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Abstract
Background: CD40 activation of antigen presenting cells (APC) such as dendritic cells (DC) and B cells plays an
important role in immunological licensing of T cell immunity. Agonist CD40 antibodies have been previously
shown in murine models to activate APC and enhance tumor immunity; in humans, CD40-activated DC and B
cells induce tumor-specific T cells in vitro. Although clinical translation of these findings for patients with cancer
has been previously limited due to the lack of a suitable and available drug, promising clinical results are now
emerging from phase I studies of the agonist CD40 monoclonal antibody CP-870,893. The most prominent
pharmacodynamic effect of CP-870,893 infusion is peripheral B cell modulation, but direct evidence of CP-
870,893-mediated B cell activation and the potential impact on T cell reactivity has not been reported, despite
increasing evidence that B cells, like DC, regulate cellular immunity.

Methods: Purified total CD19+ B cells, CD19+ CD27+ memory, or CD19+ CD27neg subsets from peripheral
blood were stimulated in vitro with CP-870,893, in the presence or absence of the toll like receptor 9 (TLR9)
ligand CpG oligodeoxynucleotide (ODN). B cell surface molecule expression and cytokine secretion were
evaluated using flow cytometry. Activated B cells were used as stimulators in mixed lymphocyte reactions to
evaluate their ability to induce allogeneic T cell responses.

Results: Incubation with CP-870,893 activated B cells, including both memory and naïve B cells, as demonstrated
by upregulation of CD86, CD70, CD40, and MHC class I and II. CP-870,893-activated B cells induced T cell
proliferation and T cell secretion of effector cytokines including IFN-gamma and IL-2. These effects were
increased by TLR9 co-stimulation via a CpG ODN identical in sequence to a well-studied clinical grade reagent.

Conclusion: The CD40 mAb CP-870,893 activates both memory and naïve B cells and triggers their T cell
stimulatory capacity. Simultaneous TLR9 ligation augments the effect of CP-870,893 alone. These results provide
further rationale for combining CD40 and TLR9 activation using available clinical reagents in strategies of novel
tumor immunotherapy.
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Background
The activation status of host antigen presenting cells
(APC) critically determines the quality and effectiveness
of T cell immune responses. Resting APC may drive T cell
tolerance and anergy, but fully activated APC - classically
termed "licensed APC" - autonomously trigger effective
and productive T cell responses [1]. This paradigm holds
true for both dendritic cells (DC) and B cells. Among the
many microenvironmental factors now appreciated to
contribute to APC licensing, ligation of the cell surface
molecule CD40 on the surface of both DC and B cells is
fundamental, particularly for tumor immunity [2-8].

CD40 is a member of the tumor necrosis factor receptor
(TNF) superfamily and is broadly expressed by immune
and other normal cells [9]. CD40 itself lacks intrinsic sig-
nal-transduction activity and mediates its effects via
downstream adapter molecules that regulate gene expres-
sion. CD40-ligand (CD40L), also known as CD154, is the
chief ligand for CD40 and is expressed primarily by acti-
vated T cells and platelets [10,11]. The interaction of
CD40 and CD40L represents a major component of T cell
help. Ligation of CD40 on DC, for example, induces
increased surface expression of costimulatory and MHC
molecules, production of proinflammatory cytokines,
and enhanced T cell triggering [11,12]. CD40 ligation on
resting B cells increases antigen-presenting function and
proliferation [11,12].

In mice, agonist CD40 antibodies have been shown to
mimic the signal of CD40L and substitute for the function
of CD4+ helper T cells in experimental systems testing T
cell-mediated immunity [2-4]. In tumor-bearing mice,
agonist CD40 antibodies overcome T cell tolerance, evoke
effective cytotoxic T cell responses, and enhance efficacy
of anti-tumor vaccines [5-7]. Toll-like receptor (TLR) sig-
nalling can cooperate with CD40 activation in this regard;
for example, co-administration of CD40 and TLR9 ligands
in mice elicits a more effective anti-melanoma response
than either ligand alone [13]. Despite these landmark
studies, the clinical translational of CD40 activation in
cancer patients has been limited, owing primarily to the
lack of an appropriate and available drug.

CP-870,893 is a fully human, selective agonist CD40 mAb
and has shown early clinical promise in phase I trials, par-
ticularly in patients with advanced melanoma [14]. Little
direct evidence is available regarding its mechanism of
action and in particular, its biological effects on patient
APC. The primary clinical side effect of CP-870,893 infu-
sion has been mild to moderate cytokine release syn-
drome, manifesting as transient fever, chills, and rigor
within minutes to hours after the end of the CP-870,893
infusion and associated with acute elevations in serum IL-
6 and TNF-alpha [14]. The primary pharmacodynamic

effect has been rapid depletion of circulating CD19+ B
cells and a suggestion of global B cell activation as evi-
denced by significant upregulation of CD86 expression on
B cells after infusion [14] (JR and RHV, unpublished
observations). This pharmacodynamic effect on B cells is
particularly interesting in light of increasing evidence that
B cells can regulate tumor cellular immunity. Recent find-
ings in murine models demonstrate that tumor immune
surveillance and immunotherapy are enhanced in the
absence of B cells [15-19], potentially due to the elimina-
tion of suppressive or regulatory B cells [18,20]. B cells
have been shown to be tolerogenic when deprived of sig-
naling via CD40 [21].

Although in vitro effects of CP-870,893 on human DC
have been reported [22], its effects on purified B cells have
not been described. Here, we evaluated the in vitro effects
of CP-870,893 on peripheral blood B cells from normal
donors, including both memory and naïve B cells as
defined by the presence or absence of CD27 expression.
We studied the effect of CP-870,893 on B cell activation
and B cell stimulation of T cells, and we analyzed the
effects of co-stimulating B cells with the TLR9 agonist CpG
ODN 2006.

Materials and methods
Human Peripheral Blood and Lymphocyte Isolation
Protocols approved by the Institutional Review Board of
the Hospital at the University of Pennsylvania were used
to obtain signed, informed consent from normal donors
from whom peripheral blood was drawn. CD19+ B cells
were isolated from peripheral blood mononuclear cells
(PBMC) by MACS magnetic column and the B cell Isola-
tion Kit II human (Miltenyi Biotec, Auburn, CA). Purity of
isolated CD19+ B cells was >95% with contaminating DC
always either undetectable or <0.2% of cells in the iso-
lated B cell population as evaluated by expression of
CD123 or CD11c. CD19+ CD27+ or CD19+ CD27neg sub-
sets were further purified using CD27 Microbeads
(Miltenyi). Purified CD4+ T cells (>95%) were obtained
using the CD4+ T cell Isolation Kit human (Miltenyi) and
labeled with 5 uM CFSE (Molecular Probes, Eugene, OR)
in PBS at a concentration of 107 cells/ml.

B cell Culture and Activation
Cell culture was conducted using X-VIVO 15 media
(Lonza, Allendale, NJ) supplemented with 10% heat-inac-
tivated (56°C, 30 min) human AB serum, 2 mmol/L L-
glutamine, 15 ug/ml gentamicin, and 20 mmol/L HEPES.
Total CD19+ B cells, CD19+ CD27+ B cells, or CD19+
CD27neg B cells were incubated in a 5% CO2 incubator at
37°C in 96-well round-bottom plates at a concentration
of 105 cells/100 ul in the presence of either CP-870,893
(kindly provided by Pfizer, New London, CT), or type B
CpG oligodeoxynucleotide (ODN) 2006 (InvivoGen, San
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Diego, CA), both CP-870,893 and CpG ODN 2006, or
human IgG2 kappa (hIgG2) (Chemicon International,
Temecula, CA) and ODN 2006 control (InvivoGen) as
negative controls. After 48 hr, undiluted culture superna-
tant was collected for the detection of cytokines using BD
Cytometric Bead Array Human Inflammatory Cytokine
Kit (BD Biosciences, San Jose, CA) and cells were washed
and either surface stained or used as stimulators in mixed
lymphocyte reaction (MLR) experiments.

Flow Cytometry
Cell surface molecule expression was evaluated by flow
cytometry using a FACSCanto cytometer and FACSDiva
software (BD Biosciences) and the following mouse anti-
human mAb: CD40 (AbD Serotec, Raleigh, NC); and
CD19, CD14, CD3, CD27, CD86, HLA-A, B, C, HLA-DR,
CD70, CD11c, and CD123 (BD Biosciences). Non-viable
cells were excluded on the basis of staining with the
nucleic acid dye 7-amino-actinomycin D (BD Bioscience).
The CD40 staining antibody from AbD Serotec is not
blocked by CP-870,893, suggesting distinct binding sites
that allow for measurement of CD40 expression with AbD
Serotec anti-CD40 despite stimulation with CP-870,893.
This was established by incubating human peripheral
blood B cells in the presence of increasing concentrations
of CP-870,893 or purified human IgG2 (from zero to 10
ug/ml), washing the cells, then labelling with either Abd
Serotec anti-CD40 mAb or a second anti-CD40 from Inv-
itrogen (Carlsbad, CA)). We found by flow cytometry that
the mean fluorescence intensity of Abd Serotech anti-
CD40 mAb was the same for preincubation with CP-
870,893 or IgG2 at any concentration; in contrast, label-
ling with the Invitrogen anti-CD40 mAb was inhibited by
>90% at 10 ug/ml or 1 ug/ml of CP-870,893 (half maxi-
mal inhibition at about 0.1 ug/ml) but not by human
IgG2 at any concentration.

Mixed Lymphocyte Reaction
B cells stimulated for 48 hr were irradiated (3000 rad) and
replated at 105 cells/100 ul in the presence of purified, all-
ogeneic, CFSE-labeled CD4+ T cells at the indicated B
cell:T cell ratios. Culture supernatant was collected after 5
days and preserved at -80°C until analysis for the presence
of cytokines using Cytometric Bead Array Th1/Th2
Cytokine Kit II (BD Biosciences). Flow cytometry was
used to evaluate T cell proliferation by measuring the pro-
portion of CD4+ 7-amino-actinomycin Dneg CFSElow cells
on day 5.

Statistical Methods
Linear mixed effects regression was employed to assess the
individual effects of CP-870,893 and CpG ODN 2006 and
interaction between the two reagents on B cell surface
marker expression and cytokine secretion, as well as T cell
proliferation and cytokine secretion from the MLR. The

mixed effects model estimates the fixed effects (e.g., CP-
870,893 and CpG ODN 2006) while adjusting for the ran-
dom effect due to the correlation among outcomes
derived from a single donor's B cells being exposed to
each of the four conditions [23]. Group specific compari-
sons of CP-870,893 or CpG ODN 2006 vs. negative con-
trols were obtained directly from the mixed effects linear
model using the xtmixed command in STATA v10.0 (Stata-
Corp., College Station, TX). Group specific comparisons
of CP-870,893 or CpG ODN 2006 vs. CP-870,893 plus
CpG ODN 2006 were obtained from the STATA post-esti-
mation command lincom. Outcomes were natural log
transformed prior to modelling. P < 0.05 was considered
to be statistically significant. Tests of interaction between
CP-870,893 and CpG ODN 2006, specifically to test for
more-than-additive effect on the natural log scale, were
one-sided. All other tests were two-sided.

Results
Optimal in vitro concentration of CP-870,893 and 
comparison to concentrations achieved in cancer patients 
at the CP-870,893 maximum tolerated dose
To measure the effects of CP-870,893 on human B cells,
we first established the biologically optimal concentration
to use in vitro. PBMC were enriched for CD19+ B cells and
cultured in the presence of varying concentrations of
either CP-870,893 or negative control hIgG2. Cells were
analyzed by flow cytometry for viability and expression of
cell surface molecules at baseline and at 24 and 48 hr sub-
sequent to stimulation. A concentration of 1 ug/ml of CP-
870,893 was sufficient to induce maximal expression of
CD86 (Figure 1), as well as CD54, MHC class I, and MHC
class II (data not shown). This concentration corresponds
closely to the serum concentration of CP-870,893 previ-
ously reported for cancer patients 4-8 hr after receiving a
single, intravenous infusion of the drug at the maximum
tolerated dose of 0.2 mg/kg [14].

Activation marker expression by in vitro stimulated B cells
To determine whether CP-870,893 activates B cells based
on up-regulation of cell surface markers, purified total
CD19+ B cells were incubated with either 1 ug/ml CP-
870,893 or negative control hIgG2. After 48 hr, B cell
expression of CD40, MHC Class I, MHC Class II, CD86,
and CD70 were evaluated by flow cytometry. As shown in
Table 1, expression of all markers was significantly
increased for total B cells incubated with CP-870,893 as
compared to the negative control hIgG2. Effects ranged
from 2-fold (MHC class I) to more than 5-fold increases
(MHC class II) over control. Given that CD19+ CD27+
memory and CD19+ CD27neg naïve B cells respond differ-
entially to maximum stimulatory signals [24], we also
determined whether both these subsets could be activated
by CP-870,893 alone. Similar to the effect for total CD19+
B cells, expression of all activation markers for both
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CD19+ CD27+ and CD19+ CD27neg B cells was signifi-
cantly increased after CP-870,893 stimulation compared
to negative control (Table 1). Because TLR agonists syner-
gize with CD40 stimulation in vivo in mice and in vitro
for human DC [25,26], we evaluated the additive effects
of the TLR9 ligand CpG ODN 2006 on CP-870,893-stim-
ulated B cells. We first established that expression levels of
all activation markers were significantly increased when
total CD19+ B cells, CD19+ CD27+ memory B cells, or
CD19+ CD27neg naïve B cells were incubated for 48 hr in
vitro with 1 ug/ml of CpG ODN 2006 as compared to
ODN negative control (Table 1). For most markers, and in
particular for CD40 and MHC class I, incubation with
CpG ODN 2006 induced statistically significantly higher
levels of surface marker expression than incubation with
CP-870,893, a finding observed for total CD19+ B cells
and each of the two CD27-defined subsets (Table 1). Dual
incubation with CP-870,893 and CpG ODN 2006 com-
pared to CP-870,893 alone led to significantly higher acti-
vation marker expression for all B cell subsets (Table 1),
with the only exception being MHC Class II expression on
CD19+ CD27neg naïve B cells. In contrast, dual incubation
with CP-870,893 and CpG ODN 2006 compared to CpG
ODN 2006 alone induced higher expression of activation
markers only for total B cells and CD27+ memory B cells

and only for some, not all, markers. There was no statisti-
cal difference in surface marker upregulation for CD27neg

naïve B cells comparing CpG ODN 2006 plus CP-870,893
incubation to CpG ODN 2006 alone (Table 1). One-sided
tests of interaction were not significant for any activation
marker displayed in Table 1, thus we conclude that dual
incubation does not yield more-than-additive effects.
These results suggest that both memory and naïve B cells
can be activated by the drug CP-870,893, and this CP-
870,893 effect can be increased by the addition of CpG
ODN 2006. Naïve B cells, as defined by lack of CD27
expression, appear relatively more responsive to CpG
ODN 2006 than CP-870,893, and the addition of CP-
870,893 to naïve B cells incubated with CpG ODN 2006
does not add significantly to upregulation of activation
markers.

Cytokine secretion by in vitro stimulated B cells
To determine whether CP-870,893 induces human B cells
to produce cytokines, supernatant from stimulated B cells
was collected at 48 hr and analyzed for the presence of IL-
6 and IL-10. IL-6 and IL-10 were studied because of their
critical role in B cell physiology. IL-10 interrupts memory
B cell formation [27], is a major plasma cell differentia-
tion factor [28], and promotes in vitro differentiation of
germinal center B cells into plasma cells [29]. IL-10 has
also been shown to be a potent growth and differentiation
factor for activated human B lymphocytes [30]. IL-6 is
required for plasmablast differentiation and is an impor-
tant plasma cell survival signal [31,32]. Activated B cells
secrete IL-6 and IL-10, but there may be subsets of B cells
with differential abilities to secrete cytokines [33].

A trace amount of IL-6 (16.8 + 2.5 pg/ml) was measured
in the supernatant of control stimulated total B cells, and
this increased about four-fold (to 43.4 + 10.5 pg/ml, p <
0.05) in the supernatant of cells stimulated with CP-
870,893. Small amounts of IL-10 were detected in the
supernatant of B cells treated with CP-870,893 and con-
trol, with no statistical difference (Figure 2). In contrast,
CpG ODN 2006 induced higher amounts of both IL-6
(731.5 + 122.7 pg/ml) and IL-10 (64.1 + 14.1) compared
to CP-870,893 alone (Figure 2). Dual stimulation with
CP-870,893 plus CpG ODN 2006 resulted in the highest
levels of IL-6 (1779.9 + 327.4 pg/ml) and IL-10 (176.2 +
47.1 pg/ml), in each case significantly higher than
cytokine production from stimulation with either reagent
alone (Figure 2). Tests of interaction were not significant,
demonstrating that dual incubation did not yield more-
than-additive effects. Among the other cytokines tested in
this assay (TNF-alpha, IL-1beta, and IL-12p70), cytokine
production was undetectable in any of the experimental
conditions. These results provide further evidence that
TLR9 ligation can increase CP-870,893 activation of B
cells.

B cell CD86 expression in response to titrated amounts of the CD40 mAb CP-870,893Figure 1
B cell CD86 expression in response to titrated 
amounts of the CD40 mAb CP-870,893. CD19+ B cells 
were purified from PBMC by negative selection and stimu-
lated in the presence of hIgG2 or the indicated concentra-
tions of CP-870,893 mAb. Cell surface CD86 expression was 
measured as mean fluorescence intensity pre-stimulation and 
at 24 hr and 48 hr after stimulation using flow cytometry. 
Results shown are for one donor and representative of three 
evaluated.
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T cell stimulatory capacity of CP-870,893-activated B cells
Because it is well-established that properly activated B
cells can function as professional antigen presenting cells
[21,34], we hypothesized that activation with CP-870,893
would enhance B cell capacity to stimulate T cells. To eval-
uate this, mixed lymphocyte reactions (MLR) were con-
ducted in which B cells stimulated for 48 hr with either
CP-870,893 or hIgG2 negative control were co-incubated
with allogeneic CD4+ T cells. B cell stimulatory function
was evaluated by measuring T cell proliferation and T cell
cytokine secretion after 5 days of co-incubation. CP-
870,893-activated B cells induced higher amounts of T
cell proliferation than negative control B cells (e.g. 45.6%
+ 4.4% vs. 12.5% + 4.0% at a B cell to T cell ratio of 1:2, p
< 0.001) (Figure 3A). Moreover, T cells stimulated with
CP-870,893-activated B cells produced higher amounts of
IFN-γ secretion than T cells stimulated with negative-con-
trol B cells (258.5 + 56.3 pg/ml vs. 122.7 + 37.6 pg/ml, at
a B cell to T cell ratio of 1:2, p = 0.002) (Figure 3B). A sim-
ilar pattern was observed for T cell IL-2 secretion (373.1 +
60.0 pg/ml vs. 118.5 + 32.4 pg/ml, at a B cell to T cell ratio
of 1:2, p < 0.001) (Figure 3B). When purified CD19+

CD27+ memory B cells were used as stimulators in the
MLR under the same conditions, CP-870,893-stimulated
memory B cells were also able to induce significantly
higher amounts of T cell proliferation (p < 0.001), IFN-γ
(p < 0.001), and IL-2 (p < 0.001) secretion compared to
negative control B cells (data not shown). For CD19+
CD27neg naïve B cells, CP-870,893-stimulated B cells
induced significantly higher proliferation (p < 0.001) and
IL-2 (p = 0.004) compared to control B cells, but IFN-γ
secretion was not significantly higher (p = 0.32) (data not
shown). In summary, this data supports the hypothesis
that CP-870,893 activation of B cells induces effective T
cell stimulatory function, although less strongly for
CD19+ CD27neg naïve B cells.

Dual stimulation of B cells via CD40 and TLR9 enhances B 
cell stimulatory capacity
Since dual stimulation of B cells via TLR9 and CD40
resulted in increased activation as compared to single
agent stimulation, we reasoned that the addition of CpG
ODN 2006 stimulation to CP-870,893 might also aug-
ment T cell stimulatory capacity of activated B cells.

Table 1: B cell activation marker expression in response to stimulation

Negative 
control 

stimulation

CP-870,893 
(CP)

CpG ODN 
2006

(CpG)

CP-870,893 
plus CpG ODN 

2006

Linear mixed effects model
p value*

Mean SE Mean SE Mean SE Mean SE CP v. 
neg

CpG v. 
neg

CP v. 
CpG

CP+C
pG v. 
CP

CP+Cp
G v. 
CpG

Total 
CD19+†

CD40 MFI 1928 92 3867 265 8828 738 10308 776 <0.001 <0.001 <0.001 <0.001 0.004
MHC I MFI 10623 591 23221 2098 27165 2026 40067 3481 <0.001 <0.001 0.001 <0.001 <0.001
MHC II MFI 30642 4979 82839 4675 83856 4703 108161 5250 <0.001 <0.001 0.91 0.009 0.01
%CD86+ 15.7 3.3 58.6 5.3 73.8 4.4 82.6 3.4 <0.001 <0.001 0.05 0.003 0.34
%CD70+ 7.7 2.6 33.5 4.8 39.2 6.1 51.2 5.9 <0.001 <0.001 0.25 <0.001 0.01

CD19+ 
CD27+‡

CD40 MFI 2293 75 5625 524 13225 879 13951 680 <0.001 <0.001 <0.001 <0.001 0.56
MHC I MFI 15661 1650 30927 2008 37825 2687 53246 4910 <0.001 <0.001 0.002 <0.001 <0.001
MHC II MFI 33254 3509 98699 5195 97553 4251 121932 6400 <0.001 <0.001 0.89 0.007 0.02
%CD86+ 27.3 2.7 64.5 5.0 74.0 3.5 83.5 2.5 <0.001 <0.001 0.10 0.002 0.17
%CD70+ 18.8 1.7 56.2 1.9 62.3 2.1 74.4 2.6 <0.001 <0.001 0.02 <0.001 0.001

CD19+ 
CD27negat
ive‡

CD40 MFI 2195 108 4413 368 10417 1003 10622 804 <0.001 <0.001 <0.001 <0.001 0.88
MHC I MFI 7770 759 17726 1499 20993 2504 26777 4267 <0.001 <0.001 0.010 <0.001 0.14
MHC II MFI 40924 2749 90576 3333 86918 3847 96397 6585 <0.001 <0.001 0.60 0.47 0.22
%CD86+ 13.2 1.6 61.1 5.1 75.8 4.9 82.8 3.5 <0.001 <0.001 <0.001 <0.001 0.13
%CD70+ 5.0 0.6 30.3 3.3 34.8 3.8 41.3 5.1 <0.001 <0.001 0.009 <0.001 0.26

*Bold indicates p < 0.05
†n = 8 normal donors ‡n = 7 normal donors
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CD19+ B cells were therefore stimulated with negative
control reagents, CP-870,893 alone, CpG ODN 2006
alone, or CP-870,893 plus CpG ODN 2006 and used as
stimulators in MLR. Although CpG-activated B cells
induced significantly higher T cells proliferation (37.4% +
3.2%, p < 0.001) than negative control B cells, prolifera-
tion induced by dually stimulated B cells (48.1% + 5.6%)
was not significantly higher than that induced by either
CP-870,893-activated (p = 0.86) or CpG-activated (p =
0.26) B cells (Figure 4A). CpG-activated B cells also
induced significantly higher T cell production IFN-γ
(366.6 + 116.5 pg/ml, p = 0.001) and IL-2 (248.1 + 47.3
pg/ml, p < 0.001) compared to control B cells, but in this
case, T cell IFN-γ secretion (692.7 + 138.8 pg/ml) in the
MLR was significantly higher for dually stimulated B cells
than for B cells stimulated with either CP-870,893 (p <
0.001) or CpG-activated (p = 0.002) alone (Figure 4B).
Likewise, dually stimulated B cells induced a significantly
higher amounts of T cell IL-2 (501.0 + 116.3 pg/ml) than
CpG-activated B cells (p = 0.003), but this relationship
was not significant for dually stimulated vs. CP-870,893-
activated B cells (p = 0.33) (Figure 4B). Tests of interaction
were not significant, demonstrating that dual incubation
did not yield more-than-additive effects. Taken together,
these results suggest that TLR9 agonists such as CpG ODN

2006 can increase the ability of CP-870,893 to induce T
cell stimulatory capacity of B cells.

Discussion
CD40 activation of APC plays an important role in driving
anti-tumor T cell-mediated immune responses, and ago-
nist CD40 antibodies which mimic the action of CD40
ligand are thought to represent promising therapeutics for
novel immune strategies for cancer [9]. In this study, we
evaluated the potential of the fully human agonist CD40
mAb CP-870,893 to activate human B cells and trigger T
cell responses in vitro. CP-870,893 has been evaluated in
phase I clinical trials for the treatment of advanced solid
tumor malignancies and shown early signs of clinical effi-
cacy, especially in patients with melanoma [14]. The pri-
mary pharmacodynamic effect of CP-870,893 has been a
rapid decrease in circulating B cells associated with upreg-
ulation of CD86 expression on B cells that remain in cir-
culation after infusion [14] (JR and RHV, unpublished
observations). We now report direct evidence that CP-
870,893 activates human B cells, including classically
defined memory and naïve subsets, triggering increased
expression of immuno-stimulatory molecules and pro-
duction of cytokines. Furthermore, we found that CP-
870,893-stimulated B cells induce proliferation of allore-

CD19+ B cell cytokine secretion in response to in vitro stimulationFigure 2
CD19+ B cell cytokine secretion in response to in vitro stimulation. Purified CD19+ B cells were stimulated with the 
negative control hIgG2 antibody and control ODN (neg), CD40 agonist mAb CP-870,893 (CP), CpG ODN 2006 (CpG), or 
both CP-870,893 and CpG ODN 2006 (CP + CpG). (A) IL-6 and (B) IL-10 concentrations were measured using cytokine 
bead array of supernatant at 48 hr. Mean values for 7 donors tested are shown with standard deviations. ** indicates p < 0.01 
for the comparisons shown.
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active T cells that secrete effector cytokines such as IFN-
gamma and IL-2. These results underscore the agonistic
effects of CP-870,893 and demonstrate that the antibody
can accomplish an activation state of resting human B
cells consistent with licensed APC. Clinically, for patients
receiving CP-870,893, there may be a link between the
ability of CP-870,893 to activate B cells and the rapid (but
transient) depletion of CD19+ B cells from circulation
after infusion if cell adhesion molecules and chemokine
receptors as also upregulated in vivo as part of activation.
In vitro, we have observed increases in CD54 and CCR7
(10-fold and 1.4-fold increase in MFI, respectively) fol-
lowing 48 hr incubation of purified B cells with CP-
870,893 (data not shown), which supports a hypothesis
that CP-870,893 activation might drive circulating B cells
into tumor, lymph nodes, or spleen. It should be noted,
however, that acute splenomegaly or lymph node swelling

has not be observed in patients following CP-870,893
infusion [14].

By further evaluating CP-870,893 in combination with
CpG ODN 2006, we also found in this study that TLR9
signalling augments the action of CP-870,893 on B cell
marker expression, B cell cytokine production, and allore-
active T cell IFN-gamma production for both memory and
naïve B cell subsets. Clinical grade versions of CpG ODN
2006 have already undergone clinical testing [35-39], and
one formulation, PF-3512676, is owned by the same
manufacturer as CP-870,893, which heightens the transla-
tional potential of combining CD40 and TLR9 stimula-
tion in patients. Although the mechanism of the
augmented effect with dual stimulation remains to be
fully explained, the signalling pathways of CD40 and
TLR9 are largely distinct from each other proximally but

Effect of CP-870,893 on T cell stimulatory capacity of B cellsFigure 3
Effect of CP-870,893 on T cell stimulatory capacity of B cells. Purified CD19+ B cells from each of 7 donors were 
stimulated as described in Figure 2, irradiated, then co-cultured for 5 days with CFSE-labeled purified allogeneic CD4+ T cells 
at the indicated B cell:T cell titrations. (A) Percentage of CFSElow T cells and (B) T cell IFN-gamma production (left panel) or 
T cell IL-2 production (right panel) for T cells incubated with CP-870,893-stimulated CD19+ B cells (solid line) or T cells incu-
bated with negative control-stimulated CD19+ B cells (dashed line) at the indicated B cell to T cell ratios. Mean values for 7 
donors tested at each condition are plotted and statistics for B:T ratio equal to 1:2 are given in the text. CP, CP-870,893 incu-
bation; neg, negative control.
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distally share some common signalling nodes such as
NFkappaB and MAP kinases [9]. Moreover, in mice, posi-
tive effects of dual CD40 and TLR activation have been
well-described [13,26], providing further pre-clinical
rationale to test CD40/TLR9 combined therapy in human
cancer patients. Expansion of antigen-specific T cells, for
example, is enhanced with the use of CD40 and TLR ago-
nists [26]. A more recent analysis of combined vs. mono-
therapy in a mouse melanoma model showed that
combined activation via CD40 and TLR9 results in tumor-
infiltrating CD8+ T cells at a very high frequency and with
potent anti-tumor activity [13]. Because, however, TLR9
expression significantly differs between mice and
humans, mouse studies are not fully relevant to human
translational efforts in this regard [38], and the current
work is needed to demonstrate the physiological impact
of clinical grade CD40 agonists in patients.

Our data provides evidence that combined CD40 and
TLR9 signalling, and in particular CP-870,893 plus CpG
ODN 2006, induces activation of human B cells more
than either agent alone. Taken together, these findings
suggest that the combination of CP-870,893 and CpG
ODN 2006 represents a practical - and available - clinical
approach to test the hypothesis that dual CD40/TLR9 acti-
vation in vivo can promote tumor immunity in patients.

We have recently reported that patients with advanced
solid tumors exhibit marked disturbances in B cell home-
ostasis, manifest in particular by a collapse of the circulat-
ing CD27+ memory B cell population [24]. We therefore
studied both CD27+ memory B cells and CD27neg naïve B
cells in this investigation. We found that CP-870,893 was
effective at activating either subset, but as expected,
CD27neg B cells appeared relatively hyporesponsive to CP-

CpG enhances CP-870,893-mediated T cell stimulatory capacity of B cellsFigure 4
CpG enhances CP-870,893-mediated T cell stimulatory capacity of B cells. Purified CD19+ B cells were stimulated 
as in Figure 2 and used as stimulators in an MLR as described in Figure 3. (A) Percentage of CFSElow T cells and (B) T cell IFN-
gamma production (left panel) or T cell IL-2 production (right panel) are shown for responding T cells at a B cell to T cell ratio 
of 1:2. Mean values for 7 donors tested are shown with standard deviations. * indicates p < 0.05 for the comparisons shown, ** 
indicates p < 0.01. neg, negative control; CP, CP-870,893 incubation; CpG, CpG ODN 2006 incubation.
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870,893 compared to CD27+ B cells. CD27neg B cells also
appeared relatively hyporesponsive to stimulation with
CpG ODN 2006 or combined CP-870,893 and CpG ODN
2006 stimulation. For CD27neg B cells but not CD27+
memory B cells, the addition of CP-870,893 did not
increase the activation achieved with CpG ODN 2006
alone (whereas the addition of CpG ODN 2006 did
increase activation from CP-870,893 alone). Although
our results do not suggest that CP-870,893 and CpG ODN
2006 are synergistic, these results do suggest that the
inclusion of TLR9 stimulation is important for optimal
activation of naïve B cells, a finding of particular impor-
tance for patients with advanced cancer in whom naïve B
cells dominate the peripheral B cell compartment [24].
Indeed, TLR stimulation may be a universal requirement
for the full elaboration of any human B cell function, as it
has been recently shown that that TLR stimulation simul-
taneously with ligation of CD40 and the B cell antigen
receptor is required for full activation of naive human B
cells and production of antibodies in T-dependent
immune responses [40].

To what extent does CP-870,893-mediated B cell activa-
tion matter therapeutically, particularly if it has already
been established that CP-870,893 activates DC [22]?
Although measurements of B cell modulation following
infusion of CP-870,893 were initially pursued purely as a
potential pharmacodynamic measurement following
drug delivery, we hypothesize that B cell activation might
directly contribute at least in part to the mechanisms of
action of the antibody. It has become increasingly appre-
ciated that resting B cells regulate peripheral immune tol-
erance. As shown in multiple murine models, elimination
of peripheral B cells increases the potency of cancer vacci-
nation and improves cellular immunity [15-19]. In
humans, the use of CD20 mAb rituximab to eliminate
peripheral B cells in patients undergoing renal allograft
transplantation results in acute (T cell mediated) graft
rejection in 83% of subjects despite ongoing systemic
immunosuppression [41], findings that dramatically
underscore the critical role resting B cells can play in
mediating immune T cell tolerance. In light of classic stud-
ies that tolerogenic B cells in mice can be converted to
stimulatory cells following CD40-mediated activation
[21], our findings raise the hypothesis that CP-870,893
acting as a potent and selective agonist of CD40 may have
a similar pro-immunity effect on B cells in humans. Estab-
lishing evidence to support this hypothesis becomes an
important goal of future clinical trials with CP-870,893.

In summary, our findings provide several important areas
of insight with regard to CP-870,893 as an anti-cancer
immune therapy. First, CP-870,893 induces activation of
highly purified B cells that were isolated without manipu-
lation from peripheral blood and evaluated in short-term

assays, demonstrating that the mAb is agonistic. Second,
CP-870,893-activated B cells are able to trigger prolifera-
tion of T cells that secrete high levels of effector cytokines,
suggesting a potential role for CP-873,893 in licensing
CD40-expressing APC in humans to enable high quality T
cell responses. Third, the effects of CP-870,893 on B cells
can be increased with simultaneous TLR9 stimulation. If
as suggested by elegant mechanistic studies in mouse
models [2-7], the therapeutic goal of CD40 agonists is to
activate APC to trigger T cell immunity in patients, our
data and that of others [13,26,42] provide a rationale for
clinical strategies that combine CD40 activation with
TLR9 ligation.

Conclusion
Our data demonstrate that the clinical CD40 mAb CP-
870,893 is agonistic and activates naïve and memory B
cells with properties consistent with licensed APC. B cell
activation with CP-870,893 can be further increased with
TLR9 co-stimulation and can be accomplished with avail-
able clinical grade reagents.
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