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Abstract
Association studies are used to identify genetic determinants of complex human traits of medical interest. With the large number of

validated single nucleotide polymorphisms (SNPs) currently available, two limiting factors in association studies are genotyping capability and

costs. Pooled DNA genotyping has been proposed as an efficient means of screening SNPs for allele frequency differences in case-control

studies and for prioritising them for subsequent individual genotyping analysis. Here, we apply quantitative pooled genotyping followed by

individual genotyping and replication to identify associations with human serum high-density lipoprotein (HDL) cholesterol levels. The DNA

from individuals with low and high HDL cholesterol levels was pooled separately, each pool was amplified by polymerase chain reaction in

triplicate and each amplified product was separately hybridised to a high-density oligonucleotide array. Allele frequency differences between

case and control groups with low and high HDL cholesterol levels were estimated for 7,283 SNPs distributed across 71 candidate gene

regions spanning a total of 17.1 megabases. A novel method was developed to take advantage of independently derived haplotype map

information to improve the pooled estimates of allele frequency differences. A subset of SNPs with the largest estimated allele frequency

differences between low and high HDL cholesterol groups was chosen for individual genotyping in the study population, as well as in a

separate replication population. Four SNPs in a single haplotype block within the cholesteryl ester transfer protein (CETP) gene interval

were significantly associated with HDL cholesterol levels in both populations. Our study is among the first to demonstrate the application of

pooled genotyping followed by confirmation with individual genotyping to identify genetic determinants of a complex trait.
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Introduction

Association studies are widely viewed as one of the most

promising methods for identifying the genetic determinants of

human phenotypic traits of medical interest, such as common

diseases and individual responses to the drugs used to treat

those diseases.1 Therefore, a considerable amount of research

has been focused on developing methodologies that efficiently

screen candidate gene regions or whole genomes for associ-

ations of complex phenotypes with genetic markers, such as

single nucleotide polymorphisms (SNPs). The methodology

relies on having a set of common genetic markers at a suffi-

ciently dense coverage across the genome, such that either the

causal variant itself or a marker in linkage disequilibrium with

the causal variant will be tested in the association study. Thus,

to be comprehensive and reproducible, a whole genome scan

study requires the assay of hundreds of thousands of densely

spaced SNP markers in a large number of samples. There is a

considerable body of experimental2–6 and theoretical7–9

work that suggests genotyping of pools consisting of DNA

from many individuals is a viable alternative to individual

genotyping. Pooled assays replace many measurements of

individual samples with a few measurements of a pooled

sample — with a corresponding reduction in cost, time and

labour. Here, we describe one of the first large-scale SNP

association studies in which this methodology has been

applied and validated.

Human population studies have shown that serum high

density lipoprotein (HDL) cholesterol concentrations are

inversely correlated with the development of premature cor-

onary heart disease.10 In this report, we describe a two-stage

study to identify genetic markers associated with HDL
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cholesterol levels. First, we use a pooled genotyping screen to

identify SNPs likely to have large frequency differences

between low and high HDL cholesterol groups. Starting from

7,283 SNPs distributed across 71 candidate regions, we use the

pooled data to select about 300 SNPs with the strongest evi-

dence for association. We then individually genotype these

SNPs, to confirm their allele frequency differences in the low

and high HDL cholesterol individuals in the study group. We

confirm associations identified in the study population by

individually genotyping SNPs with significant allele frequency

differences in a replicate population.

We also describe a novel method for using independently

derived haplotype map data to improve the power of an

association study based on pooled genotyping. Using genotype

data from a separate set of ethnically diverse individuals, we

determine haplotype blocks and sets of common haplotype

patterns that together account for most of the variation in a

given genomic interval. From pooled genotype data, we esti-

mate frequency differences for these common patterns

between case and control groups. These pattern differences

enable us to make more accurate estimates of the individual

SNP frequency differences that exploit redundancies in the

haplotype map, thereby reducing experimental error in the

individual SNP measurements.

Materials and methods

SNP discovery and haplotype
map construction
In an independent, previously described study, a genome-wide

SNP collection was obtained using high-density oligonu-

cleotide array-based resequencing.11 Briefly, we generated

somatic cell hybrids by fusing lymphoblast cell lines from the

Coriell Polymorphism Discovery Resource12 with a hamster

cell line to form between 20 and 50 haploid somatic cell

hybrids for each human chromosome. DNA was isolated and

amplified by long-range polymerase chain reaction (PCR),

and the PCR products were fragmented, labelled and hybri-

dised to a series of SNP discovery arrays. These arrays were

designed such that each base of the reference sequence was

queried by eight 25-mer probes. We identified SNPs from the

resulting fluorescence intensity data using a pattern recog-

nition algorithm.

We used a dynamic programming algorithm13 to partition

these haploid SNP discovery data into haplotype blocks. SNPs

having minor allele frequencies of at least 10 per cent in the

SNP discovery data were included in the map. We required all

blocks to satisfy the condition that at least 80 per cent of the

haploid samples could be assigned to common haplotype

patterns having greater than 10 per cent frequency. For a block

having N common haplotype patterns, we also required at

least N 2 1 patterns to have tagging SNPs that distinguished

each of those patterns from all of the others.

Sample selection
The study population was derived from a cohort of individuals

(self-reported Caucasian) from the ACCESS study,14 which

was made up of males, postmenopausal females and premeno-

pausal females that either had, or were at risk for, cardiovascular

disease. Whole blood from subjects participating in this

study was obtained in accordance with the Declaration of

Helsinki (2000) of the World Medical Association, in addition

to appropriate informed consent documentation defining the

study design and providing an assessment of the risks and

benefits associated with study participation. Individuals with

high and low HDL cholesterol levels were selected as the top

and bottom 15 per cent of the continuous HDL distribution

from each group, resulting in the following samples: 166 high

HDL ($54.9mg/dl) and 182 low HDL (#36.1mg/dl) males;

140 high HDL ($64.0mg/dl) and 142 low HDL

(#47.3mg/dl) postmenopausal females; and 17 high HDL

($67.4mg/dl) and 24 low HDL (#42.2mg/dl) premeno-

pausal females. HDL cholesterol was measured in fasting

samples from four preclinical visits, all DNA samples were

collected at baseline (ie without drug treatment). In this

population, the interaction between age and HDL did not

warrant an adjustment for age in the selection of cases and

controls.

The replicate population consisted of 83 low HDL and

78 high HDL samples from postmenopausal women

(self-reported Caucasians). These samples represented the

25 per cent tails from both ends of the continuous HDL

distribution of an independent cohort from an osteoporosis

study (the cohort was not selected on the basis of their HDL

cholesterol levels or other cardiovascular risk factors), with the

high HDL cut-off at 62mg/dl, the low HDL cut-off at

42mg/dl and a mean age of 54.4 years.

Construction of DNA pools
We constructed four DNA pools for estimation of SNP allele

frequency differences between the low and high HDL

cholesterol groups. Five of the 671 samples of the study

population were excluded from pooled genotyping due to

insufficient amount of DNA or failed normalisation. After

removal of these samples, there were 345 low HDL samples

and 321 high HDL samples remaining. The low HDL

cholesterol samples were randomly split into two subgroups

and used to construct pool A (consisting of 173 individuals)

and pool B (consisting of 172 individuals). Likewise, the high

HDL cholesterol samples were randomly split into two

subgroups and used to construct pool C (consisting of 161

individuals) and pool D (consisting of 160 individuals).

Genomic DNA was extracted from whole blood using the

PureGene DNA isolation system (Gentra) per manufacturer’s

protocol. DNA samples were quantified using a PicoGreen

assay kit (Molecular Probes) and SpectraFluor Plus Tecan plate

reader according to the manufacturers’ instructions, and then
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diluted to a standard concentration using a Packard Multi-

Probe Robot. Equimolar aliquots of DNA were transferred

into one of four pool tubes using a Packard MultiProbe robot.

Each pool was then requantified by PicoGreen assay and the

pools diluted to 20 ng/ml for use as a PCR template.

SNP selection for pooled genotyping
We selected 71 gene targets based on a variety of criteria. One

gene, the cholesteryl ester transfer protein (CETP ), had been

previously shown to be associated with HDL cholesterol10,15,16

and served as a positive control. The remaining 70 candidate

genes (Table 1; see also supplementary Table 1; supplementary

tables have been posted at: www.perlegen.com/newsroom/

supplemental/human_genomics/10_04/index.htm) were

either known or suspected to be involved in lipid metabolism.

We did not include some genes previously shown to be

associated with HDL cholesterol levels because our goal was to

identify novel associations; for example, we did not include

hepatic triglyceride lipase (LIPC), lipoprotein lipase (LPL),

low-density lipoprotein cholesterol receptor (LDLR) or ATP-

binding cassette transporter A1 (ABCA1).17 For the 70

candidate genes, we selected SNPs within the genomic DNA

sequences encoding the transcripts, as well as 80 kilobases (kb)

upstream and downstream of each transcript. We examined a

larger region, spanning 1.5 megabases (Mb) upstream and

downstream of CETP. The targeted 17.1Mb of DNA

sequence included 50 partial and 180 complete transcripts in

addition to the 71 selected candidates, based on the National

Center for Biotechnology Information Build 30 (see sup-

plementary Table 2). We identified 7,283 SNP markers in

these regions, at an average density of one SNP every 2.3 kb.

Of these, 112 were in transcribed sequences of the 71 candi-

date genes, 180 were in the transcribed sequences of the 230

non-candidate genes in the intervals examined and 72 rep-

resented amino acid changes (supplementary Table 2). More

than 50 per cent of the 17.1Mb is covered by inter-SNP intervals

of 10 kb or less and more than 80 per cent is in inter-SNP

intervals of less than 50 kb. The 71 selected intervals contain

955 haplotype blocks, having an average of about six common

SNPs and three common haplotype patterns per block.

High-density oligonucleotide arrays
High-density oligonucleotide arrays were designed so that

each SNP would be interrogated by 80 25-mer oligonucleo-

tide probes synthesised on a glass substrate. These 80 features

consisted of four sets of 20 features, corresponding to reference

and alternate alleles for forward and reverse strands. A set of

20 features consisted of five sets of four probes, with offsets of

22, 21, 0, þ1 and þ 2 bases between the centre of the

25-mer probe and the SNP position. For each offset, we tiled

features for each of four nucleotides substituted for the centre

position of the 25-mer probe, thus at each offset we had one

perfect match feature and three mismatch probes for the

corresponding SNP allele (Figure 1).

Determination of pooled allele
frequency estimates
For pooled genotyping, 7.25 ng genomic DNA (pooled

samples) was amplified using long-range PCR reactions,

pooled, labelled, hybridised to high-density arrays, stained and

detected as described.11 The four DNA pools (low HDL

pools A and B and high HDL pools C and D) were each

amplified by PCR using 1,222 long-range primer pairs in three

replicates. The 12 sets of PCR products were hybridised to

separate chips.

The fluorescence intensities of the reference and alternate

perfect-match features on an array were correlated with the

concentration of the corresponding SNP allele in the

DNA sample. Our estimates of allele frequency, p̂, were

computed from ratios of trimmed means of intensities of the

Table 1. Seventy candidate genes analysed in the association study.

ABCB6 ABCC3 ABHD1 ACACA ACACB ACAT1 ACAT2

ADAM28 ADAMTS4 AR ATP6V1E1 B3GALT2 BPI CACNG5

CEL CLN2 CRP CTSC EPHB6 ESR2 ESRRB

FPR1 G6PC GHSR GJA4 GLRA1 GPRC5B HAT

HDL-CBP HNF4A KCNJ9 LIPE LIPG LOC51275 MBTPS1

MBTPS2 MMP3 MTP NDRG1 NR0B2 NR1H2 NR1H3

NR1H4 NR1I3 NR2F1 PCOLCE2 PLA2G2A PLTP PON1

PON2 PPARA PPARD PTPRF PTPRH RORA RORB

RPS6KC1 SAA1 SAA2 SAA4 SCAP SCD SERPINE1

SPTLC1 SPTLC2 SSTR1 TCF1 TRHR TSHR UPS3
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perfect-match features after subtracting a measure of back-

ground computed from trimmed means of intensities of

mismatch features

p̂ ¼ ~IPM ;Re f 2 ~IMM

ð~IPM ;Re f 2 ~IMM Þþ ð~IPM ;Alt 2 ~IMM Þ
where:

~IMM ¼ 1
4
ð~IMM ;Re f ;Fwd þ ~IMM ;Re f ;Rev þ ~IMM ;Alt;Fwd þ ~IMM ;Alt;RevÞ

~IPM ;Re f ¼ 1
2
ð~IPM ;Re f ;Fwd þ ~IPM ;Re f ;RevÞ

~IPM ;Alt ¼ 1
2
ð~IPM ;Alt;Fwd þ ~IPM ;Alt;RevÞ

The ~I terms denote trimmed mean intensities for a set of

features denoted by the subscript. The trimmed means are

arithmetic means of the intensity measurements after discard-

ing the highest and lowest 25 per cent of values. In cases where

this did not yield an integer number of terms, one more term

was included and the smallest and the largest terms received

half weight. Each set of 20 features contributed five perfect-

match measurements for one allele, one perfect-match

measurement for the other allele at offset 0, and 14 mismatch

measurements. Thus, for example, there were six perfect-

match features for the reference allele on the forward strand,

and:

~IPM ;Re f ;Fwd ¼ 1
3

1
2
IPM ;Re f ;Fwd;2 þ IPM ;Re f ;Fwd;3

%
þ IPM ;Re f ;Fwd;4 þ 1

2
IPM ;Re f ;Fwd;5

&
where the numeric subscripts denote positions in the list of six

sorted intensities.

Two quality control metrics were used to assess the

reliability of the intensities for a SNP in an array scan. The first

metric, ‘conformance’, measured the presence of specific

target DNA for that SNP. The second metric, signal to

background ratio, measured the relative amounts of specific

and non-specific binding. Cut-offs were applied to both

metrics, and SNP feature sets that did not pass either metric

were discarded from further analysis.

Conformance was computed independently for both

reference and alternate allele feature sets, and a maximum

taken of the two values. The conformance for a particular

allele was defined as the fraction of feature sets for which the

perfect-match feature was brighter than all three mismatch

features. In the 80-feature SNP tiling, each allele had ten such

sets of four features. SNP measurements having conformance

,0.9 were discarded from further evaluations.

The signal to background ratio was calculated from inten-

sity measurements for both alleles, for the perfect-match versus

mismatch features, as:

signal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~I
2

PM ;Re f þ ~I
2

PM ;Alt

q
background ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~I
2

MM ;Re f þ ~I
2

MM ;Alt

q
The trimmed mean intensities for perfect-match and mis-

match feature sets were obtained as described above. SNP

measurements having signal/background ,1.5 were discarded

from further evaluations.

For each SNP, we obtained a total of 12 allele frequency

estimates, p̂; as three independent measurements for each of

the four DNA pools. Estimated allele frequency differences,

Dp̂; between low and high HDL groups were determined from

averages of the replicates for each pool:

Dp̂ ¼ 1
2
ð p̂A þ p̂BÞ2 1

2
ð p̂C þ p̂DÞ

Haplotype block fitting algorithm
In order to limit the number of SNPs requiring subsequent

genotyping in individual samples, we developed an analysis

method that used our independently derived haplotype

Figure 1. Genotyping single nucleotide polymorphisms (SNPs) using high-density oligonucleotide arrays. Each SNP is queried by

80 25-mer oligonucleotides synthesised on a glass substrate. The ten oligonucleotides shown are perfect-match probes for the

reference (R) and alternate (A) alleles at five offsets on the forward strand sequence relative to the SNP (22, 21, 0, þ 1, þ 2).

Not shown are additional mismatch probes where the middle positions of the probes shown are replaced by the three alternate

nucleotides, and an equivalent set of probes for the reverse strand.
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map information to refine estimates of SNP allele frequency

differences between pooled DNA samples in case-control

studies. The method exploits the fact that within a haplotype

block, most of the variation in SNP allele frequencies can be

accounted for by variation in the frequencies of a relatively

small set of common haplotype patterns — defined as patterns

present at a frequency of at least 10 per cent in the ethnically

diverse population used for SNP discovery. Within a block,

the sum of differences in these pattern frequencies between

two groups should be approximately 0, to the extent that those

patterns in the haplotype map accurately represent the total

genetic diversity of that interval (Figure 2).

The method uses linear regression to determine these

underlying haplotype pattern frequency differences, given a set

of estimated SNP allele frequency differences for a haplotype

block. Our method for haplotype map construction guaran-

tees that in every block, there are at least enough SNPs to

determine the frequencies of the common haplotype patterns.

Most SNPs are in blocks that contain additional redundant

SNPs, so if measurement errors are uncorrelated, regression

should yield estimates that are more accurate than the original

SNP measurements. From the fitted pattern differences, more

accurate estimates of the true allele frequency differences for

individual SNPs can then be determined.

Let Dp̂i be the estimated frequency difference of the

‘reference’ alleles for SNP i within a haplotype block, and

let Df j be the (unknown) frequency difference of common

haplotype pattern j [ 1. . .N : Our model proposes that:

Dp̂i ¼
XN
j¼1

mijDf j þ 1

where mij is a coefficient that takes a value of þ0.5 if the allele

at position i in pattern j matches the reference allele and 20.5

if it matches the alternate allele for that SNP. The reason for

the 0.5 factor is that the frequency difference for an allele

would otherwise be double counted when differences for the

complete set of patterns are evaluated. We further require that

the pattern frequency differences must sum to 0; this constraint

can be folded into the previous equation by eliminating Df N
and defining r ij ; mij 2 miN to obtain:

Dp̂i ¼
XN21

j¼1
r ijDf j þ 1

Solving these equations given Dp̂i and r ij is a linear regression

problem. Standard regression statistics (R 2 and the P value for

an F test) can be used to judge the quality of the fit of the SNP

data to the haplotype pattern information. Deviations from a

perfect fit can arise both from experimental errors and inac-

curacies in the haplotype model. In instances where the quality

of the fit to the haplotype map is good, the fitted allele fre-

quency differences should have lower variance than the raw

data for individual SNPs because they incorporate information

about the expected correlations between SNPs.

A similar method could be used to estimate haplotype

pattern frequencies in each pooled sample, with a constraint

that the frequencies of common patterns add up to 1. We

chose to work in the space of allele frequency differences for

several reasons. The frequency differences are the quantities

we are ultimately interested in, and it seemed most parsimo-

nious to evaluate a fit for these differences directly, rather

than performing separate fits on frequencies in each pool

Figure 2. Haplotype block-fitting analysis. Starting from estimated allele frequency differences for each individual single nucleotide

polymorphism (SNP) from pooled genotyping, we use linear regression to solve for frequency differences of the underlying common

haplotype patterns. In this example, we show a hypothetical haplotype block consisting of six SNPs and three common haplotypes.

Measured frequency differences are shown for the haplotype tagging alleles for each SNP, which are also indicated by boxes in the

haplotype patterns. In this example, we are estimating two free parameters from six SNP measurements, since the three pattern differ-

ences are constrained to sum to 0. Thus, these pattern differences should have lower variance than the individual SNP measurements.

From the pattern differences, we are able to estimate the true allele frequency differences for each SNP more accurately.
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and then combining these to obtain differences. Also, the

quality of a fit on absolute frequencies would be sensitive to

the presence of rare haplotypes not included in the model,

even under the null hypothesis of no pool differences. Our

constraint on frequency differences summing to 0 only implies

that the proportion of rare haplotypes in case and control pools

is similar. Finally, due to experimental differences in SNP

hybridisation characteristics, we have more confidence in our

ability to detect pool differences than to obtain unbiased

estimates of absolute allele frequencies.

Determination of individual genotypes
For individual genotyping by high-density oligonucleotide

arrays, samples were amplified by short-range multiplex PCR,

labelled, hybridised to the arrays, stained and detected as

described.18

The individual genotypes for an SNP were determined by

clustering measurements from multiple scans in the two-

dimensional space defined by reference and alternate perfect-

match trimmed mean intensities. Trimmed mean intensities

were computed as described above. We used a K-means

algorithm to assign p̂ measurements to clusters representing

distinct diploid genotypes. Instead of estimating the back-

ground intensity term ~IMM from a single scan, we determined

an optimal value for each SNP that minimised the variance in

p̂ within the assigned genotype clusters. The K-means and

background optimisation steps were iterated until cluster

membership and background estimates converged. To deter-

mine the appropriate number of genotype clusters, we repeated

the analysis for one, two and three clusters and selected the

most likely solution, considering likelihoods of the data and the

cluster parameters. The data likelihood was determined using a

normal mixture model for the distribution of p̂ around the

cluster means. The model likelihood was calculated using a

prior distribution of expected cluster positions (ie homozygous

reference allele near p̂ ¼ 1:0; heterozygote near p̂ ¼ 0:5 and

homozygous alternate allele near p̂ ¼ 0:0).
For individual genotyping by template-directed dye-

terminator incorporation with fluorescence-polarisation

detection (FP-TDI),19 samples were amplified by PCR,

primer extension was performed using AcycloPrime FP SNP

detection kit (Perkin Elmer Life Sciences) and changes in

fluorescence polarisation were measured using Analyst HT

(LJL Biosystems) as described.16

Results

Population stratification analysis
In an association study, systematic differences in ancestry

between case and control groups can produce large numbers of

statistically significant but spurious associations.20,21 We

examined the 348 individuals with low HDL levels and the

329 individuals with high HDL levels in the study population

to ensure that they were adequately matched prior to con-

structing DNA pools. We individually genotyped the samples

for 300 SNPs that are genetically unlinked and uniformly

spaced across the genome, as described previously.18

In x2 tests for association with the HDL cholesterol

phenotype, we observed a small excess of moderate p values.

For 280 SNPs giving high-quality genotype data, 43 had

p , 0:1 versus 28 expected. A sensitive global test for popu-

lation structure based on the sum of x2 statistics22 was

significant ðp , 0:001Þ; however, a permutation analysis of the

genotype data indicated that the expected increase in variance

of allele frequency measurements due to stratification of this

magnitude was less than 1 per cent. We also analysed the

genotype data for population structure using the structure

program.23 The structure program uses a model-based cluster-

ing method for identifying subpopulations such that, within a

cluster, all markers are in Hardy–Weinberg and linkage

equilibrium. This analysis did not show convincing evidence

for more than one subpopulation. In runs with between two

and five assumed clusters, most samples were assigned similar

admixture proportions in each predicted subpopulation; for

two clusters, 75 per cent of samples were given admixture

proportions between 0.4 and 0.6. Based on these results, and

the limited accuracy of pooled genotyping assays, we judged

that the low and high HDL cholesterol groups were ade-

quately matched.

Pooled genotyping results
For each SNP, we estimated an allele frequency difference, Dp̂,
between the low HDL cholesterol and high HDL cholesterol

pools. We then excluded a small proportion of the pooled

data due to spurious experimental errors, such as saturated

features or inconsistent hybridisation patterns. We also

excluded SNPs where all three measurements for any one of

the four pools failed and SNPs where the standard error of

Dp̂ exceeded 0.025. Of the 7,283 SNPs tiled on the array,

6,611 (91 per cent) passed all of these data quality filters.

Haplotype block fitting analysis
Of the 6,611 SNPs for which we obtained good pooled

genotyping data, 4,387 SNPs were included in the haplotype

map. Table 2 shows the results of the haplotype block fitting

analysis for these SNPs; the results for all blocks, the subset of

blocks that are informative (those that contain redundant SNP

information) and the subset of these that had p , 0:05 in an F

test for agreement of the Dp̂ with the haplotype model for that

block are shown. Good fits should only be possible for blocks

that have real allele frequency differences between the low and

high HDL cholesterol pools, either due to sampling variation

or association with the phenotype. Thus, we would expect

most blocks to have poor p values, due to a lack of significant

allele frequency differences. In fact, more than 40 per cent of

the 4,387 SNPs are in blocks with good agreement between
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Dp̂ and the haplotype model, and these tend to be the larger

blocks. Uninformative blocks often contain just one or two

SNPs and while they represent a large fraction of all blocks,

they represent a much smaller proportion of SNPs and base

pairs covered. Here, informative blocks represented 53 per

cent of all blocks, but included 86 per cent of SNPs in the

haplotype map and about 75 per cent of the DNA sequence.

Analysis of variance allows us to determine how much of

the variation in SNP allele frequencies observed between the

DNA pools is consistent with the haplotype map and how

much is residual variation due to experimental errors in the Dp̂
measurements, the contribution of rare patterns not rep-

resented in the haplotype map and errors in the haplotype

map. We can measure the effectiveness of the algorithm by the

extent to which the fraction of variance explained by the fitted

haplotype patterns exceeds the fraction of degrees of freedom

used in the fits. In this analysis (Table 2), we found that about

77 per cent of all the variance in the data was consistent with

the model based on common haplotypes. Based on the

number of free parameters in the haplotype model, we would

have expected only 42 per cent of the variance to be

accounted for by chance. We repeated this analysis after per-

muting the individual Dp̂ measurements. Here, the haplotype

map explained only 43 per cent of the variance and only

5 per cent of SNPs were in blocks having p , 0:05 in an F test.

This analysis shows that the agreement between the haplotype

model and the original Dp̂ data could not arise by chance.

Selection of SNPs for individual genotyping
Selecting the SNP markers that are the most likely to have

large allele frequency differences based on the pooled array

data is difficult. The set of SNPs having the largest absolute Dp̂

is dominated by a subset of measurements with very high

experimental variance. A t-test is also inadequate, because it

favours SNPs with low experimental variance, even if the Dp̂ is
too small to be of biological interest and is probably due to

sampling variation. The experimental variance is poorly

determined from the limited number of data points available.

Due to differences in SNP calibration in our genotyping assay,

our ability to estimate absolute allele frequencies, and hence

sampling variance, is similarly limited. Based on data from

experiments with pools of known composition, we found that

the strategy of excluding data for SNPs with very high stan-

dard errors, and then selecting SNPs with the largest Dp̂,
performed as well or better than tests based on variance esti-

mates for each SNP (data not shown).

A total of 312 SNP markers were chosen for individual

genotyping based on the capacity of a small high-density

oligonucleotide array. Based on the pooled allele frequency

data, we selected 284 SNPs expected to have large allele fre-

quency differences. Half of the 284 SNPs were chosen to be

‘haplotype conforming’ — belonging to informative haplo-

type blocks that had good fits with p , 0:05 — while the

other half were chosen to be ‘non-conforming’ SNPs selected

from the remainder based only on pooled estimates of Dp̂. We

ranked 1,934 conforming SNPs by the smaller of their actual

and fitted Dp̂ values, and selected the top 142 SNPs yielding a

cut-off of jDp̂j . 0:037: For 4,677 non-conforming SNPs,

ranking by absolute Dp̂ and selecting the top 142 yielded a cut-

off of jDp̂j . 0:048: We selected a higher proportion of

conforming SNPs for individual genotyping because their

consistency with the haplotype map provided additional

evidence for allele frequency differences at those positions.

We did include non-conforming SNPs, however, so as not to

overlook signals that were not in blocks, or for which the fit to

Table 2. Haplotype block-fitting results and analysis of variance.

All blocks Informativea p < 0.05b

Haplotype blocks 955 507 172

SNPs passing quality filters 4387 3758 1934

SNPs contributing to fits 4171 3578 1833

Fitted degrees of freedom 1736 1143 442

Residual degrees of freedom 2435 2435 1391

% degrees of freedom used 42% 32% 24%

Total sum of squares 2.241 1.947 1.258

Fitted sum of squares 1.725 1.431 1.002

Residual sum of squares 0.516 0.516 0.256

% variance explained 77% 73% 80%
aBlocks having redundant information, ie at least as many SNP measurements as common haplotype patterns.
b Informative blocks for which an F test on the fit of the SNP data to the haplotype structure had p , 0.05.
SNPs, single nucleotide polymorphisms.
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the haplotype map was poor for other reasons. An additional

28 SNPs that did not meet these criteria were selected because

they were either in candidate loci of interest or had been

independently genotyped in the same population using flu-

orescence polarisation. They were used to assess the accuracy

of our high-density array-based individual genotyping.

Individual genotyping data quality analysis
A total of 832 DNA samples in the study and replicate

populations were individually genotyped for the 312 selected

SNPS. Three quality-control filters were applied to the indi-

vidual genotype data. We first required that SNPs have an

unambiguous genotype call in at least 80 per cent of the 832

DNA samples assayed. Secondly, we required that both SNP

alleles be segregating in the population (ie have at least two

identifiable genotype clusters). Finally, we required that the

SNP alleles be in Hardy–Weinberg equilibrium ðp . 0:001Þ:
We found that large deviations from Hardy–Weinberg equi-

librium were generally associated with systematic hybridisation

artefacts. Of the 312 SNPs, 284 (91 per cent) passed all three

data quality filters.

To estimate the quality of the individual genotypes called

using the high-density oligonucleotide array platform, we

compared our genotype calls with those obtained using FP-

TDI for 19 SNPs in three gene regions (CETP, endothelial

lipase [LIPG] and liver receptor alpha [LXRa]). The call rate

(the fraction of assigned genotypes out of potential genotypes)

for the array platform is above 98 per cent, very similar to that

generated using FP-TDI using the same DNA samples (sup-

plementary Table 3). Of the genotypes called by both

methods, the concordance (the fraction of SNPs assigned

genotypes by both methods that were in agreement) between

the oligonucleotide array and FP-TDI methodologies is

greater than 99 per cent.

Evaluation of the pooled genotyping screen
To evaluate the effectiveness of the pooled genotyping step for

estimating allele frequency differences between the case and

control DNA pools, we examined the relationship between

pooled allele frequency estimates and allele frequencies

determined by individual genotyping. For each of the 284

SNPs selected from the pooled data, we have allele frequency

estimates for four pooled samples and corresponding individ-

ual genotype data for all the samples used to compose the

pools. While the numbers of data points and ranges of allele

frequencies for each SNP are small, we can still use these data

to examine the relationship between a pooled p̂ and an allele

frequency p determined by individual genotyping. This

relationship for an individual SNP is very nearly linear;

however, there is substantial variation in slope and intercept

between SNPs (Figure 3). A regression of the p̂, averaged over

the four HDL pools against an allele frequency p, determined

Figure 3. Relationship between pooled allele frequency estimates and allele frequencies determined by individual genotyping. The

frequency estimates from pooled genotyping, p̂, are linearly related to allele frequencies, p, determined by individual genotyping.

(A) Across all SNPs that were individually genotyped, variation in slope and intercept partially obscures the strength of this relation-

ship. Here, we show p̂ plotted against p averaged over the four high-density lipoprotein pools for 284 SNPs. (B) For each SNP, we

have independent measurements of p and p̂ in four pools. We show representative data for four SNPs having (due to sampling variation

or association) relatively large separation between the four values of p.
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by individual genotyping for all 284 SNPs, has an R2 of 0.71.

When we examined the independent measurements of p and

p̂ in the four pools for the 284 individual SNPs, the median

R 2 ¼ 0:85: In principle, we could calibrate assays for each

SNP using samples of known allele frequency; however, this

becomes impractical when many thousands of assays are ana-

lysed. Some variation in sensitivity can be tolerated because

the pooled data are only used as a screen for selecting SNP

candidates for individual genotyping.

To evaluate the sensitivity of SNP selection from pooled

genotyping, we used x2 tests to measure allelic association of

each SNP with the HDL cholesterol phenotype. To the extent

that pooled allele frequency differences are predictive,we should

see an excess of small p values in tests for the 284 SNPs selected

based on the pooled results.Given tests ofN SNPs at a threshold

of p , X ; we expect ðN £ XÞ SNPs to meet that threshold due

to sampling variation in allele frequencies between the pools.

In fact, we see far more small p values than would be expected

based on 284 tests (Table 3). From the entire 6,611 SNPs we

used to choose the 284 for individual genotyping, we would

expect 6,611 £ 0.01 ¼ 66 to have p , 0:01; and
6,611 £ 0.04 ¼ 284 to have p , 0:04:A perfect SNP selection

procedurewould have captured all of these. In fact,we captured

32 per cent of the expected total number of SNPs at the

p , 0:04 level, and 62 per cent of the expected number at the

p , 0:01 level. Thus, the pooled assay has sufficient sensitivity

to capture a substantial fraction of SNPs having evenverymodest

allele frequency differences at the level of sampling variation.

Sensitivity for larger allele frequency differences indicative of

causal associations should be correspondingly higher.

To assess the effectiveness of the haplotype fitting pro-

cedure, we looked at the numbers of ‘haplotype conforming’

and ‘non-conforming’ SNPs having small x2 test p values in

individual genotyping (Table 3). Of SNPs having p , 0:04;
about 65 per cent came from the ‘haplotype conforming’

category, and this excess was quite significant ðp < 0:001Þ: The
same trend was seen among SNPs having p , 0:01; however,
the numbers of observations were insufficient to reach sta-

tistical significance. Thus, SNPs selected based on corrobo-

rating haplotype data indeed seem to be more likely to show

larger allele frequency differences in individual genotyping.

To further examine the impact of using haplotype block

information to improve estimates of SNP allele frequency

differences between pooled DNA samples in case-control

studies, we compared the correspondence of estimates of Dp̂ to
actual allele frequency differences determined by individual

genotyping (Figure 4). While the correspondence of pooled

estimates of Dp̂ to actual allele frequency differences was good

ðr2 ¼ 0:82Þ; the correspondence of the haplotype-fitted esti-

mates of Dp̂ to actual allele frequency differences was sub-

stantially better ðr2 ¼ 0:90Þ: These results demonstrate that the

accuracy of estimating SNP allele frequency differences in

pooled genotyping is improved using haplotype block

information.

SNP associations with HDL levels in
the study population
Our two-stage experimental design posed a tricky multiple

testing problem. While we performed tests on just 312 indi-

vidually genotyped SNPs, these were selected as likely to have

large allele frequency differences from a total of 6,611 SNPs

with good pooled genotyping data quality. If our pooled assay

was perfect, then we were effectively testing all 6,611 SNPs; if

the pooled estimates were uncorrelated with allele frequencies,

then we are really only testing the 312 SNPs selected for

individual genotyping. Based on our capture rates for SNPs

with small p values, we consider that the effective number of

tests we were performing was a substantial fraction of 6,611.

Using a conservative Bonferroni correction, a global false-

positive rate of 0.05 for 6,611 SNPs tested would require

p , 7:6 £ 1026 for an association to be significant. Consi-

dering only the study cohort used for pooled genotyping,

there were six SNPs, all in the CETP gene, that met this

threshold of significance (Table 4). Of these six SNPs, four

(rs711752, rs708272, rs11508026, rs7205804) had been

selected based on positive results in the pooled genotyping

screen and two (rs1800775, rs11076175) had been included to

test cross-technology concordance of genotype calling. The

four SNPs that had been assayed in the pooled screen were all

in the same haplotype block (Figure 5), which had a fitted

p value of ,0.002 in our haplotype analysis of the pooled data,

and the largest fitted Dp̂ values observed in the study. The

Table 3. Distribution of x2 test scores in SNPs selected for individual genotyping.

All SNPs Conforminga Non-conformingb

Selected SNPs 284 142 142

Number meeting quality criteria 263 135 128

p , 0:04c 90 59 31

p , 0:01c 41 24 17
a SNPs selected based on corroborating evidence from the haplotype-fitting procedure.
b SNPs selected based on a large Dp̂ but without supporting haplotype information.
c SNPs meeting this threshold in a x2 test of allelic association with the HDL phenotype.
SNPs, single nucleotide polymorphisms.
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next best SNP in the data for the study cohort outside the

CETP gene had a x2 test p value of 0.0015, which would not

be significant, even using a generous threshold based on

312 independent tests.

SNP associations in the replicate population
To replicate an association in the study cohort, we only need

to consider tests in the replicate samples for the subset of SNPs

that gave significant x2 scores in that analysis. In the replicate

population, there are only five SNPs with good data quality

having p , 0:01; and all are in CETP (Table 5). For the six

SNPs in CETP that showed significance association in the

study samples, a conservative Bonferroni correction for a

global false-positive level of 0.05 would require p , 8:3 £ 1023

to count as a replication. Of these six SNPs, four (rs711752,

rs708272, rs11508026, rs7205804) were also associated at this

significance level in the replicate population. Two SNPs

(rs1800775, rs11076175) that had small p values in the study

population did not meet significance levels in the replicate

DNA samples. These differences were not unexpected, given

the limited sample size of the replicate cohort and incomplete

linkage disequilibrium of the SNPs in this interval.

Figure 4. Correspondence between estimated pooled allele frequency differences and actual differences determined by individual

genotyping. For this analysis, we included data for single nucleotide polymorphisms (SNPs) having call rates of at least 90 per cent.

(A) The correlation between estimated and actual allele frequency differences for 267 SNPs is 0.82. (B) For 164 SNPs in haplotype

blocks with fitted p , 0:05; the correlation between allele frequency difference and the estimate based on the haplotype-fitting

procedure is 0.90. In the upper right corner of each plot are five SNPs in the genomic interval encoding CETP.

Table 4. SNPs having significant association with HDL cholesterol in the study population.

Chromosome Positiona dbSNP refL
b altL refH altH Dpc x2 p value

16 56729856 rs1800775 392 196 288 322 0.193 46.2 1.1 £ 10211

16 56730908 rs708272 446 234 318 320 0.151 33.5 7.2 £ 1029

16 56730831 rs711752 451 239 314 312 0.165 31.2 2.4 £ 1028

16 56733948 rs11508026 441 227 303 289 0.167 28.6 9.1 £ 1028

16 56739509 rs7205804 436 244 312 318 0.146 28.4 9.7 £ 1028

16 56740998 rs11076175 535 155 563 73 20.101 28.1 1.2 £ 1027

a Position on GenBank sequence NC_000016.4.
bCounts of reference and alternate alleles for low and high HDL cholesterol groups.
cAllele frequency difference, calculated as refL=ðrefL þ altLÞ2 refH=ðrefH þ altHÞ:
dbSNPs single nucleotide polymorphism database; HDL, high-density lipoprotein.
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Linkage disequilibrium across the CETP locus
Previous studies have identified two major blocks of linkage

disequilibrium across the CETP locus.4,17,24 Of the 14 SNP

markers in CETP that we examined for association with HDL

cholesterol levels (supplementary Table 4), nine are members

of our whole-genome haplotype map (Figure 5). Consistent

with these other studies, in our map, these nine SNPs are

divided into two haplotype blocks, each having three common

haplotype patterns. We computed D0 for all pairs of the 14

SNPs in CETP, using an expectation maximisation (EM)

algorithm to determine haplotype frequencies.25,26 These

results, again, show two blocks of very strong disequilibrium.

Discussion

The goal of this study was to determine the effectiveness of a

large-scale pooled genotyping screen to identify common

variants associated with a complex trait. CETP, which transfers

cholesteryl esters from the anti-atherogenic HDL to the pro-

atherogenic very-low- and low-density lipoprotein fractions,

plays an important role in HDL cholesterol metabolism and

served as our positive control. Correlations between SNPs in

the genomic interval encoding CETP and variations in the

mass/activity of the CETP protein and corresponding HDL

levels have been intensively studied10,16,27 and consistently

Figure 5. Single nucleotide polymorphisms (SNPs) and haplotype structure in the Cholesteryl ester transfer protein (CETP) gene.

(A) The CETP transcript (GenBank accession NM_000078) is roughly 22 kilobases and contains 16 exons. We obtained good quality

genotype data for 14 SNPs in this region. Of these, nine were common SNPs that were included in our haplotype map. In the map,

these were assigned to two haplotype blocks, each having three common haplotype patterns. The 50 block includes the Taq1B SNP,

rs708272.28,29 (B) We measured linkage disequilibrium, D 0, for all pairs of SNPs in this interval, using an expectation maximisation (EM)

algorithm to determine haplotypes. These data also show two strong blocks of high disequilibrium.
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shown to be associated. CETP is estimated to account for

,5 per cent of the variability of HDL levels in the general

population.17 Here, four SNPs in CETP had strong signals and

were independently identified as being associated with HDL

levels in the pooled screen. The fact that we identified CETP

in this study as being associated with HDL levels confirms that

pooled genotyping can be used in genetic association studies

to identify genes underlying complex phenotypes.

While we find CETP to be replicable and convincingly

associated with HDL cholesterol serum levels, none of the 70

candidate genes or 230 other genes in the 17.1Mb of DNA

screened appear to play amajor role in the genetic variability of

HDL cholesterol levels in this population. Based on the strong

association of CETP with HDL observed in our study, we are

likely to have had sufficient power to identify similar effect

sizes in the other candidate genes. Recent work suggests that

there are likely to be several additional genes that contribute to

HDL phenotypic variance and are as yet unidentified.17 We

examined SNPs distributed across only about 0.5 per cent of

the genome, and thus it is likely that these unidentified genes

are located in genomic intervals that we did not examine.

In our candidate region study, we used a design incorpor-

ating stratification analysis, pooled genotyping, confirmation

of promising candidate loci by individual genotyping and

replication in an independent cohort. We have demonstrated

that independently derived haplotype map information can be

used to improve SNP selection from a pooled genotyping

screen. High-density oligonucleotide arrays permit the scale

and efficiency required for very large-scale association studies.

These experimental methods and analysis strategies can be

directly scaled up to whole-genome association studies.
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