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Hepatocellular carcinoma (HCC) is a complex and heterogeneous tumor with multiple genetic aberrations. Several
molecular pathways involved in the regulation of proliferation and cell death are implicated in the
hepatocarcinogenesis. The major etiological factors for HCC are both hepatitis B virus (HBV) and hepatitis C virus

Continuous oxidative stress, which results from the generation of reactive oxygen species (ROS) by environmental
factors or cellular mitochondrial dysfunction, has recently been associated with hepatocarcinogenesis. On the other
hand, a distinctive pathological hallmark of HCC is a dramatic down-regulation of oxido-reductive enzymes that
constitute the most important free radical scavenger systems represented by catalase, superoxide dismutase and

The multikinase inhibitor sorafenib represents the most promising target agent that has undergone extensive
investigation up to phase Il clinical trials in patients with advanced HCC. The combination with other target-based
agents could potentiate the clinical benefits obtained by sorafenib alone. In fact, a phase Il multicenter study has
demonstrated that the combination between sorafenib and octreotide LAR (So.LAR protocol) was active and well

The detection of molecular factors predictive of response to anti-cancer agents such as sorafenib and the
identification of mechanisms of resistance to anti-cancer agents may probably represent the direction to improve

Introduction
Hepatocellular carcinoma (HCC) is the most common
type of primary liver cancer representing the 85% of
liver cancers. Other types of liver cancer include cholan-
giocarcinoma, which starts in the cells that line the bile
duct, angiosarcoma (or haemangiosarcoma), which starts
in the blood vessels of the liver, and hepatoblastoma
which is very rare and usually affects young children.
HCC accounts for up to 75% to 85% of primary liver
cancer in the United States (U.S.) [1] and for over 90%
in high-risk areas. It predominantly affect people in
developing countries, such as sub-Saharan Africa, China,
Taiwan, Korea, or Vietnam [2,3].
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The incidence has been increasing in recent years in
the Mediterranean countries, including Italy, where the
incidence and mortality rates are at a median frequency
compared to other populations, and it represents the
seventh cause of death for tumor, with about 5,000
deaths per year [4-6].

Liver cirrhosis is present in about 90% of HCC [7]
mainly caused by chronic infection by hepatitis B (HBV)
and C (HCV) [2,8-12] and/or alcohol
assumption.

Race, heavy alcohol use, cigarette smoking, obesity,
and mellitus diabetes have also been associated with an
increased risk of developing HCC. HCC is now more
often associated with HCV, particularly in developed
countries. On the other hand, HCC is now decreasing in
HBV endemic countries due to the implementation of

viruses
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vaccination programs while it is increasing in cohorts
who have been infected with chronic HCV [13-22].

1. Hepatocarcinogenesis

The molecular mechanism of hepatocarcinogenesis is
very intricated. Cancer cells have defects in regulatory
genes that govern normal cell proliferation and homeos-
tasis due to a progressive accumulation of mutations.
The alterations in cell physiology that collectively dictate
malignant growth are: i) self-sufficiency in growth sig-
nals (activation of oncogenes); ii) insensitivity to
growth-inhibitory signals (inactivation of anti-oncogenes
or tumor suppressor genes); iii) escape from apoptosis;
iv) limitless replicative potential; v) neo-angiogenesis
and tissue invasion and metastases [23].

In fact, hepatocarcinogenesis is considered a multistep
process involving subsequent mutations of genes that
control proliferation and/or apoptosis in the hepatocytes
subjected to continuous inflammatory and regenerative
stimuli, starting from the initial phases of chronic hepa-
titis and then of liver cirrhosis.

HCC is associated with, and preceded by, a number of
morphologically distinct lesions. The latter are collectively
described as ‘preneoplastic lesions’, and include dysplastic
foci and dysplastic nodules. Hepatic nodules in patients
with chronic liver diseases are subdivided into regenerative
nodules (mono acinus and multi acinus), low-grade dys-
plastic nodules, high-grade dysplastic nodules, well-differ-
entiated HCC, moderately-differentiated HCC, and
poorly-differentiated HCC, in an ascending order of histo-
logic grades, representing a sequence of multistep hepato-
carcinogenesis. Accumulation of genetic alterations in the
preneoplastic lesions is believed to lead to the develop-
ment of HCC. Genomic alterations occur randomly, and
they accumulate in dysplastic hepatocytes and HCC.
Although genetic changes may occur independently of
etiologic conditions, some molecular mechanisms have
been more frequently related to a specific etiology [24-26].

Under normal physiological conditions, hepatocyte turn-
over is very low with a half-life estimated at 6 months.
However, adult liver cells retain the remarkable capacity to
proliferate in response to injury or to the loss of liver
mass. Progenitor cells (also referred to as oval cells) do not
play a major role in this growth response but, the same
‘resting’ differentiated hepatocytes re-enter the cell cycle
and replicate once or twice during the period of mass
restoration before returning to a state of quiescence. In
about 40% of HCC, progenitor cells express peculiar bio-
markers (CK-7, CK-19, CD34) associated with a poor
prognosis and with disease recurrence [27].

1.1 Role of HBV and HCV viruses
HBV and HCV viruses can be implicated in the develop-
ment of HCC in an indirect way, through induction of
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chronic inflammation, or directly by means of viral pro-
teins or, in the case of HBV, by creation of mutations
by integration into the genome of the hepatocyte.

On HCV-infected patients the development of HCC
requires about 10 years from the diagnosis of cirrhosis
and about 30 years from exposure to HCV [28]. Conver-
sely, the time course of HBV-related carcinogenesis is
less predictable since HCC may precede the occurrence
of cirrhosis, particularly with chronic HBV infection in
endemic areas [29]

During the ‘preneoplastic’ phase (chronic hepatitis and
cirrhosis), genetic alterations are almost entirely ‘quanti-
tative’, occurring by epigenetic mechanisms without
changes in the structure of genes. In this phase, hepato-
cytes undergo an intense mitogenic stimulation due to
exposure to elevated levels of growth factors, such as
insulin-like growth factor (insulin-like growth factor-2,
IGF-2), transforming growth factor-a (TGF-a), interleu-
kin 6 as well as inflammatory cytokines, which may lead
to activation of the major signaling pathways involved in
cell proliferation and angiogenesis. The enhanced
expression of growth factors and cytokines is driven by
inflammation, the action of viral proteins and regenera-
tive response to cell loss. The mechanisms whereby
these factors affect gene expression include DNA muta-
tions with consequent activation or inactivation of gene
promoters [26].

Development of human HCC by viral (HBV and HCV)
factors is resumed in Figure 1.

HBYV virus

HBYV belongs to a family of closely related DNA viruses,
called Hepadnaviridae [30]. It specifies a small number
of known gene products, including a reverse transcrip-
tase/DNA polymerase (pol), capsid protein (core), envel-
ope (env) proteins (L, M and S) as well as proteins of
uncertain function such as X’ and ‘e’. It is classified as
para-retrovirus because its replication depends upon
reverse transcription of genome-length RNA.
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Figure 1 Key steps in the development of HCC caused by HBV/
HCV infection.
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The molecular etiology of HBV-induced HCC remains
for the most part unclear. However, the viral protein X
(HBx) derived by HBV, can directly stimulate the intra-
cellular kinase cascades involved in the regulation of cell
proliferation [26,31]. In some HBV-induced HCCs, HBx
can inactivate the cellular antioncogene product, p53,
which is frequently disabled in HCC [32].

Usually, HBx functions as a transcriptional transactiva-
tor of different host genes involved in cellular growth
control. HBx transactivates cellular genes involved in
cell proliferation control (c-jun, c-fos, c-myc) and
growth factor receptors, such as EGF-R, involved in the
regulation of cell proliferation and transformation [33].
This transactivation activity appears to involve stimula-
tion of different transcription factors such as CREB
(cAMP Responsive Element Binding protein), NFkB
(Nuclear Factor kB), AP1 (Activating Protein 1) and NF-
AT (Nuclear Factor of Activated T Cells) [34,35].

HBV can transform hepatocytes even in the absence of
chronic inflammation and cirrhosis, while the role and sig-
nificance of the inflammation is more important in the
development of HCV-associated HCCs. On the other
hand, many transcription- and signalling-related genes
were upregulated in HBV-HCCs without cirrhosis. The
IGF signal pathway seems to play a central role in HBV-
HCC:s, especially when developing from a noncirrhotic
liver. A higher number of genes were differently expressed
between HBV-HCCs associated or not with cirrhosis.

HBYV replication appears to involve heat shock pro-
teins [36] and viral envelope gene transcription may be
actually upregulated by endoplasmic reticulum (ER
stress) which interrupts protein folding causing accumu-
lation of unfolded or misfolded proteins in ER leading
to a cell response that involves mutagenic reactions
[37]. Hepatitis B virus X protein (HBx) activates ATF6
and IRE1-XBP1 pathways of unfolded protein response
[38].

HCV virus

Hepatitis C virus is a member of the Flaviviridae family
of enveloped, positive-strand RNA viruses [39]. Similar
to HBV, HCV utilizes the ER as the primary site of
genomic replication and virion assembly [40,41]. Upon
entry and uncoating, the RNA viral genome is translated
by ER bound ribosomes into a polyprotein that is
cleaved by cellular and viral proteases to generate 10
mature viral gene products, including the core protein
that forms the viral capsid, NS3, which has the protease
and helicase activity, NS5A, and the viral RNA polymer-
ase NS5B. In addition to the proteins derived from the
polyprotein coding sequence, the HCV RNA codes for
another protein termed the F protein or the alternative
reading frame protein (ARFP) using an open reading
frame that overlaps with the core protein coding
sequence [42,43].
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The HCV capside core is a multifunctional protein
with regulatory functions that affects transcription and
cell growth in vitro and in vivo [44].

The HCV core binds to the p53, p73 and pRb tumor
suppressor proteins [45-48], but the functional conse-
quences of these interactions have not fully been eluci-
dated. Hepatitis C virus core protein also modulates the
expression of the cyclin-dependent kinase (CDK) inhibi-
tor p21/Waf [49]. Hepatitis C virus core protein is pro-
duced as an innate form (amino acids 1-191) that is
then processed to produce a mature form (amino acids
1-173). The innate core protein in the cytoplasm
increases the amount of p21WAF1 by activating p53,
and the mature core protein in the nucleus decreases
the amount of p21WAF1 by a p53-independent pathway
[50,51].

The ability of HCV core proteins to directly activate
the MAP kinase cascade and to prolong its activity in
response to mitogenic stimuli may contribute to the
neoplastic transformation of HCV infected liver cells
[44]. Recently, it was demonstrated that HCV-infection
causes ER-stress, Ca2+ homeostasis deregulation and
reactive oxygen species (ROS) production by mitochon-
dria that would lead to apoptosis [52-55].

The pathological alterations caused by HCV are simi-
lar to the HBV-related disease; acute and chronic hepa-
titis, cirrhosis and HCC. HCV is not considered as a
directly cytotoxic virus; hepatitis occurs as a result of
the reaction of the host immune system against the
virus infected cells.

Low number of genes were expressed differently
between HCV-HCCs associated with and without
cirrhosis.

The most effective tool to prevent HCC is avoidance
of the risk factors such as viral infection. An effective
vaccine has been available for prevention of new infec-
tion with HBV; however, no vaccine exists against HCV
infection.

2. Molecular biomarkers of HCC pathogenesis

The carcinogenesis and progression of HCC is a com-
plex multistep process that involves multiple genetic
aberrations. The molecular mechanisms involved in
development and progression of HCC are still largely
unknown. On the other hand, different molecular mar-
kers have been considered as prognostic factors for
HCC. To deepen the molecular mechanisms underlying
HCC carcinogenesis and progression is important for
improving prognosis and treatment strategies.

Several molecular pathways involved in the regulation
of proliferation and cell death are implicated in the
hepatocarcinogenesis (Figure 2). In fact, experimental
studies have shown structural genomic changes in very
early stages of hepatocarcinogenesis. Genomic
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Figure 2 Cellular signaling pathways implicated in HCC.
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instability, rearrangements and transactivation of Ras
and B-catenin signaling are induced by the integration
of HBV into hepatocyte genome [26,56]. HCV core pro-
tein also upregulates TGF-o. and IGF-2 [57-60].

The most common genetic alterations in HCC can be
grouped into 3 main routes: i) p53- ii) Wnt- and iii)
RB1-dependent pathways [61]

The binding of Wnt proteins to specific Frizzled recep-
tors on the surface of target cells activates distinct intra-
cellular pathways. This results in the accumulation and
nuclear localization of the B-catenin protein characteris-
tic of canonical Wnt pathway activation that targets spe-
cific genes including cyclin D1, ¢c-Myc, and survivin,
which are critical for cancer development [62,63]. In fact,
a transgenic mice model suggested that high expression
of Wnt-1 could be the major cause for nuclear accumula-
tion of B-catenin, which subsequently contributes to c-
myc/E2F1-driven hepatocarcinogenesis [64]. Clinical stu-
dies have reported that abnormal activation of Wnt/p-
catenin pathway is frequently involved in hepatocarcino-
genesis. About 33-67% of HCC tissues show accumula-
tion of B-catenin in the cytoplasm and nucleus, whereas
no accumulation was observed in the corresponding nor-
mal tissues [65,66]. In addition, upregulation of upstream
elements such as Frizzled receptors was reported to be
involved in HCC development and progression [67,68].
The activation of Wnt/B-catenin signaling was abolished
by a knockdown of Frizzled-7 receptor expression by
siRNA. More important, a specific Wnt3-Frizzled-7
receptor interaction was observed by co-immunoprecipi-
tation experiments, which suggest that the action of
Wnt3 was mediated via Frizzled-7 receptor [69].
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In HCC, proteomics results suggested that enhanced
Wnt-1 expression associated with NF-kB might be an
important mechanism underlying hepatocarcinogenesis
[70].

MAPK cascade transduces signals from tyrosine kinase
receptors, such as EGFR, IGFR, Platelet-derived growth
factor receptor (PDGFR), Hepatocyte growth factor
receptor (HGF/MET), and Vascular endothelial growth
factor receptor (VEGFR). In this cascade, active Ras
(Ras-GTP) triggers the sequential activation of RAF-1,
MEK-1/2, and ERK-1/2. The activation/phosphorylation
of ERK1/2 allow to enter into the nucleus where trans-
activates numerous growth-related genes, including c-
JUN, ¢-FOS, ¢-MYC (involved in the proliferation and
survival mechanisms), vascular endothelial growth factor
(VEGF) and hypoxia-induced factor (HIF-1a) that regu-
lates angiogenesis, and HKII (Hexokinase II) [71-73].
The constitutive activation of ERK1/2 can determine an
increase of cell proliferation also in absence of growth
factor. This condition can lead to tumour progression.

Genes that are components of MAPK cascade, such as
Ras-GTP, c-RAF, c-FOS, and ¢-JUN, may be upregu-
lated in HCC induced in rodents [58,74]. 3-Hydroxy-3-
methylglutaryl-CoA reductase gene, encoding a key
enzyme for de novo synthesis of mevalonate, a precursor
of isoprenoid residues necessary for activation of Ras, is
upregulated in rat and human liver lesions [75].

Recent studies have shown high levels of active Ras,
accompanied by modest/no increase in active RAF-1
and pMEK-1/2, in HCC. This is compatible with the
strong induction of the inhibitors of phosphorylation/
activation of RAF-1 and MEK-1/2: disabled homolog 2
(Dab2), and RAF kinase inhibitory protein (RKIP),
respectively [73].

Up-regulation of principal mediators of the pathway,
H-ras and B-RAF, was detected in HCC confirming
their role in cancer. Different mechanisms account for
Ras signaling in HCC, including:

i) H-ras overexpression; ii) DNA copy number gains in
B-RAF genomic locus (chromosome 7q34); iii) epige-
netic mechanisms involving the methylation of tumor
suppressor genes RASSF1A and NORE1A [76].

The Ras-RAF-ERK-dependent pathway is implicated in
the molecular pathogenesis of HCC for three reasons: i)
Ras protein is activated in the 30% of cases of HCC
[77]; ii) the over-expression of Raf kinase is in the
majority of HCC [78]; iii) several upstream growth fac-
tors, such as EGF, VEGF, PDGF, TGFo, generally over-
expressed in HCC, can activate this pathway binding
proper tyrosin kinase receptors [79].

Recently developed technology, such as DNA microar-
rays and other molecular profiling techniques, has pro-
vided new insights into the molecular genetics of HCC
(80,12].
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HCC are classified in metabolic pathways, and the
most represented are the Aryl Hydrocarbon receptor
signalling (AHR), involved in the activation of the cyto-
solic aryl hydrocarbon receptor by structurally diverse
xenobiotic ligands (including dioxin, and polycyclic or
halogenated aromatic hydrocarbons) and mediating their
toxic and carcinogenic effects [81] and, protein Ubiquiti-
nation pathways, involved in cell-cycle regulation as well
as cell death/apoptosis [82] through modification of tar-
get proteins.

Moreover, molecular profiling has been successfully
used to identify candidate genes for HCC such as genes
correlated with tumour progression (pl6, SOCSI1,
PEG10), metastatization (NM23-H1, osteopontin, RhoC,
KAIl, MMP14) or recurrence (REL, A20, vimentin,
PDGEFRA) [83].

3. Involvement of Oxidative stress in HCC

Studies of mechanisms of oxidative stress have shown
that it activates signaling cascades (including MAPK
pathway), which can seriously influence regulation of
cell growth and transformation processes [84]. Particu-
larly, MAP kinases may be involved in pathogenesis of
some diseases associated with oxidative stress.

It is known that the oxidative stress status has a key
role in HCC development and progression.

The most important reactive oxygen species (ROS)
derived by molecular oxygen include free oxygen radi-
cals [e.g., superoxide (O,e-), hydroxyl radical (OH’),
nitric oxide (NO') radicals] as well as nonradical ROS [e.
g., hydrogen peroxide (H,O,), organic hydroperoxides,
and hypochloride].

A low level of ROS is indispensable in several physio-
logic processes of the cell including proliferation, apop-
tosis, cell cycle arrest, cell senescence, etc. [85].
However, an increased level of ROS causes oxidative
stress and creates a potentially toxic environment to the
cells. In normal physiologic condition, a balance
between ROS generation and oxidative defences exists
in a cell. A significant role is played by endogenous anti-
oxidant enzymes such as superoxide dismutase (SOD),
catalase (CAT) that act on O,e- and H,O,, respectively,
and glutathione peroxidase (Gpx1) that uses glutathione
as co-substrate. Despite the basal production of radicals
is hampered by the anti-oxidant defences, the generation
of ROS is amplified in response to various environmen-
tal perturbations.

This stressful condition is known to play a major role
in cancer development mainly by enhancing DNA
damage and by modifying some key cellular processes,
such as DNA damage caused primarily by hydroxyl radi-
cals [64], cell proliferation, apoptosis, and cell motility
cascades by superoxide radicals and hydrogen peroxides
playing an important role in cancer development.
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Although extensive or limited damage may trigger cell
death, many cells can tolerate and repair the occasional
hit from ROS. In the Fruehauf model [86], when the
balance tips further in favour of ROS, programmed cell
death becomes a near certainty.

Excessive ROS, which the cellular enzymes cannot
neutralize, alters the chemical environment within the
mitochondria; in fact, the pore protein that forms a
channel through the mitochondrial membranes becomes
jammed in the open position, allowing cytochrome ¢ to
escape into the cytoplasm thus triggering programmed
cell death.

The increase of ROS is associated with the increase of
the inducible mitochondrial manganese SOD (MnSOD)
expression. Elevated serum MnSOD levels have been
found in patients with HCC [87] and relatively high
values of the enzyme have also been observed in
patients with chronic hepatitis and liver cirrhosis.
Therefore, it could be hypothesized that during induc-
tion of the malignant process in cirrhotic liver, the
increase in MnSOD activity can already occur in the
precancerous phase.

In cancer biology, NO can be involved either in pro-
motion or in prevention of tumour occurrence depen-
dently from tumour microenvironment, NO
concentration and time of exposure [88]. NO is a pro-
duct of endothelial cells that binds and activates the
guanylate cyclase, which catalyzes the conversion of
GTP to the second messenger molecule cyclic GMP
(cGMP). Concentrations of NO ranging between 1 and
30 nM produce high levels of cGMP promoting angio-
genesis and proliferation of endothelial cells. In these
conditions, ERK phosphorylation stimulates the prolif-
eration of endothelial cells. Concentrations of NO ran-
ging between 30 and 100 nM correspond to an increase
of proliferative and anti-apoptotic AKT and ERK-depen-
dent pathways in tumour cells [89-91]. This range of
concentrations seems to protect tumour cells from
apoptosis and enhance angiogenic effects. In these con-
ditions, the molecules activated by NO can be consid-
ered as factors correlated to poor prognosis events. On
the other hand, higher NO levels (> 300 nM) promote
apoptosis and are responsible for anti-tumour activity.
NO levels are influenced also by ROS and, specifically,
by superoxide anions that can attenuate the NO-
mediated pathway. In fact, superoxide anions and ROS,
through the scavenging of NO, can lower NO levels
favouring its tumour-promoting activity [92]. Accord-
ingly, tumours have high levels of ROS and low levels of
SOD.

Similarly to oxidative stress, the expression of nitrosa-
tive stress supports the de-regulated synthesis or over-
production of NO and NO-derived products and its
toxic physiological consequences [93]. The main source
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of NO in the mammals is the enzymatic oxidation of L-
arginine by NO synthases [94]. As ROS, NO may limit
oxidative damage by acting as a chain-breaking radical
scavenger or may cause damage and Kkill cells by
mechanisms that include inhibition of protein [95] and
DNA [96] synthesis, downregulation of antioxidative
enzymes [97] and depletion of intracellular GSH [98].
Nitrosative insult may occur in vivo also in pathologies
associated with inflammatory processes, neurotoxicity
and ischaemia [99].

NO is able to reduce oxidative injury via several
mechanisms. NO reacts with peroxy and oxy radicals
generated during the process of lipid peroxidation. The
reactions between NO and these ROS can terminate
lipid peroxidation and protect tissues from ROS-induced
injuries [100]. Through the Fenton reaction, hydrogen
peroxide oxidizes iron (II) and the process generates an
extremely reactive intermediate (the hydroxyl radical)
which then carries out oxidations of different substrates
[H,O, + Fe** — Fe®* + OH- + hydroxyl radical (-OH)].
NO prevents hydroxyl radical formation by blocking the
predominant iron catalyst in the Fenton reaction. In
fact, NO reacts with iron and forms an iron-nitrosyl
complex, inhibiting iron’s catalytic functions in the Fen-
ton reaction [101].

Treatment of rat hepatocytes with NO induces resis-
tance to H,O,-induced cell death by induction of the
rate-limiting antioxidant enzyme, heme oxygenase (HO-
1) [102]. In addition, NO prevents the induction of
some ROS-induced genes during tissue injury such as
early growth response-1 (EGR-1), which activates a
number of adhesion molecules and accelerates oxidative
tissue injuries [103].

Regulatory events and their alterations depend on the
magnitude and duration of the change in ROS or RNS
concentration. ROS and RNS normally occur in living
tissues at relatively low steady-state levels. The increase
in superoxide or NO production leads to a temporary
imbalance that forms the basis of redox regulation. The
persistent production of abnormally large amounts of
ROS or RNS, however, may lead to persistent changes
in signal transduction and gene expression, which, in
turn, may give rise to pathological conditions [104].

3.1 Stress and HCC
Oxidative stress has emerged as a key player in both
development and progression of many pathological con-
ditions, including HCV- and HBV-induced liver diseases.
ER stress is a homeostatic mechanism, that regulates
cellular metabolism and protein synthesis in response to
perturbations in protein folding and biosynthesis [105].
Moderate ER stress modulates protein synthesis initia-
tion and causes a reduction in cell growth, whereas
extreme or prolonged ER stress leads to apoptosis
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mediated by the activation of the ER-associated caspase
12 [106].

Signaling from ER susceptible to stress is closely
related to cell metabolism and intracellular redox status
[107]. Changes in cell metabolism can cause an increase
of mutation processes including stimulation of cell pro-
liferation and apoptosis [84].

Studies of mechanisms of oxidative stress have shown
that the latter activates signaling cascades (including
MAP kinase pathway), which can seriously influence
regulation of cell growth and transformation processes
[84] and may be involved in pathogenesis of some dis-
eases associated with oxidative stress.

Oxidative stress also activates hepatic stellate cells
that represent the main connective tissue cells in the
liver, involved in formation of extracellular matrix and
required for normal growth and differentiation of cells
during liver damage. In this case, the stellate cells
divide in response to various cytokines, growth factors,
and chemokines produced by the damaged liver.
Chronic activation of stellate cells in response to oxi-
dative stress induced by viral replication may contri-
bute to fibrogenesis and increase proliferation of
hepatocytes chronically infected with HBV and HCV
that, together with activation of MAP kinases, may
induce HCC [108].

The nuclear transcription factor-xB (NF-xB) is the
major stress-inducible antiapoptotic transcription factor.
NF-xB activation is associated with cancer, and it has
been found to be strongly activated in many types of
cancer, including HCC [108].

Moreover, markers of acute intracellular oxidative
stress were found elevated in patients with chronic HCV
[109] with accumulation of DNA adduct 8-hydroxydeox-
yguanosine [110]. Transgenic mice expressing HCV core
protein show an increased accumulation of ROS that
correlates with HCC development [111].

The increased generation of ROS and RNS, together
with the decreased antioxidant defense, promotes the
development and progression of hepatic and extrahepa-
tic complications of HCV infection.

4. HCC therapeutic opportunities
Ablative therapies, surgical resection or liver transplan-
tation are the first-line treatment for patients affected by
HCC [112,113]. Nonetheless, advanced tumour stage
and poor liver function preclude the majority of patients
from these surgical interventions [114]. Moreover, trans-
plantation is indicated only for early small HCC, and its
application is limited by the availability of liver grafts
[115]. Therefore, it is mandatory to develop an effective
systemic therapy for patients with advanced HCC.

HCC is a chemo-resistant tumour and conventional
cytotoxic chemotherapy has not provided clinical benefit
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or prolonged survival for patients with advanced HCC
[116].

In recent years, emerging insights into the biology and
molecular signalling pathways in cancer cells have led to
the identification of potential targets for intervention
and the advent of promising targeted therapy for the
treatment of HCC (Table 1).

4.1 Erlotinib

With recent advances in the knowledge of hepato-car-
cinogenesis, there has been encouraging development
in the systemic therapy of advanced HCC patients, and
particularly in the therapy based on specific targets
("targeted therapy”). Among the newly identified tar-
gets, interesting results have been shown in targeting
the epidermal growth factor receptor/human epidermal
growth factor receptor 1 (EGFR/HER1) and its ligands
EGF and transforming growth factor-alpha (TGF-a),
important in cell proliferation, as well as motility,
adhesion, invasion, survival, and angiogenesis
[117,118]. It has been suggested that hypomethylation
of the EGF receptor gene may be associated with the
development of HCC [119]. Studies have indicated that
EGFR/HERI1 is actively expressed in human hepatoma
[120]. Different phase II studies of Erlotinib (Tarceva,
OSI-774; OSI Pharmaceuticals, Melville, NY), an orally
active, potent, selective inhibitor of the EGFR/HER1-
related tyrosine kinase enzyme were performed in
patients with HCC [121,122].

In the study by Philip et al. [121] 3 of 38 patients (9%)
achieved partial responses (PR) and 12 of 38 patients
(32%) were free of disease progression (PD) at 6 months.
In another preliminary report by Thomas et al., [122] 8
of 25 patients (32%) achieved a median progression-free
survival (PFS) of 4 months.

Table 1 Targeted agents in development for HCC
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4.3 Cetuximab

Cetuximab, a chimeric monoclonal Ig G1 antibody
directed against the EGFR that blocks binding of endo-
genous EGFR ligands, was recently evaluated in HCC
patients who had previously received 1 or 2 lines of sys-
temic chemotherapy regimens. Cetuximab was well tol-
erated, and through concentrations only mild to
moderate hepatic dysfunction were observed. However,
there were no tumor responses, and the median PFS
was only 1.4 months [123].

In another trial [124] Cetuximab was combined with
Gemcitabine and Oxaliplatin chemotherapy (GEMOX
regimen) in patients with documented progressive HCC.
The confirmed response rate was 20% and disease stabi-
lization (SD) was obtained in 40% of patients. On the
other hand, the toxicity profile was not neglactable (60%
of grade 3 or 4 toxicity), although still acceptable.

4.4 Bevacizumab

Bevacizumab is a recombinant humanized anti-VEGF
monoclonal antibody, thereby inhibiting neo-angiogen-
esis, tumour growth, paracrine/autocrine growth factor
release and metastasis. Bevacizumab, both as a single
agent and in combination with other agents, has shown
initial encouraging activity in treating advanced HCC. In
the study by Siegel et al. [125], among 46 patients
enrolled with advanced HCC, single-agent bevacizumab
induced a 13% objective response (OR), while 65% of
the patients had SD.

Bevacizumab and erlotinib combination was also
investigated in advanced or metastatic HCC at phase II
trials. This regimen consists of bevacizumab 10 mg/kg
every 14 days and erlotinib 150 mg orally daily, continu-
ously, for 28-day cycles. Of 40 patients, 62.5% survived
beyond 16 weeks without evidence of progression. Ten

Agent Anti-angiogenic targets

Anti-proliferative targets Clinical Development

VEGF VEGFR PDGFR

EGFR Raf mTOR

Bevacizumab

Phase Il ongoing

Brivanib Phase Il recruiting
Cediranib Phase Il recruiting
Erlotinib Phase Il complete
Gefitinib Phase Il complete
Cetuximab Phase Il complete
Lapatinib Phase Il ongoing
RADOO1 Phase /Il recruiting
Sorafenib* Phase lll complete
Sunitinib* Phase Il ongoing
Thalidomide Phase Il recruiting

*Sorafenib and sunitinib are multi-tyrosine kinase inhibitors having both anti-proliferative and anti-angiogenic effects
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patients achieved a PR, while median PFS and overall
survival (OS) were 9.1 and 15.9 months, respectively
[126].

All these seemingly promising results are mostly based
on small, non-randomized phase II studies.

4.5 Sunitinib

Another potential promising multitargeting agent is
sunitinib, which is an inhibitor of VEGFR, PDGFR-a
and f3, c-kit, Flt-3 and RET kinases [127].

European/Asian phase II study explored the safety and
efficacy of sunitinib dosed at 50 mg daily for 4 weeks in
37 patients with unresectable HCC. Since only one PR
was confirmed, with prevalent SD recorded, the trial did
not proceed to the second stage. Moreover, Sunitinib
showed pronounced toxicities at a dose of 50 mg/day in
patients with unresectable HCC. The response rate was
low, and the study did not meet the primary endpoint
based on RECIST criteria [128].

Different chemotherapy strategies to use in HCC
treatment exploit the intrinsic oxidative stress of tumour
cells. The first attempt to employ in vivo pro-oxidant
agents was reported by Nathan e Chon in 1981 that
used the glucose oxidase as H202 precursor obtaining a
significant decrease of tumour growth [129]. Various
chemotherapy agents actually in use, including doxoru-
bicin, vinblastine, vincristine and camptotecin, have a
redox H,0O,-mediated activity [130] on tumour cells
without effects on health tissues [131].

The main systemic therapy to prolong survival in
patients with advanced HCC and the new reference
standard for systemic treatment for these patients is sor-
afenib [132].

4.6 Sorafenib

Sorafenib (Nexavar BAY 43-9006) is a multikinase inhi-
bitor that has shown efficacy against a wide variety of
tumours in preclinical models and clinical studies.

It has been shown to block tumour cell proliferation
and angiogenesis by inhibiting serine/ threonine kinases
[c-RAF, and mutant and wildtype B-RAF (v-raf murine
sarcoma viral oncogene homolog B1)] as well as the
receptor tyrosine kinases VEGFR2, VEGFR3, PDGEFR,
FLT3, RET and c-KIT. On the other hand, it is known
that the overexpression and/or mutation of Raf kinase is
a common event in several tumours, including HCC. In
fact, RAF kinases are key regulators of the MEK/ERK
cascade and up-regulated signalling through the RAF/
MEK/ERK pathway has an important role in HCC [133].

The efficacy of sorafenib on HCC has been confirmed
in both phase II and phase III trials [134-136]. In the
large randomized phase III Sorafenib HCC Assessment
Randomized Protocol (SHARP)-SHARP study, 602
patients with biopsy-proven advanced HCC who had
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not received any prior systemic treatment were evalu-
ated and randomized to receive either sorafenib (400 mg
twice daily, n = 299) or a placebo. The primary end-
points were OS and time to symptomatic progression,
while the secondary endpoint was time to progression
(TTP). The results demonstrated a significant improve-
ment in both OS (median 10.7 vs 7.9 months) and TTP
(median 5.5 vs 2.8 months) in the sorafenib group vs
the placebo group. These results indeed represented a
44% increase in OS and 73% prolongation in the TTP.

The SHARP protocol represents the first large-scale
randomized trial that demonstrates the OS benefit of
systemic treatment in patients with advanced HCC thus
far, and therefore it has been approved by the US Food
and Drug Administration for the treatment of advanced
HCC patients. However, this study was conducted
mainly in the western countries, where the main etiolo-
gies of HCC are HCV and alcohol. In contrast, the main
bulk of HCC occurs in Asian countries, where chronic
HBYV infection accounts for the majority of HCC cases.
Therefore, similar to the design of the SHARP study, an
Oriental sorafenib study was performed to investigate
the efficacy and tolerability of using single-agent sorafe-
nib in treating advanced HCC patients in Asian
population.

In this study, the median OS of patients on sorafenib
was 6.2 months, which was significantly better than 4.1
months achieved in patients on placebo.

Although these two pivotal studies have demonstrated
good activity and tolerability in treating advanced HCC
patients with sorafenib, it is still far from an efficient
control of this disease.

The combination of sorafenib with agents active in the
control of the HCC-derived symptoms could be useful
in the clinical strategy of HCC in order to increase
treatment tolerability.

Combination of molecular therapies is expected to
improve the outcome benefits obtained with sorafenib,
but this is a highly complex matter due to the complex-
ity of complementary pathways activated in HCC. Exam-
ples of this are given by the combination of sorafenib
with anti-angiogenic agents and blockers of cell prolif-
eration, such as EGFR, MET, and IGFR inhibitors. An
alternative strategy is to combine therapies abrogating
complementary intracellular signaling, such as RAS or
mTOR inhibitors. Similarly, proapoptotic agents might
synergize with cell proliferation inhibitors [59,137]

4.7 Octreotide

Differential somatostatin receptor subtypes (SSTR 1, 2, 3
and 5) are expressed in HCC [138]. Somatostatin analo-
gues, such as octreotide, which display high binding affi-
nity to SSTR2 and lower affinity to SSTR5 and SSTR3
(affinity rank order: SSTR2 > SSTR5 > SSTR3) are
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efficacious in the treatment of neuroendocrine tumors
and exhibit only mild toxicity [139].

Octreotide LAR (long-acting release) is a formulation
of octreotide encapsulated into microspheres of the bio-
degradable glucose star polymer [140]. This synthetic
version of somatostatin differs from the latter for the
prolonged half-life that allows to administer the drug
every 28 days to obtain active plasma concentrations.

As somatostatin, octreotide reduces the release of
growth factors and inhibits neo-angiogenesis. Octreotide
was previously used in HCC patients with conflicting
results [140,141]. However, approximately 40% of
patients respond to octreotide with improved survival
and an impressive quality of life [142]. We showed, in a
previous study, that combination of octreotide and
radiofrequency ablation produced about 80% of disease
control and interesting mean OS (31.4 months) in a ser-
ies of advanced HCC patients [143]. Investigations on
octreotide in HCC are still ongoing also as National
Cancer Institute sponsored trials [144,145].

Based on these premises, our group started a phase II
multicenter study based on the combination between
sorafenib and octreotide LAR (So.LAR protocol) in
order to assess its safety and activity in advanced HCC
patients [146]. Five PR (10%), 33 SD (66%) and 12 PD
(24%) were recorded. Overall disease control rate (CR
+PR+SD) was 76%. In conclusion, the combination
between sorafenib and octreotide LAR was active and
well tolerated in advanced HCC [139]. Moreover, we
have investigated on the pharmaco-dynamic interference
between the two agents and the level of Erk activation
that serves as a surrogate of the inhibition induced by
Sorafenib [147]. In details, we have evaluated the effects
of So.LAR treatment on Erk activity in PBMC of
patients affected by HCC with cytofluorimetric techni-
que. We found a gradual reduction of Erk1/2 activity in
15 patients responsive to the treatment reaching an
about 50% maximal decrease after 21 days (T21) from
the beginning of therapy. On the other hand, in 17
patients resistant to treatment the activity of Erk1/2 was
about 80% increased at T21. An opposite trend of intra-
cellular O*" levels was observed in resistant patients.
These effects were correlated to the modulation of SOD
activity (physiological scavenger of O*) and of serum
NO levels. In fact, in 20 responder patients, sorafenib
alone induced an increase of about 40% of NO levels
and of about 2-fold of SOD activity and this latter effect
was significantly potentiated after the addition of octreo-
tide LAR. In conclusion, the determination of both pErk
expression in PBMC and the oxidative stress status have
high value in the prediction of response to sorafenib
+octreotide therapy in HCC patients.

The increased generation of acute intracellular oxida-
tive stress, which results from the generation of reactive
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oxygen species (ROS) by environmental factors or cellu-
lar mitochondrial alterations, has recently been asso-
ciated with the progression of chronic liver diseases and
hepatocarcinogenesis. On the other hand, a distinctive
pathological hallmark of HCC is a dramatic down-regu-
lation of oxidoreductase enzymes that constitute the
most important free radical scavenger systems repre-
sented by catalase, SOD and glutathione peroxidase
[87,148-150].

5. Biomarkers of oxidative stress

One strong mechanistic link between chronic inflamma-
tion and cancer is through the increased production of
free radicals at the site of inflammation and the result-
ing molecular changes, which include lipid peroxidation
and oxidative DNA damage [151]. Indeed, markers of
DNA damage, such as 8-hydroxydeoxyguanosine (8-
OHdG), and lipid peroxidation, such as 4-hydroxynone-
nal (HNE) and malondialdehyde (MDA), are commonly
elevated in liver of patients with chronic HCV infection
and correlate well with the degree of viral infection and
inflammation, known risk factors for HCC [152].

In addition to the classical genetic mechanisms of
deletion or inactivating point mutations, epigenetic
alterations, such as hyperacetylation of the chromatin-
associated histones are believed to be involved in the
development and progression of HCC. Histone deacety-
lases (HDACsS) are important regulators of many oxida-
tive stress pathways including those involved with both
sensing and coordinating the cellular response to oxida-
tive stress. In particular aberrant regulation of these
pathways by HDACs may play critical roles in cancer
progression. Infact, HA-But, an HDAC inhibitor in
which butyric acid residues are esterified to a hyaluronic
acid backbone and characterized by a high affinity for
the membrane receptor CD44, valproic acid and
ITF2357, exhibiting inherent therapeutic activity against
HCC may represent a promising approach for HCC
treatment [153,154].

It is well known that inflammation is one of the biolo-
gical responses driven by oxidative stress. Modulation of
oxidative damage as well as inflammation protect
against hepatocarcinogenesis. It has been shown that
resveratrol, a compound present in grapes and red wine,
has potent antioxidant [155] and anti-inflammatory
[156] properties, which might play an important role in
protecting the liver against carcinogen-induced neopla-
sia. Recently, it was reported that resveratrol signifi-
cantly prevents diethylnitrosamine (DENA)-induced
liver tumorigenesis in rats [157].

Conclusions
HCC is a disease that presents two relevant concerns: i)
the presence of a cirrhotic background that severely
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affects both the quality of life and the survival of the
patients and ii) the pleiotropic pathogenesis that has as
common background: the chronic inflammation and the
oxidative stress. The pharmacological weapons against
HCC are still limited and efficacy has been established
only for the multiple kinase inhibitor sorafenib. We
have recently demonstrated that sorafenib plus octreo-
tide is a safe and effective option in advanced HCC
patients with compromised metabolic scores and/or low
performance status. A still limited covered area of
research in HCC is represented by the oxidative stress
that underlies primary liver tumour development and
that occurs through the generation of ROS and/or RNS
and that is regulated by several scavenger mechanisms.
On this view, we have found that the determination of
oxidative stress status has high value in the prediction
of response to sorafenib plus octreotide therapy in HCC
patients. These data could have a profound impact in
the determination of the sensitivity of the patients to
this pharmacological strategy and could have a role in
the selection of the patients to be subjected to this treat-
ment. This could reduce both the relevant side effects
correlated to the therapy and the relevant costs derived
from the use of expensive drugs such as the new target
based agents such as sorafenib. The factors involved in
the oxidative stress could have a role not only in the
prediction of response to pharmacological treatments
but could be themselves targets of drugs as in the case
of the stress-dependent kinases p38 kinase and Jun
kinase or in the case of the use of anti-oxidant agents
such as resveratrol or silibin. The investigations on oxi-
dative stress and on its connection with signal transduc-
tion pathways correlated to survival and/or proliferation
could disclose new scenarios of interventions based on
the rational use of anti-oxidant agents in combination
with target based drugs.
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