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Abstract

mesenchymal-transition pathways.

Background: Globally, gastric cancer is the second most common cause of cancer-related death, with the majority
of the health burden borne by economically less-developed countries.

Methods: Here, we report a genetic characterization of 50 gastric adenocarcinoma samples, using affymetrix SNP
arrays and lllumina mRNA expression arrays as well as lllumina sequencing of the coding regions of 384 genes
belonging to various pathways known to be altered in other cancers.

Results: Genetic alterations were observed in the WNT, Hedgehog, cell cycle, DNA damage and epithelial-to-

Conclusions: The data suggests targeted therapies approved or in clinical development for gastric carcinoma
would be of benefit to ~22% of the patients studied. In addition, the novel mutations detected here, are likely to
influence clinical response and suggest new targets for drug discovery.

Background

Despite recent decline of mortality rates from gastric can-
cer in North America and in most of Northern and Wes-
tern Europe, stomach cancer remains one of the major
causes of death worldwide and is common in Japan,
Korea, Chile, Costa Rica, Russian Federation and other
countries of the former soviet union [1]. Despite improve-
ments in treatment modalities and screening, the prog-
nosis of patients with gastric adenocarcinoma remains
poor [2]. To understand the pathogenesis and to develop
new therapeutic strategies, it is essential to dissect the
molecular mechanisms that regulate the progression of
gastric cancer. In particular, the oncogenic mechanisms
which can be targeted by personalized medicine.

The term “oncogene addiction” to describe cancer
cells highly dependent on a given oncogene or onco-
genic pathway was introduced by Weinstein [3,4]. The
concept underscores the development of targeted
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therapies which attempt to inactivate an oncogene, criti-
cal to survival of cancer cells whilst sparing normal cells
which are not similarly addicted.

Several oncogenes activated at high frequency in other
cancers have also been shown to be mutated in gastric
cancer. It follows that marketed therapeutics targeting
these oncogenes would effectively treat a proportion of
gastric carcinomas, either as single agents or in combina-
tion. In January 2010, trastuzumab was approved in com-
bination with chemotherapy for the first-line treatment
of ERBB2-positive advanced and metastatic gastric can-
cer. Trastuzumab is the first targeted agent to be
approved for the treatment of gastric carcinoma and an
increase of 12.8% in response rate was seen with addition
of Trastuzumab to chemotherapy in ERBB2 positive gas-
tric adenocarcinoma [5,6]. It has been estimated that 2-
27% of gastric cancers harbour ERBB2 amplifications and
may be treated with ERBB2 inhibitors [7,8]. Similarly,
overexpression of another receptor tyrosine kinase (RTK)
EGFR, has been noted in gastric cancer and multiple
trials of EGFR inhibitors in this cancer type are ongoing
(reviewed in [9,10]). Furthermore some gastric cancers
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harbour DNA amplification or overexpression of the
RTK MET [11,12] and its paralogue MSTIR [13] and
may be treated with MET or MSTIR inhibitors [14-20].
Finally, FGFR2 over expression and amplification has
been observed in a small proportion of gastric cancers
(scirrhous) [21] and inhibitors have shown some efficacy
in clinic [22].

Downstream of the RTKs, KRAS wildtype amplifica-
tion and mutation has also been found in about 9-15%
of gastric cancers [23,24] and may be effectively treated
with MEK inhibitors [25,26]. Activation of the Pi3K/
AKT/mTOR pathway has also been seen in 4-16% of
gastric cancer [27-30] and so may be sensitive to PI3K
inhibitors [31-34]. Similarly, cell cycle kinase AURKA
has been shown to be activated in gastric cancer [35,36]
and AURKA inhibitors in clinical development [37] may
have clinical benefit.

Reports of the frequency of different types of oncogenic
activation and their co-occurrence are limited. In contrast
to gastrointestinonal stromal tumours (GIST) which are
characterized by a high frequency of KIT and PDGFRA
activation [38] and hence effectively treated in the majority
by imitanib and sunitinib [39,40], gastric adenocarcinoma
appears to be a molecularly heterogeneous disease with no
high-frequency oncogenic perturbation discovered thus
far. This is illustrated by a recent survey of somatic muta-
tion in kinase coding genes across 14 gastric cancer cell
lines and three gastric cancer tissues which discovered
more than 300 novel kinase single nucleotide variations
and kinase-related structural variants. However, no very
frequently recurrent mutation or mutated kinase was
uncovered [41].

With the aim of elucidating the potential for treat-
ment of gastric carcinoma with targeted therapies either
on the market, in development or to be discovered, we
have characterized clinical gastric carcinoma samples to
detect oncogene activation.

We took a global approach by assaying the samples on
affymetrix SNP arrays and Illumina mRNA expression
arrays. These technologies are well validated for detection
of genotype, DNA copy number variation and mRNA
expression profile. They are amenable to heterogeneous
clinical samples. The samples were also interrogated by
second generation (Illumina) sequencing. Relatively novel
second generation sequencing technologies offer both
increased throughput and deep sequencing capacity. The
latter is especially important for characterizing cancer
samples which tend to include a mixture of cell types
including infiltrating normal cells, vasculature and tumour
cell of different genotypes. In this study we utilized target
enrichment and Illumina sequencing technology to
sequence the coding regions of 384 genes. We decided to
favour depth of coverage over wider coverage in order to
capture mutations present in subpopulations within the
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tumours. Recent studies have shown cancers tend to har-
bour many mutations in a smaller number of signalling
pathways [42,43] therefore we concentrated on genes in
these pathways. We also included genes coding for pro-
teins previously shown to affect response to targeted
therapies and more likely to be successfully targeted by
small molecule intervention, as our aim is to find more
effective and novel ways of treating gastric carcinoma.

Methods

Tissue samples

DNA and RNA samples were obtained from hospitals in
Russia and Vietnam according to IRB approved Proto-
cols and with IRB approved Consent forms for molecu-
lar and genetic analysis. The medical centres themselves
also have internal ethical committees with reviewed the
protocol and ICFs. The samples were sourced through
Tissue Solutions Ltd http://www.tissue-solutions.com/.
For sample characteristics see additional file 1 table S1

Arrays

Genotypes and copy number profiles were generated for
each samples using 1 pg of DNA run on Affymetrix SNP
V6 arrays using Affymetrix protocols. Copy number var-
iation data was analysed within the ArrayStudio software
http://www.Omicsoft.com. Data was normalized using
Affymetrix algorithm and segmented using CBS. A tran-
script profile was generated for each sample using 1 ug of
total RNA run on Illumnia HG-12 RNA expression
arrays following the Illumina protocols. Data was ana-
lysed within the Illumina GenomeStudio software http://
www.illumina.com/software/genomestudio_software.
ilmn. As a data pre-processing procedure, a probe set was
only retained if it has a “present” (i.e. two standard devia-
tions above background) call in at least one of the sam-
ples. Signal values of the remaining probe sets were
transformed to 2-based logarithm scale and quantile nor-
malization was performed. DNA copy and RNA expres-
sion levels were integrated at the gene level within the
ArrayStudio software http://www.Omicsoft.com. Pathway
enrichment analysis was performed within the GeneGO
metacore analysis suite http://www.genego.com/. All
array data from this study is available in GEO http://
www.ncbi.nlm.nih.gov/geo/ under series accession num-
ber GSE29999.

Targeted deep DNA sequencing
5 pg of DNA was PCR-enriched for the coding exons of
any known transcript of 384 genes of interest (additional
file 2 table S2) using the Raindance platform http://
www.raindancetechnologies.com/.

The resulting target libraries were sequenced using
[lumnia GAII at a read-length of 54 nt. Sequence reads
were mapped to the reference genome (hgl8) using the
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BWA program [44]. Bases outside the targeted regions
were ignored when summarizing coverage statistics and
variant calls. SAMtools was used to parse the alignments
and make genotype calls [45], and any call that deviates
from reference base was regarded as a potential variant.
The SAMtools package generates consensus quality and
variant quality estimates to characterize the genotype
calls. Accuracy of genotype calls was estimated by con-
cordance to genotype calls from the Affymetrix 6.0 SNP
microarray. Concordance matrices of samples based on
both SNP and sequence data were generated to check
for sample mislabelling (additional file 3 figure S1). Con-
cordance and quantity of genotype calls were tabulated
for thresholds of consensus quality, variant quality, and
depth. The final set of variant calls were identified using
consensus quality greater than or equal to 50 and var-
iant quality greater than 0. To exclusively identify
somatic changes, only those mutations present in the
cancer sample and not detected in any of the normal
samples were retained. As an additional filter for germ-
line variants, all variants present in dbSNP and 1000
genome polymorphism datasets were removed.

Q-PCR

Q-PCR was performed via standard protocol using Flui-
digm 48*48 dynamic array. Firstly, a validation run was
conducted using pooled control RNA from three speci-
mens. Four input RNA amounts were tested (125 ng,
250 ng, 375 ng and 500 ng). Triplicate data points were
obtained for the subsequently 10-point serial dilution
per each condition per assay. The best overall results
were at 250 or 500 ng, which yielded efficiency values
~85%. Therefore 250 ng input amount for the experi-
mental samples. Data was produced in triplicate and
mean combined. CT values were converted to abun-
dance using standard formula abundance = 10(40-CT/
3.5). Test data was normalised to housekeepers using
the analysis of covariance method whereby the two
housekeepers (GAPDH and beta-actin) were used to
compute a robust score and the score was used as a
covariate to adjust the other genes. Data analysis was
performed in the Arraystudio software.

Sanger Sequencing

Genomic DNA PCR primers were ordered from IDT
(Integrated DNA Technologies Inc, Coralville, Iowa).
PCR reactions were carried out using Invitrogen Plat-
nium polymerase (Invitrogen, Carlsbad, CA). 50 ng of
genomic DNA was amplified for 35 cycles at 94°C for
30 seconds, 58°C for 30 seconds and 68°C for 45 sec-
onds. PCR products were purified using Agencourt
AmPure (Agencourt Bioscience Corporation, Beverly,
MA). Direct sequencing of purified PCR products with
sequencing primers were performed with AB v3.1
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BigDye-terminator cycle sequencing kit (Applied Biosys-
tems, Foster City, CA) and sequencing reactions were
purified using Agencourt CleanSeq (Agencourt
Bioscience Corporation, Beverly, MA). The sequencing
reactions were analyzed using a Genetic Analyzer
3730XL (Applied Biosystems, Foster City, CA). All
sequence results data were assembled and analyzed
using Codon Code Aligner (CodonCode Corporation,
Dedham, MA).

Results

DNA and RNA amplification patterns across samples are
consistent with previous studies

Consistent with most other human cancers, copy num-
ber changes occurred across the genomes of the 50 gas-
tric cancer samples compared to matched normal
samples (Figure 1). Large regions of frequent amplifica-
tion were found at chromosomal regions 8q, 13q, 20q,
and 20p. Known oncogenes MYC and CCNEI are
located in the 8q and 20p amplicons, respectively and
likely contribute to a growth advantage conferred by the
amplification. These amplifications have been seen in
prior studies in gastric cancer along with amplification
of 20p for which ZNF217 and TNFRSF6B have been
suggested as candidate driver genes [46].

Concordance between DNA copy number gain and
RNA expression among the cancer samples was evalu-
ated and the top 200 genes contained within a region of
frequent high DNA copy in cancer samples and which
had high mRNA levels (compared to matched normal
tissue) are tabulated in additional file 4 table S3. Most
of the genes on this list are from chromosomal regions
20q and 8q, suggesting that these amplifications have
the most effect on mRNA levels, in the minority are
genes for 20p, 3q, 7p, and 1q. Figure 2 shows the RNA
profiles measured by Q-PCR of an exemplar gene from
each region showing general overexpression in gastric
cancer, particularly in certain samples. Besides MYC and
CCNEL], there are multiple genes in these regions, which
could contribute to a growth advantage for the cancer
cell. The biological pathways most significantly enriched
for amplified and overexpressed genes are involved in
regulation of translation (p = 0.000015) and DNA
damage repair (p = 0.003). Samples with amplifications
in these genomic regions are annotated in Figure 3.
There is no discernible tendency for amplifications in
these regions to co-occur or to be exclusive. In agree-
ment with a previous study [47], the PERLDI locus was
amplified (within the ERBB2 amplicon) in sample 08280
and MMP9 was overexpressed but not discernibly
amplified. Also in Figure 3 focal DNA amplifications
with concordant RNA expression of genes likely to
affect the response to targeted therapies are denoted, for
example underlying data see additional file 5 figure S2.



Holbrook et al. Journal of Translational Medicine 2011, 9:119
http://www.translational-medicine.com/content/9/1/119

Page 4 of 13

g 1 2 4 = 4 : 5
S."-« E.“« sl‘;« S."- E.“S«
& £, - 3 32 1]
2 s ] g 1] g 15 ] g 5] g 1]
z 14 @ - ;“ 1 - - g 14 ﬁ 1 -; . ‘_
30.; v O };_ gu‘;q " }:\;.4 i 5‘,.4_-‘__#
100 000,000 200,000 000 300,000 000 00 000 00 200 000, 000 300,000 000 100 000 000 200 000,000 [ ] 100,000 000 200,000,000 00 000 000 200 000 00
nt nt nt nt
" 6 , 7 : ) 9 ’ 10
§ a5 § 25 § 2 § 25 ] § 2
t 3 - g £ £%,] - g
g‘._ %H_ s g--_ E gn. %u..
& 1 T L I & 1 44— Gl x 14 o
'gasd SRS 'g‘-asdﬁ,—»— i ‘gas i ———hir %ns,. 'gudm . L
o T T T T T 3 L T T T T T T T T L T T T T T T T e T T T T T T 8 t———r—T—TT T T
0 | ‘mmiow  oonon wanow woow  \momom oo W taomn H oY PR YO Ay H oo vace0
n nt nt nt
? n X 12 % 2 14 g 15
§as] § a5 ] § s § s § 25 ]
£ %1 £ : 2 £
rEry g 45 & g .5 . 2 45 2 45
a2, a . 3 & : 3 2 a1
P05 d % 05 4 s e B 03 d — P os B os d
U 3% . 80 ko 3
L] 'WJ;)‘J)JI rr.\) JIIJ-JNI IUJ J;]Jl) 3 \.‘I;J\xu 4 WM‘I!JJM o = OJ-J;I-JM o iJ“J;«‘J‘).JJ I 1200 000 000 L] 2 AJ‘))IZ‘)DJ 2 I'.D)III).I, s 120 000 400 "II)JIM. I‘J‘AZ:JWJI “J-);)Dl.\'
nt nt nt nt
: 16 : 17 : 18 . 13 . 20
§ 25 ] § 25 ] § 25 ] § 25 ] § 25 ]
1°,] 1] 1] 1] %]
3% 3 \ 1% 5 i - S 3
as ] i ‘ as Jok w] 12k 13 (5 2 I D" e
e e e e = R e e e Y i Y e
Domn | s | maow | somam nwoon’awooam oo 0000000 o ;umom | asmnom | soonam o maom " saosoan | woooom
n nt nt nt
. 21 x 22
8. § 25 ]
2] 2]
2521 g 15
a ] a ]
B as ] ‘} as
3 9 T T T o T T T T T T
oo x 0 0 &0 000 00 50000 000 14000 000 30000 000 4 000 000
nt nt
Figure 1 View of CNV aberrations across all 50 gastric carcinoma samples, for each autosome. The y-axis corresponds to the sum of the
number of positive or negative changes for a particular segment with the log2 ratio of those change. Areas with increased or decreased copy
number consistent throughout all the samples analysed or very large changes in few samples will show large positive and negative change
sizes. Each dot or segment in figure is colored by sample. The colour code is arbitrary with each of the 50 cancer samples being assigned a
colour. Amplified segments include chromosome 8q, 20q, 20p, 3q, 7p, and 1q.

Sequencing data shows high concordance with
genotyping

Sequencing library preparation failed for six of the origi-
nal 50 cancer samples and fourteen of the original
matched normal samples. Therefore two more matched
pairs were added to the analysis, resulting in a dataset
of 44 cancer samples, 36 with matched normal pairs
(additional file 1 table S1). The targeted region included
3.28 MB across 6,547 unique exons in 384 genes (addi-
tional file 2 table S2). Median coverage of across all
samples was 88.3% and dropped to 74% when requiring
minimum coverage of 20. All sequencing was carried
out to a minimum of 110x average read coverage across
the enriched genomic regions for each sample. The
reads were aligned against the human genome and var-
iants from the reference genome were called. As a con-
trol, an analysis to compare genotyping calls from the
Affymetrix V6 SNP arrays and the Illumina sequencing
was performed. The regions targeted for sequencing
contained 1005 loci covered by the Affymetrix V6 SNP
arrays. With no filtering of the sequencing variant calls

for quality metrics, the median agreement between the
genotyping and sequencing results was 97.8% with a
range of 65-99% (additional file 6a, Figure S3a). The raw
overall genotype call concordance was 96.8%. Quality
metrics were chosen to maximize the agreement
between the genotyping and the sequencing calls while
minimizing false negatives. The most informative metric
was consensus quality and a cut-off of >50 resulted in
loss of about 10% of the shared genotypes but an overall
2% increase in concordance to 98.7% (additional file 6b,
Figure S3b). Variant genotype calls were isolated for
further concordance analysis. In this set, a variant qual-
ity threshold of > 0 increased accuracy of variant geno-
type calls to 98.9% (additional file 6¢, Figure S3c). When
both quality thresholds were applied the median sample
concordance is 99.5% (additional file 6d, Figure S3d)
which is within the region of genotyping array error. Six
samples (08362T1, 08373T2, 336 MHAXA, 08337T1,
89362T2, DV41BNOH) had a concordance of < 98%
and two of these (08393T2 and DV41BNOH) had a
concordance of 82% and 88% respectively. Therefore
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with a consensus quality > 50 and a variant quality > 0,
the false positive rate was 0.5% and 1.6% for reference
genotypes and variant genotypes, respectively (additional
file 6e Figure S3e).

From all single nucleotide changes passing the above
thresholds, all variants present in any of the normal
samples or in the polymorphism databases of dbSNP

(v130) or 1000 genomes were assumed to be germline
variants and discarded. Variants present only in the
exons of cancer samples were assumed to be somatic
and retained. 18,549 somatic variants were detected in
total across all 44 samples (additional file 7 Table S4),
3357 were predicted to be exonic and nonsynonymous.
To prioritise for mutations with functional impact we
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concentrate all further analyses on nonsynonymous
mutations and highlighted mutations leading to loss or
gain of stop codons. We have applied the SIFT algo-
rithm [48] to predict amino acid changes that are not
tolerated in evolution and so are more likely to affect
the function of the protein, 1509 somatic nonsynon-
ymous mutations have a SIFT score of < 0.05. The rate
of mutations with SIFT score < 0.05 per gene, corrected
for CDS length was calculated (4). Figure 4 shows, the
genes with the highest concentration of low SIFT scor-
ing mutations were SIPR2, LPAR2, SSTRI1, TP53, GPR78
and RET, with SIPR2 being most extreme. There are fif-
teen mutations with SIFT score <0.05 across the 353aa
CDS of SIPR2, concentrated in nine samples. SIPR2
also known as EDG5 codes for a G-protein coupled
receptor of SI1P and activates RhoGEF, LARG [49]. Little
is known of its role in cancer and somatic mutations
have not been observed in the 44 tissues sequenced for
SI1PR2 in the COSMIC database [50].

Sequencing data is confirmed by Sanger sequencing

Some nonsynonymous somatic mutations were selected
to be confirmed by Sanger sequencing. All mutations
reported in blue in Figure 3 were confirmed by Sanger
sequencing and were also confirmed to be somatic by
sequencing of the wildtype sequence in the matched nor-
mal tissue (see additional file 8 Figure S4 for example
sequencing traces). Although 74% were confirmed, some
mutations detected in the Illumnia sequencing were not
confirmed as somatic mutations by Sanger sequencing.
Sixteen of the 68 (24%) mutations we attempted to con-
firm were present in the normal and cancer sample, these
are germline mutations but not detected in any of the
normal samples by Illumina sequencing and also not
represented in dbSNP or 1000 genomes data. Five of the
sixteen germline mutations were from cancer samples

S1PR2
LPAR2
SSTR1
TP53
GPR78
RET
STK11
TNFRSF6B

# somatic nonsynonymous deleterious
mutations/ # amino acids in CDS

.f m.[mmmmmwmmumwmMWIIWWMWMM

Genes (303)

Figure 4 Bar chart of rate of deleterious mutations across gene
sequenced. Genes sequenced are shown on the x-axis. The number
of deleterious somatic nonsynonymous mutations observed in each
gene/number of amino acids in each CDS in plotted.
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with no matched normal tissue included in the dataset,
the other eleven came from cancer samples with matched
normal tissue sequence included in the dataset. This evi-
dences a rate of germline contamination not eliminated
by the matched normal controls or the comparison to
known polymorphism databases. It may be that the cov-
erage of the substitutions in the normal tissue happens to
be lower than in the cancer sample and so some germline
mutations remain despite the somatic filters. Two of
the 68 (3%) mutations we attempted to confirm were not
present in the normal or cancer sample by Sanger
sequencing. One cause could be false positives in the
[lumnia data due to artefact; however additional file 6
Figure S3 shows the false positive rate to be low at least
for those variants represented on the Affymetrix V6
arrays. Another possibility is that these are present in a
subset of the sample below the sensitivity of the Sanger
methodology but detected by the [llumina sequencing.
Therefore, mutations reported in the Illumina sequencing
are also reported in purple in Figure 3, some caution is
warranted when interpreting these results as they may be
germline polymorphisms or present only in a subset of
the tumour sample.

Alterations in the RAS/RAF/MEK/ERK pathway

Three tumour samples had KRAS genetic alterations
(Figure 3) suggesting therapeutic opportunity for treat-
ment with MEK inhibitors. One of these alterations is a
G12D mutation. KRAS G12D mutations have been
shown to initiate carcinogenesis and tumour survival
[51]. Amplification and overexpression of wildtype
KRAS was seen in the other 2 samples. KRAS amplifica-
tion has been observed before in 5% of primary gastric
cancers. Gastric cancer cell lines with wildtype KRAS
amplification show constitutive KRAS activation and
sensitivity to KRAS RNAi knockdown [24]. A novel
mutation in KRAS was also observed; (in sample 08393)
the functional consequence is unknown.

The PIK3CA mutation co-occurring with KRAS G12D,
is known to affect sensitivity to MEK inhibitors [25]; in
addition, novel mutations observed in this study may
also have consequences for the same class of therapeu-
tics. For instance: KSR2 functions as a molecular scaf-
fold to promote ERK signalling [52,53]. Therefore,
mutations in KSR2 such as seen in seven samples may
affect sensitivity to MEK inhibitors. A second example is
ULK1, which positively controls autophagy downstream
of mTOR [54] and is mutated in fourteen samples.
Autophagy is increased along with ERK phosphorylation
when gastric cancer cells are treated with a proteasome
inhibitor [55], therefore mutations in ULKI may affect
sensitivity to proteasomal inhibitor treatments such as
bortezomib as a single agent or in combination with
MEK inhibitors.
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Alterations in the PI3K/AKT pathway

There was substantial sequence disruption of the phos-
phoinositide-3-kinase (Pi3K) pathway genes in the sam-
ple set. There are a number of PI3K/AKT/mTOR
inhibitors in clinical development and patients with acti-
vating mutations in the pathway are candidates for
treatment [56]. PIK3CA mutations of known oncogeni-
city were found in four samples. This results in a fre-
quency of PIK3CA hotspot mutation of 9%, slightly
higher than previous estimates of 6% (12/185) [27] and
4.3% (4/94) [57]. The common PIK3CA hotspot muta-
tions of known oncogenicity (E545K and H1047R) [58]
were observed twice each. Another mutation in PIK3CA
K111E, which has also been observed before in four
samples in COSMIC, was observed once and potentially
novel somatic mutations were observed in two more
samples.

Five nonsynonymous AKT1 mutations were observed.
Although AKTI mutations are found in about 2% of all
cancers, they mainly occur at amino acid 15 and the
functional importance of mutation at other sites is
unknown. Another nonsynonymous mutation in AKT2
was observed in sample 08407. AKT2 mutations are
much rarer than AKTI mutations, although an AKT2
mutation has been observed before in gastric carcinoma,
at a 2% frequency [59]. Finally mutation of PTEN or
MTOR may affect response to pathway inhibitors. Sev-
eral PTEN mutations are noted and MTOR mutations
are frequent.

Alterations in Receptor Tyrosine Kinases

The receptor tyrosine kinases (RTKs) and drug targets
EGFR, ERBB2 and MET were each amplified (log2 > 0.6)
and overexpressed at the RNA level in one cancer sam-
ple. It follows that the tumours may be sensitive to the
inhibitors of the amplified RTKs. In addition, multiple
nonsynonymous mutations are observed in their coding
regions. Downstream mutations would be expected to
influence response. For instance, in the MET amplified
sample a truncating mutation in AKT3 may affect sensi-
tivity to MET inhibitors.

FGFR2 is amplified and RNA overexpressed in two
samples, there are also multiple mutations in FGFRI-4.
Broad range RTK inhibitors, which target FGFRs among
other kinases, may be efficacious in these patients
[60,61].

Alterations in Cell Cycle Proteins

The viral oncogene homolog SRC is mutated in four of
the tumour samples, two of the mutations are predicted
to have a deleterious effect including introduction of a
stop codon. This may counter-indicate SRC inhibitors.
MET amplification is also a known resistance marker for
anti-SRC therapeutics such as dasatanib [62,63]. The cell
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cycle related kinase, AURKA was amplified and overex-
pressed in one sample. AURKA inhibitors are in develop-
ment for solid tumours [37] and may be indicated in this
case. CCNE1 was amplified in two samples (08390 and
08357). High levels of CCNEI have been shown to be fre-
quently associated with early gastric cancer and metasta-
sis but expression levels do not correlate with survival
[64,65]. High CCNE1 levels have been suggested as a sen-
sitivity marker for the gene-directed pro-drug enzyme-
activated therapies [66]

Activation of wnt pathway is common in the carcinoma
samples

Mutations were observed in the APC gene in 22 samples.
APC is a tumour suppressor known to activate CTNNB1
and wnt pathway signalling, amongst other effects [67].
The wnt pathway has been previously found to be fre-
quently activated in gastric cancer [68]. We used a tran-
scriptional signature, generated from previous studies
[69,70] and available at the Broad Institute MSigDB data-
base to classify the study samples by their wnt transcrip-
tional signatures. Figure 5A shows a heat map of the
transcriptional levels of the WNT signature genes in the
datasets. Activation of this pathway is higher in nearly all
the cancer samples compared to the normal samples. Wnt
inhibitors are the subject of intense investigation in phar-
maceutical and academic research [71-73]. These results
suggest they will have an indication in gastric cancer as
well as many other cancers.

Activation of the hedgehog pathway is also common in
the carcinoma samples

PTCH1 is a tumour suppressor and acts as a receptor for
the hedgehog ligands and inhibits the function of
smoothened. When smoothened is freed, it signals intra-
cellularly leading to the activation of the GLI transcrip-
tion factors [74]. Multiple somatic mutations of PTCH1
are recorded in COSMIC, consistent with its tumour
suppressor role. The D362Y mutation seen in this study
in sample FICJG, is in the fourth transmembrane domain
of PTCHI1 and has been previously seen as a loss-of-func-
tion germline mutation in a patient with Gorlin syn-
drome, predisposing to neoplasms (numbered D513Y
due to different transcript) [75]. Therefore, sample FIC]G
is very likely to have deregulated hedgehog signalling and
does indeed have high levels of GLI target genes (as
defined by [74] (Figure 5B)). Other samples also contain
PTCHI mutations in the Illumina sequence data, includ-
ing a truncating stop codon (Y140X) in sample 08379
and have high levels of hedgehog signature genes. Hedge-
hog signalling has previously been shown be frequently
activated in gastric cancer [76] though no genetic cause
has been previously implicated. Inhibitors of the hedge-
hog pathway are in clinical development [77,78].
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Loss of Epithelial phenotype

Epithelial or mesenchymal status has been shown to
affect response to multiple drugs [79] and samples may
be more resistant due to loss of an epithelial phenotype.
Both hedgehog and wnt signalling upregulate mesenchy-
mal precursors such as BMP4 and mutations can lead
directly to loss of epithelial phenotype. CDH1I is a marker
of an epithelial phenotype and is often lost in gastric
tumours due to the process of epithelial to mesenchymal
transformation (EMT) and is a negative prognostic mar-
ker [80]. Mutations in CDHI were observed in nine sam-
ples, including a D254G mutation in CDHI was detected
in sample 08359. A mutation at the same site (D254Y)
has been recorded in COSMIC in a breast tumour and

211 somatic mutations have been observed in the 2732
samples sequenced for CDHI in COSMIC. Mutation in
SMAD4 is also likely to affect epithelial phenotype. Loss
of SMAD4 function facilitates EMT and its re-expression
reverses the process in cancer cell lines [81]. Mutations
in tumour suppressor SMAD4 were observed in ten
samples.

Sensitivity to chemotherapy

Multiple substitutions in BRCAI were observed in ten
samples, including three cases of substitution of a stop
codon. Germline mutations in BRCAI predispose
patients to breast and ovarian cancer, multiple somatic
mutations have been found in tumours [82]. BRCAI
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expression levels and polymorphic status has been
shown to correlate with sensitivity to chemotherapeutics
in gastric cancer [83,84]. Therefore, the observed muta-
tions of BRCAI may affect sensitivity to chemotherapy.

Another commonly mutated gene which is linked to
sensitivity to chemotherapy in gastric cancer is 7P53
[85]. Eight examples of TP53 mutation including two
stop codons are seen in the dataset.

Mutations in TRAPP were found in 22 samples,
including one mutation to a stop codon. TRRAP is a
component of histone acetyltransferase complexes and
is implicated in oncogenic transformation and cell fate
decisions through chromatin regulation [86]. Loss of
function mutations of the Sacchromyces pombe ortholo-
gue of TRRAP, cause defects in G2/M cell cycle control
and resistance to CHKI overexpression [87]. Mutations
in TRAPP are likely to affect response to HDAC and
CHK1 inhibitors currently approved and in trials for use
as anticancer agents [88-92].

Novel targets for therapies in gastric cancer
An additional aim of our study was to uncover novel
drug targets for gastric cancer. Many novel perturba-
tions were observed in tractable target genes, following
are three examples which warrant further investigation.
Thyrotropin receptor (TSHR) is mutant in four sam-
ples. The A553T mutation of TSHR found in sample
08360, has been previously been observed in two
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siblings with congenital hypothyroidism and was found
to be inactivating [93]. Both loss and gain of function
TSHR mutations are often found in thyroid cancer [94].
However, a role for TSHR in other cancers has not been
elucidated, although infrequent mutations in lung cancer
are recorded in COSMIC and TSHR has been shown to
be lost at the DNA level, in some gastric cancers [95].
Three of the four TSHR mutations found have very low
SIFT scores and may suggest deregulation of this growth
hormone pathway.

We used the COPA algorithm [96] to identify mRNAs
with outlier expression in the cancer samples. The top
gene identified was KLK6. KLK6 is not detected or
detected at very low levels in the normal samples, whilst
its expression is very high in eleven of the cancer sam-
ples. Figure 6 shows the expression profile of KLK6
across the samples, confirmed by Q-PCR. KLK6 has pre-
viously been shown to be over expressed in gastric can-
cer and RNAi mediated knockdown of KLK6 in gastric
cancer cell lines has been shown to be anti-proliferative
and anti-invasive [97,98].

Finally, mutations in the Rho associated coiled-coil
containing protein kinases (ROCK1 and ROCK2) are
interesting in view of their role as effectors of RhoA
GTPase and the recent finding that truncating muta-
tions in ROCK1 (similar to the confirmed ROCK2 muta-
tion in this study) are activating and lead to increased
motility and adhesion in cancer cells [99].
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Discussion
Gastric adenocarcinoma rates vary widely across geogra-
phical regions, gender, ethnicity and time [100]. Diet has
been shown to significantly influence gastric cancer risk
as have tobacco smoking and obesity [101]. The infec-
tious agent Helicobacter pylori is intimately associated
with the most common types of gastric adenocarcinoma
development [102]. H. pylori colonizes the stomach of at
least half the world’s population, virtually all persons
infected with H. pylori develop gastric inflammation,
which confers an increased risk for developing gastric
cancer; however, only a fraction of infected individuals
develop the clinical disease [103]. H. pylori induces gen-
eralized mutation and genomic instability in host DNA
[104], which along with the complex risk profile suggests
diverse routes to oncogenesis in gastric adenocarcinoma.
Therefore, an individualized personal medicine
approach, measuring molecular targets in tumours and
suggesting treatment regimens based on the results, is
attractive. A recent study using this approach across
tumour types has reported improved outcomes [105]. The
trial used IHC, FISH and microarray technologies to assay
levels of molecular targets in tumours, as the authors men-
tion, second generation sequencing techniques offers a
more complete picture of tumour mutagenic profile and
will be even more informative in identifying sensitivity and
resistance biomarkers.

Conclusions

This study evidences previously observed perturbations of
the KRAS, ERBB2, EGFR, MET, PIK3CA, FGFR2 and
AURKA genes in gastric cancer and suggests some of the
targeted therapies approved or in clinical development
would be of benefit to 11 of the 50 patients studied. The
data, also suggests that agents targeting the wnt and
hedgehog pathways would be of benefit to a majority of
patients. The previously undocumented DNA mutations
discovered are likely to affect clinical response to marked
therapeutics and may be good drug targets. Detection of
these mutations was enabled by Illumina sequencing and
the concordance with genotyping arrays shows its suitabil-
ity for heterogeneous cancer samples. These “nextgen
sequencing” techniques are just at the beginning of
expanding our abilities to detect genome wide DNA muta-
tion, DNA copy number, RNA levels and epigenetic
changes, in each patient’s genome. However, it remains a
challenge to filter germline from somatic mutations and
sort driver mutations with functional import from passen-
ger mutations.

Whole genome studies using both Sanger and nextgen
sequencing have revealed mutagenic profiles of other
cancers in unprecedented completeness and detail
[41,106-112]. Similar studies with large numbers of
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samples will be critical to fully appreciate the mutagenic
diversity in gastric cancer and identify the important
driver mutations. Bodies such as the ICGC (Interna-
tional Cancer Genomics Consortium) are currently col-
lecting gastric adenocarcinoma samples.

Translation of these findings to clinic will require pin-
pointing of important mutations as well as easier access
to broad diagnostic assays and clinical development of
agents targeting low-frequency events [113]. Data such
as that presented here, is a necessary preliminary step in
delivering the maximum benefit from the major
advances of targeted therapies and personalized medi-
cine to gastric cancer patients.
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Additional file 1: Table S1: Sample characteristics.
Additional file 2: Table S2: List of genes sequenced.

Additional file 3: Figure S1: Concordance matrices of samples based
on array and sequence data.

Addtional file 4: Table S3: Top 200 genes with amplification at the
DNA levels and concordant overexpression at the mRNA level.

Additional file 5: Figure S2: Array data evidencing focal
amplifications. Top panels show mRNA expression data from arrays,
bottom panels show log2 value for DNA abundance in genomic context
as derived from SNP arrays.

Additional file 6: Figure S3: Comparison of genotyping calls with
sequencing data. A total of 1005 common loci were mapped between
the Affymetrix 6.0 SNP microarray and the targeted regions. Concordance
of genotype calls between affymetrix 6.0 SNP and SAMtools with no
filters applied (top left). Application of a consensus quality filters
(threshold values plotted as points) improves concordance (y-axis) but
reduces the total number of calls (x-axis)(top right). A similar trend is
observed for the variant quality thresholds, but at different threshold
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calls is improved with consensus quality filter >= 50 and variant quality
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