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Abstract
Purpose: Peri-tumoral inflammation is a common tumor response that plays a central role in
tumor invasion and metastasis, and inflammatory cell recruitment is essential to this process. The
purpose of this study was to determine whether injected fluorescently-labeled monocytes
accumulate within murine breast tumors and are visible with optical imaging.

Materials and methods: Murine monocytes were labeled with the fluorescent dye DiD and
subsequently injected intravenously into 6 transgenic MMTV-PymT tumor-bearing mice and 6 FVB/
n control mice without tumors. Optical imaging (OI) was performed before and after cell injection.
Ratios of post-injection to pre-injection fluorescent signal intensity of the tumors (MMTV-PymT
mice) and mammary tissue (FVB/n controls) were calculated and statistically compared.

Results: MMTV-PymT breast tumors had an average post/pre signal intensity ratio of 1.8+/- 0.2
(range 1.1-2.7). Control mammary tissue had an average post/pre signal intensity ratio of 1.1 +/-
0.1 (range, 0.4 to 1.4). The p-value for the difference between the ratios was less than 0.05.
Confocal fluorescence microscopy confirmed the presence of DiD-labeled cells within the breast
tumors.

Conclusion: Murine monocytes accumulate at the site of breast cancer development in this
transgenic model, providing evidence that peri-tumoral inflammatory cell recruitment can be
evaluated non-invasively using optical imaging.
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Background
The intimate association between cancer and inflamma-
tion was first identified over a century ago. The role of the
immune system in modulating carcinogenesis is complex;
some aspects of the immune response are protective,
while others are pro-tumorigenic. Several findings sup-
port the suggestion that inflammation plays a role in pro-
moting breast cancer. From an epidemiologic perspective,
immunocompromised individuals, such as organ trans-
plant recipients, have a lower incidence of breast cancer
[1,2]. It has also been noted that as breast cancer
progresses, there is a corresponding increase in the
number of leukocytes, both of lymphoid and myeloid ori-
gin, surrounding the tumor [3].

There are several proposed mechanisms by which the
immune response may promote breast cancer develop-
ment. Infiltrating immune cells elaborate cytokines,
chemokines, metalloserine and metallocysteine pro-
teases, reactive oxygen species, and histamine, all of which
augment tumor remodeling and angiogenesis [4-6].
Chronic B-cell activation and helper T-cell polarity
towards the Th2 subtype are also thought to play roles in
supporting tumorigenesis [7-10].

Tumor associated macrophages/monocytes are also
thought to promote tumor development through the
elaboration of tumor growth factors, proangiogenic sub-
stances, matrix degrading proteins, and DNA-disrupting
reactive oxygen species [11-15]. In the mouse mammary
tumor virus - polyomavirus middle T antigen (MMTV-
PymT) transgenic mouse model, macrophage infiltration
into premalignant breast lesions is associated with tumor
progression [16]. Moreover, limiting macrophage infiltra-
tion reduces tumor invasion and metastasis in this model
[17]. In humans, elevated levels of CSF-1 and exuberant
macrophage recruitment are associated with poor progno-
sis [13,15,18].

The MMTV-PymT transgenic murine model of breast can-
cer is a well characterized model which recapitulates
human disease, with progression from hyperplasia to
invasive carcinoma and metastatic disease at ~115 days of
life [3,18]. As described above, a significant inflammatory
response, populated by B and T lymphocytes, macro-
phages/monocytes, and mast cells, accompanies breast
tumor development.

With this background, the purpose of this study was to use
optical imaging to non-invasively monitor the peri-
tumoral inflammatory response in the MMTV-PymT
transgenic mouse by tracking monocyte recruitment. A
technique based on the detection of fluorescence, optical
imaging (OI) is a relatively new modality in the clinical
setting. Compared with other imaging modalities, optical

imaging is inexpensive, easy and fast to perform, highly
sensitive, and radiation-free. In addition, breast cancer
patients have been previously scanned using optical imag-
ing; initial results indicate that this technique may supple-
ment mammography and magnetic resonance imaging in
breast cancer detection [19,20]. Our group and others
have established optical imaging-based "leukocyte scans"
by labeling leukocytes with fluorochromes ex vivo, intra-
venously injecting them into experimental animals, and
subsequently tracking the labeled cells with optical tech-
nology. These scans have been used to detect and monitor
treatment of arthritis [21] and to track cytotoxic lym-
phocytes to implanted tumors [22].

Optically tracking monocytes to breast tumors in the
MMTV-PymT model has several potential utilities. First,
the temporal relationship between breast tumor develop-
ment and inflammation could be better characterized,
without having to sacrifice animals. Second, evaluating
the extent of monocyte recruitment may have prognostic
implications, as described previously. Third the effect of
anti-inflammatory and chemotherapeutic regimens on
peri-tumoral inflammation and monocyte recruitment
could be assessed.

Materials and methods
Monocytes
Murine monocytes were obtained from the continuously
growing leukemic cell line, 416B (Cell Culture Facility,
University of California, San Francisco, ECACC equiva-
lent 85061103) and cultured in Dulbecco's Modified
Eagle Medium (DMEM) high glucose medium supple-
mented with 10% fetal bovine serum and 1% Penicillin/
Streptomycin. 416B monocytes were grown in this
medium as a non-adherent suspension culture at 37°C in
a humidified 5% CO2 atmosphere.

In vitro cell labeling
Triplicate samples of 1, 2, and 4 million monocytes/mL of
serum-free DMEM were incubated with a solution of the
fluorochrome DiD at a ratio of 5 μL DiD/1 mL DMEM for
15 minutes at 37 degrees C. DiD (C67H103CIN2O3S,:
Vybrant cell labeling solution, Invitrogen) is a non-tar-
geted, lipophilic, carbocyanine fluorochrome with a
molecular weight of 1052.08DA and excitation and emis-
sion maximum of 644 nm and 665 nm respectively. The
labeled cells were washed 3 times with phosphate-buff-
ered saline (PBS) (pH 7.4) by sedimentation (5 min, 400
rcf, 25°C). The labeled monocytes were placed in the
Xenogen IVIS 50 optical imager (Xenogen Corporation,
Alameda, CA) and scanned. Flow cytometry using Cytom-
ics FC500 flow cytometer (Beckman-Coulter Inc., Fuller-
ton, CA) was performed on labeled cells to confirm
integration of DiD. Triplicate samples of 2 million cells
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labeled with 5 microliters of DiD were optically imaged at
24 hours to determine persistence of labeling.

Cell Viability
2 million 416B monocytes in 2 mL DMEM were incu-
bated for 15 minutes with 0-20 microliters of DiD, with
the total volume of 20 microliters being completed with
ethanol. Trypan blue testing of the labeled cells was then
performed to determine viability. Additionally, 2 million
416B monocytes in 2 mL DMEM were incubated for 15
minutes with 5 microliters of DiD, and viability of cells
was assessed 24 hours after labeling with trypan blue
staining.

Ex vivo cell labeling
Samples of 107 monocytes were incubated for 15 minutes
with 25 μl of DiD in 5 ml (Concentration: 5 microliters
DiD/1 ml DMEM) of serum free DMEM and then washed
3 times with phosphate-buffered saline (PBS) (pH 7.4) by
sedimentation (5 min, 400 rcf, 25°C) prior to intravenous
injection.

Animal studies
This study was approved by the animal care and use com-
mittee at our institution. All imaging procedures as well as
monocyte injections were performed under general
anesthesia with 1.5-2% isoflurane in oxygen, adminis-
tered via face mask. Studies were carried out in twelve
mice: six MMTV-PymT trangenic mice (age range 95-115
days) and six FVB/n control mice. For cell injections,
either an internal jugular or femoral vein direct cannula-
tion was performed with a 30-guage needle. Labeled cells
were suspended in a total volume of 350 microliters of
PBS prior to injection. The cell-free DiD infusion was per-
formed by injecting a solution consisting of 5 microliters
of DiD and 345 microliters of PBS intravenously. Periph-
eral blood for flow cytometry analysis was obtained via
cardiac puncture.

Optical Imaging
All optical imaging studies were performed using the IVIS
50 small animal scanner (Xenogen, Alemeda, CA) and
Cy5.5 (excitation: 615-665 nm and emission: 695-770
nm passbands) filter set. For in vitro studies, cell samples
were placed in a non-fluorescing container. For in vivo
studies, mice were anesthetized with isofluorane and
placed in the light-tight heated (37 degrees celsius) cham-
ber. After being shaved, the animals were imaged in three
positions at all time points: (1) anterior (facing the CCD
camera), (2) left lateral decubitus, and (3) right lateral
decubitus. Identical illumination parameters (exposure
time = 2 seconds, lamp level = high, filters = Cy5.5 and
Cy5.5 bkg, f/stop = 2, field of view = 12, binning = 4) were
selected for each acquisition. Gray scale reference images
were also obtained under low-level illumination. Optical

imaging scans were obtained before and at 1, 2, 6, and 24
hours after intravenous monocyte injection. After comple-
tion of the scans, the animals were sacrificed via a combi-
nation of cardiac puncture and cervical dislocation while
under anesthesia. Tissues were immediately harvested for
sectioning and microscopic analysis.

Data analysis
OI Images were analyzed using Living Image 2.5 software
(Xenogen, Alameda, Ca) integrated with Igorpro (Wave-
metrics, Lake Oswego, OR, USA). Images were measured
in units of average efficiency (fluorescent images are nor-
malized by a stored reference image of the excitation light
intensity and thus images are unitless) and corrected for
background signal. For in vitro image analysis, regions-of-
interest (ROI) were defined as the circular area of the tube.
For in vivo image analysis, ROIs were placed around
breast tumors (MMTV-PymT mice) and mammary tissue
(FVB/n controls). The post to pre-injection fluorescence
signal intensity (SI post/pre) was then calculated for each
ROI.

Statistical Analysis
All in vitro experiments were performed in triplicates.
Data were displayed as means plus/minus the standard
error of the mean (SEM). Student t-tests were used to
detect significant differences between labeled and unla-
beled monocytes (in vitro data) and breast tumor and
control mammary tissue (in vivo data). Statistical signifi-
cance was assigned for p values < 0.05.

Immune Fluorescence and Confocal Analysis
Tumors were explanted 24 hrs after monocyte injection
and preserved in OCT at -80°C. 5 μm thick slides were
prepared which were then processed for immunostaining.
CD45 immunostaining (eBioscience, San Diego, CA) was
performed to visualize murine monocytes in the tumor,
while the tumor nuclei were mounted with a mounting
medium containing DAPI (Vectashield Mounting
medium with DAPI, Vector Laboratories, Burlingame,
CA). Confocal analysis was performed using a Zeiss
LSM510 confocal microscopy system equipped with kryp-
ton-argon (488, 568 and 633 nm) and ultraviolet (365
nm) lasers; images were acquired using LSM version 5.
Images are magnified to 10×. The images presented are
representative of four independent experiments. All
images were converted to TIFF format and arranged using
Adobe Photoshop CS2.

Flow Cytometry
DiD labeled and unlabeled murine monocytes were resus-
pended in PBS/BSA and incubated for 10 min at 4°C with
rat anti-mouse CD16/CD32 mAb (BD Biosciences, San
Diego, CA) at a 1:100 dilution in FACS buffer to prevent
nonspecific antibody binding. After incubation and wash-
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ing, the cells were incubated with anti-CD45-PE (pan-leu-
kocyte marker), anti-CD11b-PE (monocyte and
macrophage marker), anti-Gr1-FITC (granulocyte
marker), and anti-F4/80-FITC (macrophage marker) (eBi-
oscience) for 20 min with 50 μl of 1:100 dilution of pri-
mary antibody followed by two washes with PBS/BSA. 7-
AAD (BD Biosciences) was added (1:10) to discriminate
between viable and dead cells. Data acquisition and anal-
ysis were performed on a FACSCalibur using CellQuest-
Pro software (BD Biosciences). DiD was visualized using
the FL4 channel.

Results
In vitro optical imaging
OI of DiD-labeled cells at all concentrations demon-
strated significantly higher fluorescence from labeled cells
compared to that from non-labeled controls (p < 0.01).
There was increasing fluorescence from DiD-labeled cells
with increasing cell concentration, indicating no quench-
ing effects within the range of evaluated cell concentra-
tions; however, graphically, the increase in fluorescence
with cell concentration labeled was not unequivocally lin-
ear (Figure 1b). There was no change in the fluorescence
of cells imaged at 24 hours compared with those imaged
immediately after labeling. Viability of the cells post labe-
ling is shown in Table 1. Cell viability decreased as DiD
dose was increased. Trypan blue staining demonstrated
80% viability 24 hours post labeling.

Flow cytometry
Flow cytometry demonstrated that the monocytes incu-
bated with DiD fluoresced distinctly from unlabeled cells
in the fluorescent range of DiD. (Figure 2a) Additional
flow cytometry data demonstrated that the monocyte cell
line has the same markers as monocytes isolated from
peripheral blood; specifically, it is CD45 and CD11b pos-
itive and F4/80 negative. The absence of Gr1 fluorescence
confirmed that the cell line did not differentiate along the
granulocytic pathway. (Figure 2b)

In vivo optical imaging
After injecting DiD-labeled monocytes into FVB/n con-
trols, progressively increasing fluorescence was noted in
the liver, spleen, and lungs over 24 hours. (Figure 3). The
same pattern was observed in MMTV-PymT mice. In addi-
tion, MMTV-PymT mice demonstrated increasing fluores-
cence within tumors over the course of 24 hours (Figure
4). This data is shown quantitatively in figure 4c, which
demonstrates an average SI post/pre ratio of 1.8 +/- 0.2
(SEM) in MMTV-PymT breast tumors, with a range of 1.1
to 2.6. Mammary tissue of FVB/n controls had an SI post/
pre ratio of 1.1 +/- 0.1 (SEM). The difference between
these averages was found to be statistically significant,
with a p-value less than 0.05. Injection of free DiD
resulted in no increase in fluorescent intensity within the
tumor at any time point post-infusion.

Fluorescence microscopy
Harvested tumors from MMTV-PymT mice were sectioned
for fluorescence microscopy. Figure 5 demonstrates cells
that fluorescently stain for both CD45 and DiD, thus con-
firming that injected DiD-labeled monocytes are present
within breast tumors. CD45 and DiD signal colocaliza-
tion, while present in all tumor tissues, was not uniformly
distributed across all areas of the tumor specimens

(a) Optical imaging of DiD-labeled cells immediately after labelingFigure 1
(a) Optical imaging of DiD-labeled cells immediately 
after labeling. First 3 rows: triplicately labeled cells. (Top 
row: 4 million/cells mL; Second row: 2 million cells/mL; Third 
row: 1 million cells/mL). Fourth row: unlabeled cells (2 mil-
lion cells/mL). Fifth row: DMEM alone. (b) Ratio of fluores-
cence of cells to media (Y-Axis) for each sample of cells (X-
Axis). The ratio of labeled cells to media was significantly 
higher at all concentrations than the ratio of unlabeled cells 
to media (p < 0.01). Error bars represent standard error of 
the mean.
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observed. Additionally, there were some areas with CD45
positive signal without DiD signal.

Discussion
The above results demonstrate that after intravenous
injection of fluorochrome-labeled monocytes, there was
progressive fluorescence within the breast tumors of
MMTV-PymT mice, a phenomenon not seen in the mam-
mary tissue of FVB/n control mice. Fluorescence micros-
copy confirmed that DiD-labeled monocytes were present

Table 1: Cell viability as a function of DiD concentration.

Amount of DiD added Cell Viability (%)

20 microliters 73

10 microliters 78

5 microliters 82

2.5 microliters 84

1.25 microliters 83

0 microliters 84

Cells alone 90

(a) Flow cytometry for DiD-labeled 416B murine monocytesFigure 2
(a) Flow cytometry for DiD-labeled 416B murine 
monocytes. Left peak (green): unlabeled cells, right peak 
(red): DiD-labeled cells. (b) Flow cytometry characterization 
of 416B murine monocyte cell line. Top row: 416B cell line, 
bottom row: peripheral blood monocytes from FVB/n con-
trol mice. For all images, the green peak represents unlabeled 
cells, and the red peak represents labeled cells.

(a) In vivo optical imaging of a control FVB/n mouse after intravenous injection of DiD-labeled monocytesFigure 3
(a) In vivo optical imaging of a control FVB/n mouse 
after intravenous injection of DiD-labeled mono-
cytes. Top row, left to right: pre-injection, 1 hour, and 2 
hours post-injection. Middle row, left to right: 6 hours, 12, 
and 24 hours post injection. Bottom image: post-mortem dis-
section. (b) Removed organs 24 hours post injection. Left to 
right: Liver, spleen, lungs, heart. Images are representative of 
the FVB/n control mice injected with DiD-labeled mono-
cytes.
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(a) In vivo optical imaging of a MMTV-PymT mouse after intravenous injection of DiD-labeled monocytesFigure 4
(a) In vivo optical imaging of a MMTV-PymT mouse after intravenous injection of DiD-labeled monocytes. Top 
row, left to right: pre-injection, 1 hour, 2 hours post-injection. Bottom row, left to right: 6 hours, 12 hours, 24 hours post-
injection. (b) Optical imaging of explanted left axillary tumor from the same mouse. Left to right: photograph only, fluorescence 
image. Images are representative of the MMTV-PymT mice injected with DiD-labeled monocytes. (c) Quantitative analysis of 
fluorescence from breast tumors following injection of DiD-labeled monocytes. The left bar represents the average SI post/pre 
fluorescence ratio within breast tumors from MMTV-PymT mice, while the right bar represents the average SI post/pre fluo-
rescence ratio within mammary tissue from FVB/n controls. Y-axis: average SI post/pre fluorescence ratio. Error bars repre-
sent the standard error of the mean. The difference between the two ratios was statistically significant, with a p-value less than 
0.05.
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within breast tumors, though the lack of uniform DiD-flu-
orescence distribution in the tumor specimens is likely a
reflection of the heterogenous distribution of tumor-asso-
ciated macrophage recruitment within the tumor micro-
environment. The scattered presence of CD45 positive but
DiD negative regions may either be reflective of endog-
enous murine monocytes recruited to the tumor simulta-
neously, or, alternatively, exogenous monocytes that were
ineffectively labeled with DiD before intravenous injec-
tion. Nonetheless, taken together, it can be concluded that
intravenously injected, fluorescently-labeled monocytes
accumulate within breast tumors in this transgenic
murine model of breast cancer, where they can be visual-
ized with optical imaging technology. Flow cytometry val-
idated the murine monocyte cell line 416B as being a
legitimate and relevant cell line for this study, as these
cells have expression patterns similar to monocytes iso-
lated from the peripheral blood of control mice.

Thus far, molecular imaging techniques have focused on
imaging cancer cells themselves, proteins that are overex-
pressed by cancer cells, angiogenic markers, or the extra-
cellular matrix surrounding cancer [23-25]. The
inflammatory component of cancer biology, on the other
hand, has not been a major target of molecular imaging
technologies. Inflammation has been evaluated in other

contexts, such as in a mouse model of type 1 diabetes [26],
and a rat model of arthritis [21]. Inflammatory macro-
phages in atherosclerotic plaques have also been imaged
with magnetic resonance using superparamagentic iron
oxide particles [27]. Genetically engineered T lym-
phocytes have been tracked to animal tumors using
microPET technology [28,29]. Superparamagnetic iron-
oxide labeling and subsequent MR imaging of immune
cells have been employed as a strategy to monitor anti-
cancer cellular therapy [30]. Monocytes have been labeled
with MR contrast agents and tracked to rat gliomas [31].
However, to our knowledge, this is the first demonstra-
tion of tracking fluorescently labeled monocytes to breast
cancer using optical imaging.

The mechanism by which these cells are recruited to breast
tumors in MMTV-PymT mice is multifactorial, and may be
related to vascular permeability and local factors released
by tumor cells, stromal cells, and inflammatory cells.
Elaboration by these cells of the inflammatory chemokine
CCL2 (MCP-1) is associated with both monocyte recruit-
ment and poor prognosis [32,33]. Jin et al. demonstrated
a role for integrin alpha 4 beta 1 in the homing of mono-
cytes to tumors. Specifically, the group noted that block-
ing this integrin in a mouse model of implanted lung
cancer suppressed the number of macrophages within
tumors and also stunted tumor growth [34]. CSF-1 release
by tumor cells is also thought to play a role [35,36]. The
relative contributions of these various factors to monocyte
recruitment may potentially be further characterized
using the imaging technique described here.

There are several limitations to the current study. As this
was a proof of principle study, a limited number of ani-
mals was used to obtain statistical significance. A larger
sample size would provide further characterization of the
inflammatory response and monocyte recruitment. Sec-
ond, while the pathogenesis of breast cancer seen in this
animal model closely resembles that in humans, there
may be significant differences between the two species.
Third, while this technique has potential clinical applica-
tions, DiD has not received FDA approval. Given that
other cyanine dyes have significant toxicity, further stud-
ies will be required to determine the safety of DiD. It
should be noted, however, that another cyanine fluores-
cent dye, Indocyanine Green (ICG), has received FDA
approval.

In conclusion, tracking monocytes non-invasively will
lead to a better temporal and pathophysiological under-
standing of the in vivo inflammatory response around
breast cancers. Moreover, this imaging technique could be
used as a supplemental prognostic tool, given the afore-
mentioned inverse correlation between the degree of
monocyte recruitment and prognosis. In addition, the

Immunofluorescence/confocal microscopyFigure 5
Immunofluorescence/confocal microscopy. Top row, 
left to right: CD45, DiD. Bottom row: DAPI, merged image. 
Confocal images are representative of the MMTV-PymT con-
trol mice injected with DiD-labeled monocytes. Images are at 
10× magnification.
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presented technique could streamline the development of
novel chemotherapeutic and anti-inflammatory pharma-
ceuticals for breast cancer treatment [37]. For example,
following intravenous injection of fluorophore labeled
leukocytes, the efficacy of such agents could be assessed by
the degree of monocyte accumulation within tumors.
Given the recent development of handheld OI scanners
and dedicated OI breast scanners, the imaging technique
described here has the potential to directly impact clinical
decision making and drug development in the breast can-
cer arena.
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