (U) (U) (U) P :
( 171 ’c 7xx/(n —1) y12’ . yln, ] 1](n 71)11/)7 - "_]ls

the coding vector of the normal sibling in the i-th sib-pair.
Using the expectations E[ngA)|A1, U] and E[Yf-ju)|A1, U,]
given in equations (1) and (2), one may calculate the following
variance—covariance matrices:

Var(X{"|4;,U>)

= diag(aji1; -, Gjn—1)(—1), 4125 -+ Gj1ngs -5 G~ 1))
[X{V141, U E[XV |41, U],

Var(Yf.jb)|A1 ,Us)

:diag(ﬁﬂl,...7ﬁi(n171)(ﬂ171),ﬁi12,...,Zzﬂnj,...,sz(,%iﬂ)n])

—E[Y{" A1, ULJE[Y |4, Us]™. (19)

The covariances between X, Xjjew and Xig, Xigny are given

by

Cov(x,]k , ;,?lz‘h, Up) = gifsz) = jkkAghh
Cov(x”,\ , ig,jl,lAl, Uz) = gi:,fi) = jkkAghi 5
Cov(kak,, i |A1, U,) = g;}j{lh itk Aghr
COV(xfj[ljl)e” fghh/lAla Us) = gkfézi'h/  djek Aghly' - (20)
Similarly,

Cov(aly, x5 A1, Uz) = Gl — g,
Cov(xff;f)a lgm,/lAu U>) E(kl,j,f) = Atk Aghlt 5
Cov(xff,;f,, f;,{ [Ay, Up) = gkk’hh Ajkle Aghhys
Cov(xf]f,f,, ;LIJL;JAh U,) = gkk’hh Ajlet Aghly - (21)

Using results of equations (19), (20) and (21), one may
calculate Var(XfA)|A1, U,) and Var( Y1(4U)|Al7 U,) for the
‘genotype coding’ method.

Appendix E

In this Appendix, we calculate the following covariance matrix
for the ‘genotype coding’ method

Cov(Y'V, X1 4,, Uy) = E[YV X4y, Us)
— E[YA;, U1 E[XV] 4y, Us]

_EVOX 1,10,
P(A17 UZ)

—E[Y]4,, U] E[XY |4y, Us).

The probability
to the manuscript, and the components of expectations
E [XSA)lAl, U] and E [Y§U)|A1, U,] are given in equations (1)
and (2). For E [YEU)X,(‘A)TLq1 1u,1, we note the following

P(Ay, Us) is given in the Appendix

results:
the expectation E [1(G§l'v):H,kH,k)1((}2‘4’:Hﬂ,HJk)1A1 1u,] 1s given
by (4); For [ # k, the expectation E [1(65;5;:H H )1(G(A):
/LH/I)]AI]LM] is given by ( ) For | # k E[] G“ )—H H; )]
(C(‘l)_HAHL)lAI 1,1 1s glven by (6); For [ # le

E U((,‘“—H H, )1((1(,4 —H,.H, )
I, # k I, # k E[1 foL):H/katl)1(G§}4):kaH//2)1A‘1U2] is given

4,1u,] 1s given by (7); For I} # L,

by (8); For [ # k, E[1 (GO —HH, )1(G(4):Hj,Hj/)1A11U2] is given

by (10); For [ # k, n # k I, E[l(G(r —H.H, )1(6(11)7H.H-)1A11U2]

is given by (11); For [ # k, m #* Ie I, E[l(G(z —H,H, )1(G<A),
myHy L4, 1u,] is given by (12); For [ # k, m > k, I, n7# m,

k, I, E[1 (G =HH,, )1((\(4)_H1H y1a,1u,] 1s given by (13).

In addltlon E [1(((1)_H 0, )1(((A)_H/H/)1A11U,] is given by

(15); E[l(G(z) ] is given by (16);

E[l (G =HjHy)

E [1(G(L )*HLH )l(G(AL

=Hj,Hj, )1(G(4)*H Hy) La 1y,
1((,(‘”—H I:Hgl,)lAl 11,1 1s given by (17); Finally,
1/)11411[]2] is given by (18).

<h H‘p l

Supplementary information:
Simulation study

In order to evaluate the accuracy of the non-centrality
parameter approximations, we performed simulations for
power curves in Figures 1, 2, 3 and 4 of the paper. To do
this, we divided the interval (0, 0.065) (or (0, 0.045)) of
the LD measure A;; of LD uniformly into 20 subintervals
for Figures 1 and 2 (or Figures 3 and 4). Correspondingly,
the 20 subintervals lead to 21 endpoints. For each

108 © HENRY STEWART PUBLICATIONS 1479-7364. HUMAN GENOMICS. VOL 2. NO 2. 90-112 JUNE 2005



Sibship T? association tests

PRIMARY RESEARCH

endpoint, there is a set of parameters for each power curve.
Using the set of parameters, 2,500 datasets are simulated
for each endpoint. For each dataset, the empirical statistics
T, T, Try and Tgy were calculated. The simulated
power is the proportion of the 2,500 simulated datasets

for which the empirical statistic is larger than the cut-oft

point of the corresponding y >-distribution at a 0.05
significance level.

From Figures 1, 2, 3 and 4, it can be seen that the theor-
etical power curves of Ty, T, T and T, are perfectly close
to the simulated power curves. Thus, the non-centrality par-
ameter approximations are very accurate.
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Figure |. The simulated power curves Ty, Tg, Ty and Tg, are plotted. The corresponding parameters are the same as those
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Figure 2. The simulated power curves Ty, Tg, Ty, and Tg, are plotted. The corresponding parameters are the same as those
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Figure 3. The simulated power curves Ty and T are plotted. The corresponding parameters are the same as those of Figure 3 in the
paper. Abbreviation: LD = linkage disequilibrium.
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I. Heterogeneous recessive Il. Heterogeneous dominant
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Figure 4. The simulated power curves T and T are plotted. The corresponding parameters are the same as those of Figure 4 of the
paper. Abbreviation: LD = linkage disequilibrium.
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