
BioMed CentralJournal of Translational Medicine

ss
Open AcceResearch
Molecular signatures induced by interleukin-2 on peripheral blood 
mononuclear cells and T cell subsets
Ping Jin†1, Ena Wang†1, Maurizio Provenzano2, Sara Deola1, Silvia Selleri1, 
Jiaqiang Ren1, Sonia Voiculescu1, David Stroncek1, Monica C Panelli1 and 
Francesco M Marincola*1

Address: 1Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 
20892, USA and 2Immune Oncology Section, Department of Surgery, University Hospital ZLF, Hebelstrasse 20, 4031, Basel, Switzerland

Email: Ping Jin - pjin@cc.nih.gov; Ena Wang - ewang@cc.nih.gov; Maurizio Provenzano - maurizio_provenzano@yahoo.it; 
Sara Deola - sdeola@cc.nih.gov; Silvia Selleri - selleris@cc.nih.gov; Jiaqiang Ren - renj@cc.nih.gov; Sonia Voiculescu - voiculescus@cc.nih.gov; 
David Stroncek - Dstroncek@cc.nih.gov; Monica C Panelli - MPanelli@mail.cc.nih.gov; Francesco M Marincola* - FMarincola@cc.nih.gov

* Corresponding author    †Equal contributors

Experimentally, interleukin-2 (IL-2) exerts complex immunological functions promoting the
proliferation, survival and activation of T cells on one hand and inducing immune regulatory
mechanisms on the other. This complexity results from a cross talk among immune cells which
sways the effects of IL-2 according to the experimental or clinical condition tested. Recombinant
IL-2 (rIL-2) stimulation of peripheral blood mononuclear cells (PBMC) from 47 donors of different
genetic background induced generalized T cell activation and anti-apoptotic effects. Most effects
were dependent upon interactions among immune cells. Specialized functions of CD4 and CD8 T
cells were less dependent upon and often dampened by the presence of other PBMC populations.
In particular, cytotoxic T cell effector function was variably affected with a component strictly
dependent upon the direct stimulation of CD8 T cells in the absence of other PBMC. This
observation may provide a roadmap for the interpretation of the discrepant biological activities of
rIL-2 observed in distinct pathological conditions or treatment modalities.

Human recombinant interleukin (rIL)-2 is a cytokine
approved by the Food and Drug Administration for the
treatment of advanced melanoma and renal cell cancer
because it can induce complete cancer regression in a
small but consistent proportion of patients [1,2]. In addi-
tion, systemic rIL-2 alone [3] or in combination with anti-
gen-specific immunization [4] increases the frequency of
interferon (IFN)-γ-producing memory T cells in human
immunodeficiency virus-infected individuals and
improves anti-viral responses [5]. Conversely, IL-2 recep-
tor (IL-2R) antagonists are used to decrease the frequency

of allograft rejection [6]. Thus, rIL-2 is used clinically to
generate desired immune responses and its blockade to
hamper unwanted ones. Recently, however, it has been
suggested that rIL-2 increases the frequency of regulatory
T cells in cancer patients [7]. Concordantly, while lymph
depletion, believed to preferentially eliminate regulatory
T cells, restores the effectiveness of rIL-2 administered
together with tumor-specific T cells to patients with rIL-2-
refractory melanoma [8]. Empirically, in vivo rIL-2 admin-
istration induces high serum levels of acute phase reac-
tants [9,10]. and a broad range of cytokines with
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conflicting pro- or anti-inflammatory properties [11]
whose secretion is only partially accountable to direct
interactions between rIL-2 and IL-2R-bering cells [12].
Thus, it should not surprise that rIL-2 may display a bipo-
lar behavior in complex systems inducing opposite effects
depending upon the circumstances in which it is delivered
sometimes inducing activation, proliferation and survival
of cytotoxic T and natural killer cells [13,14] and other
times inducing tolerance through expansion of regulatory
T cells [15] or activation-induced cell death [16].

Sorting the biological component relevant to tumor rejec-
tion out of the broad effects induced by rIL-2 administra-
tion has important practical implications because some
are responsible for severe toxicity limiting its clinical use-
fulness [17-20]. A number of clinical and experimental
observations suggest that rIL-2-induced toxicity is partly
linked to its effectiveness since blocking toxicity abrogates
efficacy [21,22]. Yet, the biological mechanism(s) respon-
sible for cancer rejection diverge(s) at some point from
toxicity since the latter is characterized by an idiosyncratic
and unpredictable pattern statistically dissociated from
clinical outcome [23].

We have previously compared the systemic effects of rIL-2
in peripheral blood monocytes (PBMC) to the peripheral
effects induced in melanoma metastases three hours after
administration to patient with metastatic melanoma [24].
Consistent peripheral effects were observed which were
distinct from the systemic effects and included activation
of tumor-associated macrophages and up-regulation of
interferon stimulated genes (ISGs) with minimal induc-
tion of migration, activation and proliferation of T cells.
These effects were insufficient to induce cancer regression
since they occurred in all the metastases independently of
clinical outcome. However, analysis of a metastasis that
regressed in response to therapy suggested that recruit-
ment of cytotoxic T cells and the activation of their effec-
tor function at the tumor site is required for cancer
rejection [24]. Indeed, in vitro activation of tumor antigen-
specific T cell reproduced transcriptional signatures con-
sistent with the activation of effector functions associated
with tumor rejection [25]. Thus, it appears that peripher-
ally rIL-2 induces two transcriptional patterns: a reproduc-
ible activation ISGs which is unrelated to cancer rejection
and an occasional induction of T cell effector functions
closely linked to cancer clearance. These different out-
comes might be determined by a distinct immune envi-
ronment in responsive compared to refractory tumors
resulting from alternative interactions among different
immune cells [26].

To provide a road map for the interpretation of future
clinical studies, we characterized molecular pathways
associated with rIL-2 by stimulating in vitro PBMC that

most likely approximate the immunological cross talk
occurring in vivo following rIL-2 administration [24] and
sorted direct effects on CD4 and CD8-expressing T cells
from those resulting through a concerted cross talk among
PBMC. PBMC obtained by leukapheresis from 47 normal
donors of distinct ethnic background (30 Caucasian and
17 Chinese subjects) were stimulated in vitro with 300 IU/
ml of rIL-2. By selecting two ethnic backgrounds, homo-
geneity of results due to sample bias was minimized
increasing, at the same time, the chances of identifying
genetic traits relevant to IL-2 biology. The following
known functions of rIL-2 were considered: 1) modulation
of signaling down-stream of the IL-2R; 2) amplification of
rIL-2 signaling through enhancement of IL-2R complex
affinity/availability and other receptors; 3) Modulation of
signaling through the T cell receptor (TCR); 4) Induction
of lymphokine and immune-effector molecules; 5) T cell
subsets-specific effects. Predominantly we followed sign-
aling pathways previously characterized by others [27-
29]. The results indicate that rIL-2 induces generalized T
cell activation and anti-apoptotic effects, which are highly
dependent on bystander interactions among immune
cells other than T cells while specialized function of CD4
and CD8 T cells are less dependent on them. Moreover,
the effector function of cytotoxic T cells follows a bipolar
pattern variably affected by the presence of bystander
immune cells with a fraction strictly dependent upon the
direct stimulation of CD8 T cells by rIL-2 in the absence of
other PBMC.

Results
Global effects of rIL-2 on the transcriptional pattern of 
PBMC
The present study was designed to comprehensively char-
acterize molecular pathways induced in PBMC by the
exogenous administration of human rIL-2 at a concentra-
tion corresponding to intermediate pharmaceutical doses
(300 IU/ml) [24]. Donors from two biogeographically-
defined backgrounds (30 Caucasians and 17 Chinese)
[30] were selected to decrease sampling-dependent biases.
This collection of donor PBMC is part of a larger study
aimed at the comparison of immunological and genetic
traits in human subjects of different genetic background
(NIH protocol 04-CC-0007).

We first analyzed the effects of rIL-2 on PBMC from all
donors (Table 1). A two-tailed paired t test (cut-off p2-
value < 0.005) comparing gene expression changes
between non-treated and rIL-2-treated PBMC from the 47
donors identified 1,690 cDNA clones (complete list avail-
able as additional file 1). To determine whether the
number of genes found to be differentially expressed was
higher than expected by chance, we applied a permutation
test randomly shifting the assignment of samples among
different classes and re-computed the t test statistics each
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time. This analysis was repeated 10,000 times and the pro-
portion of the random replications that resulted in as
many significant genes as seen in the actual data set was
reported as the significance level. Multivariate and univar-
iate permutation test supported the significance of the
findings (p2-value = 0 and 0.007 respectively). The same
pair wise analysis was performed within each ethnic
group and identified 1,340 cDNA clones in Caucasian and
411 in Chinese samples. To correct for the different
number of donors included in each ethnic group the same
analysis was performed testing PBMC from the first 17
consecutive Caucasian donors. Even in this case, a differ-
ential expression of a larger number of genes (784 genes)
was observed in Caucasians. In all cases multivariate and
univariate permutation analyses were significant.

Although the previous analysis suggested higher reactivity
to rIL-2 in PBMC from Caucasians compared to Chinese,
further analyses failed to identify convincingly significant
differences among the two ethnic groups. In addition,
sequencing of the IL-2Rβ chain did not support a geneti-
cally determined variability in the response to rIL-2. Of 8
polymorphic sites identified (one previously unreported
at nucleotide 1283) only one lead to an amino acid sub-
stitution in position 391 ( additional file 2). Although this
variant is potentially relevant because it is just proximal to
a tyrosine residue (position 392) [14], it was functionally
conservative (from an aspartic (asp) to a glutamic acid
(glu) and was never present in homozygous conditions.
Nine of 30 (30%) Caucasian and 9 of 17 (53%) Chinese
subjects were heterozygous for both variants (Fisher's
exact test p2-value = 0.2). The heterozygous phenotype did

not significantly affect the transcriptional program of
PBMC (data not shown) suggesting that the response to
rIL-2 is conserved among different ethnic groups and it is
not affected by polymorphisms of the signaling "work
horse" of the IL-2R [31]. Thus, contrary to other cytokines
[32], the response to rIL-2 does not seem to be strongly
influenced by genetic background at least at the popula-
tion level. The subsequent analysis was, therefore, based
on the complete data set. A second more inclusive analysis
was also performed with a less stringent threshold of sig-
nificance (paired two-tailed Student t test p2-value < 0.05,
analysis e, Table 1). The analysis identified 3,926 cDNA
clones of which 1,973 (corresponding to 1,592 named
genes) were up regulated and 1,953 down regulated
(1,491 named genes) by rIL-2. This second analysis was
used to include genes of borderline significance when rel-
evant for purposes of discussion but did not serve as the
primary data base.

1) Modulation of signaling down-stream of the interleukin-2 receptor
This analysis was based on a schematic representation by
Gaffen SL [31] of the signaling domains of the IL-2R sep-
arating pathways associated with the IL-2/15Rβ cytoplas-
mic tail from those associated with the common γ chain
(γc) cytoplasmic tail (Figure 1A and 1B).

Pathways associated with the IL-2/15Rβ cytoplasmic tail
The IL-2/15Rβ cytoplasmic tail is the work horse of IL-2
signaling [31]. The proximal cytoplasmic tail ("s" region)
contains a serine rich domain tightly associated with sign-
aling through Janus (JAK) kinases 1 and (upon receptor
activation) JAK-3 [33,34]. JAK-3 was significantly up-reg-

Table 1

Ethnic Group Class Comparison Student t test
p2-value < 0.005

# genes differentially expressed

Permutation Test (p-value)

Multivariate Univariate

a) All Donors (n = 47) IL-2 vs No-Stim 1690 0 0.007
b) Chinese (n = 17) IL-2 vs No-Stim 411 0.001 0.019
c) Caucasians (n = 30) IL-2 vs No-Stim 1340 0 0.009
d) Caucasians (n = 17) IL-2 vs No-Stim 784 0 0.01

Ethnic Group Class Comparison Student t test
p2-value < 0.05

# genes differentially expressed

Permutation Test (p-value)

Multivariate Univariate

e) All Donors (n = 47) IL-2 vs No-Stim 3926 0 0

Genes with expression altered by exposure of PBMC in response to rIL-2 (300 IU/ml) in vitro – BMC were obtained from 30 Caucasian (Ca) and 17 
Chinese (Ch) normal donors. Class comparison was performed by two-tailed Student t test with as cutoff of significance a p2-value <0.005 
comparing CY5/Cy3 log2 ratios between test and reference samples (see Materials and Methods). Multivariate and univariate permutation test 
evaluated the significance of the comparisons.
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ulated by rIL-2 (paired t test p2-value < 0.001) while JAK-
1 was significantly down-regulated (paired t test p2-value
< 0.005). The central cytoplasmic region ("a" region)
includes four tyrosine residues whose phosphorilation is

associated with signaling events. The motif surrounding
Tyr 338 is a docking site for Shc [35] which connects sig-
naling to the Ras-Raf-MAPK pathway. Sch expression was
not altered by rIL-2; however, several genes associated

A – Signaling pathways linked to the intracellular domains of the IL-2Rβ and the γc chains based on Gaffen SL [14] and Leonard WJ and O'Shea [120]Figure 1
A – Signaling pathways linked to the intracellular domains of the IL-2Rβ and the γc chains based on Gaffen SL [14] and Leonard 
WJ and O'Shea [120]. Highlighted boxes refer to different domains of the receptor subunits. Red arrows refer to pathways 
that appeared activated by rIL-2 administration and red gene names refer to those significantly up-regulated by rIL-2. Blue 
arrows and names refer respectively to pathways and genes whose expression was not affected by rIL-2. In green are pathways 
and genes significantly down regulated by rIL-2. The letters "s", "a" and "h" refer to the proximal, middle and distal regions of 
the IL-2Rβ chain – B Relative expression of various genes associated with IL-2R signaling whose expression is significantly 
affected by rIL-2 based on a two-tailed paired t test comparing non-stimulated with rIL-2-stiulated PBMC from all 47 donors. 
Ratios are displayed according to the central method for normalization [92]. Light blue and red horizontal bares underline 
PBMC sample from Caucasian and Chinese donors; in separate panels CD4 (small red horizontal bar) and CD8 T cells (light 
blue bar) separated by negative bead separation (Miltenyi Biotech, Bergisch Gladbach, Germany) are compared with CD4 and 
CD8 T cells (orange and dark blue horizontal bars respectively) purified before exposure to rIL-2 – C Top, panel; mRNA 
expression (expressed as log2 CY5/Cy3) of signal transducers and activators of transcription (STAT)-1, -3 and 5a in non-stimu-
lated PBMC (white bars) or after stimulation with 300 IU/ml of rIL-2 (Blue filled bars). In addition, proportional mRNA levels of 
three well characterized targets of STAT-5 are shown (CISH, BCL-2 and PIM1); bottom panel: mRNA expression of interferon 
regulatory factors (IRF) in non-stimulated PBMC (white bars) or after stimulation with 300 IU/ml of rIL-2 (maroon filled bars). 
Significance is based on a paired two-tailed Student t test between non-stimulated and rIL-2 stimulated samples from all 47 
donors (analysis a, table 1).
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with its function were strongly up-regulated including
Grb-2, SOS, LNK [36] and EOS (ZNFN1A4)-Bcl-2 (paired
t test p2-values < 0.001 for all). In addition, rIL-2 had no
effect on the expression of the MAPK-dependent gene Bad
(Bcl-2 antagonist of cell death) and no effect on the tran-
scription of c-fos while it significantly up-regulated the
catalytic peptides of the phosphatidylinositol 3-kinase (PI
3-K) including the α, β and δ subunits. This may represent
a central mechanism through which IL-2 promotes sur-
vival of T cells [37,38]. In association, E2F was found to
be significantly up regulated and its up regulation corre-
sponded to increased expression of various cyclins with a
predominant effect on cyclin D consistent with previous
reports [39].

An important pathway regulated by tyrosine containing
domains (both in the "a" and the "h" region) is the phos-
phorilation of signal transducer and activator of transcrip-
tion (STAT)-3 and STAT-5A and -B. STAT-3 and 5A were
significantly induced by rIL-2 (Figure 1C) and their
expression tightly correlated with that of the IL-2Rα chain
expression as previously described [40-44]. On the con-
trary, the expression of the homologous genes STAT-5B
was not significantly affected. This, however, did not
affect STAT-5 dependent transcription at least at this time
point since the expression of three well-defined target
genes of STAT-5 (CISH, BCL-2 and PIM1) involved in sur-
vival, proliferation and negative regulation of cytokine
receptor signaling was strongly up-regulated by rIL-2 [45].
Downstream of STAT-5 various cyclins and FAS were up
regulated while FASL, c-FLIP, NMI, SOCS-1 and -3 (other
known targets of STAT-5 activation [14]) were unaffected
suggesting that in this in vitro model rIL-2 promotes the
expression of genes associated with proliferation either
directly (cyclins) or through an autocrine proliferative
response (IL-2Rα) while decreases the responsiveness of
cells to pro-apoptotic signals or other regulatory feedback
mechanisms (SOCS-1 and -3). One putative target of
STAT signaling is the interferon regulatory factor (IRF)-1
[46]. IRF-1 was induced by rIL-2 in PBMC (Figure 1C) as
previously described [47] and its expression was most
prominent in CD4 T cells stimulated in the absence of
bystander PBMC (see later). IRF-1 is essential for cytotoxic
T cell and natural killer cell function in vivo [48] and we
previously observed that IRF-1 is consistently expressed
together with several ISGs in melanoma metastases of
patients receiving rIL-2 [24]. In addition, IRF-1 expression
persists after treatment selectively in melanoma metas-
tases undergoing complete regression in response to rIL-2
therapy combined to antigen-specific immunization [26].
Since IRF-1 expression is also induced by IFN-γ but not
other type I IFNs [49] it remains to be elucidated whether
this is a direct effect of rIL-2 on immune cells or depends
upon the secondary production of IFN-γ.

Pathways associated with the common γ chain (γc) cytoplasmic tail
The γc chain has a relatively minor role in IL-2-depedent
signaling. However, a central role of JAK-3 has been
clearly demonstrated [50]. The expression of the γc chain
was not significantly modulated by rIL-2 at the transcrip-
tional level (Figure 2A and 2B). It is possible that JAK-3
over expression may serve as an enhancer of signaling
through this IL-2R subunit. Interestingly, Calpain 1, a
cysteine protease which down regulates γc chain expres-
sion by cleavage, was significantly up regulated by rIL-2
suggesting a possible regulatory mechanism [51]. Among
other IL-2 dependent signaling events [14], the expression
of src-family tyrosine kinases, the tyrosine kinase Pyk2
and the SH3- and ITAM containing molecules STAM and
STAM2 was not significantly altered by rIL-2, However,
the expression of STAM binding protein (STAMB) was
strongly down regulated by rIL-2.

The activation of most of the genes associated with IL-2R
signaling was strongly dependent upon the presence of
the whole PBMC population. Analysis of T cells subsets
(Figure 1B) clearly demonstrated that most genes were up-
regulated in CD4 and CD8 T cells isolated from PBMC
after exposure to rIL-2 but not in pre-sorted CD4 and CD8
subsets. Thus, we observed throughout the study that
potentiation of rIL-2 signaling and activation of pro-pro-
liferative (cyclins) and anti-apoptotic (BCL-2) signals
depends upon the crosstalk between T cells and other
"bystander" immune cells.

2) Amplification of IL-2 signaling through enhancement of IL-2R 
complex affinity/availability and other receptors
The expression of several cytokine and growth factor
receptors was altered by rIL-2. Four major self organizing
gene clusters were up regulated (a-d, Figure 2A) and two
down regulated (e-f, Figure 2A) by rIL-2.

Cluster a contained receptors associated with immune cell
survival. The transferrin receptor, CD71 which is vital for
continued cell growth, is induced in hematopoietic cells
by various cytokines including IL-2 to maintain T cell pro-
liferation [52,53] and its pattern of expression coincides
with that of CD25 (IL-Rα) in T cells stimulated through
CD3 and CD28 triggering [54]. The transferrin receptor is
necessary for activated T cell survival and its blockage with
monoclonal antibodies can arrest proliferation [55]. The
induction of CD71 expression and its stabilization by IL-
2 had been previously reported [56]. Surprisingly, the
expression of CD71 was tightly linked to that of MET
(receptor for hepatocite growth factor and the macro-
phage-stimulating protein), the urokinase plasminogen
activator (PLAU) and its receptor (PLAUR) both required
for activation of hepatocite growth factor-mediated cell
proliferation [57]. This cluster also included CKCL16
which binds to CXCR6 and is involved in trafficking of
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immune cells to site of inflammation [58] and the inter-
leukin-1 receptor antagonist which inhibits the pro-
inflammatory effects of IL-1 [59]. The induction of expres-
sion of these receptors by rIL-2 was likely to occur in cells
other than T cells since their expression was not signifi-
cantly altered in CD4 and CD8 subsets whether stimu-
lated in the presence or absence of bystander PBMC.

Cluster b included the insulin-like growth factor receptor-
1 and the colony stimulating factor-2 receptor-β. The
former has been associated with T cell activation/prolifer-
ation and sensitization to insulin [60]. This small cluster
included also genes associated with down-regulation of T
cell reactivity such as the prostaglandin E receptor [61],
the retinoic acid receptor-γ (RARG) [62] and the IL-10Rα.

A – Clusterogram of genes associated with receptor function significantly modulated by rIL-2 obtained by pair wise t testFigure 2
A – Clusterogram of genes associated with receptor function significantly modulated by rIL-2 obtained by pair wise t test. Light 
blue and red horizontal bares underline PBMC sample from Caucasian and Chinese donors; in separate panels CD4 (small red 
horizontal bar) and CD8 T cells (light blue bar) exposed to rIL-2 in the presence of PBMC and subsequently isolated are com-
pared with CD4 and CD8 T cells (orange and dark blue horizontal bars respectively) purified before exposure to rIL-2. Dis-
tinct signatures are labeled in italic; B – mRNA expression of different sub-units of the IL-2R and the IL-7R without (white 
bars) or following stimulation (blue filled bars) with 300 IU/ml of rIL-2. Significance refers to a pair wise t test. C – Expression 
of the IL-2Ra chain in CD4 and CD8 T cells stimulated with rIL-2 in the presence of bystander PBMC (average ± SEM of six 
independent experiments, p2-values refer to a paired two-tailed t test between samples exposed to rIL-2 or non stimulated); D 
– Expression of the IL-7Ra chain in CD4 and CD8 T cells stimulated with rIL-2 in the presence of bystander PBMC (average ± 
SEM of six independent experiments, p2-values refer to a paired two-tailed t test between samples exposed to rIL-2 or non 
stimulated); E Concentration IL-4, IL-7, IL-9 and IL-15 (pg/ml, average of 47 donor samples) in the supernatant of PBMC cul-
tures containing (rIL-2) or not containing (No Stim) 300 IU/ml of rIL-2. Supernatants were harvested after 24 hours. Statistical 
significance refers to a pair wise t test;
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Modulation of the last two receptors was T cell-specific
because occurred in CD4 and CD8 T cells stimulated in
the presence or absence of bystander PBMC.

Cluster c was characterized by the coordinate up regula-
tion of several receptors for cytokines belonging to the
common cytokine-receptor γ-chain (γc) (IL-2Rα, IL-2/IL-
15Rβ, L-4Rα and-15Rα) and other immune stimulatory
cytokines (IL-12Rβ and the IL18R accessory protein (Fig-
ure 2A and 2B). The expression of the IL-21R β-subunit
which also participates to the cytokine-receptor common
γ-chain complex [63] was not affected by rIL-2 stimula-
tion. This is relevant since IL-21 participates in the modu-
lation of lymphoid proliferation, apoptosis and
differentiation. Unfortunately, no cDNA clones represent-
ative of the IL-9R (another common cytokine-receptor γc
family member) were present in the arrays. Coordinately
expressed with these receptors was also the expression of
various nuclear receptors, integrin α 4 (CD49D, integral
part of the VLA-4 receptor), the TCR δ chain, the platelet-
derived growth factor receptor-α and several tumor necro-
sis factor receptor-associated transcripts). This observa-
tion suggests that rIL-2 amplifies its effects not only by co-
regulating its own receptors but also by increasing the
expression of receptors for other immune regulatory
cytokines. Consistent with others' reports [39,64]., how-
ever, the three cDNA clones specific for the IL-7Rα chain
(another member of the common cytokine-receptor γc
chain family) were strongly and consistently down regu-
lated (Cluster f, Figure 2A and 2B). This is important
because this cytokine regulates different phases of
immune activation through differential expression of its
receptor [65-67]. Interestingly, IL-7Rα down regulation
was not associated with a decrease in the expression of
BCL-2 or lung Kruppel-like factor, both involved in IL-7-
dependent cell survival [68,69]. In fact, the expression of
both genes was significantly up-regulated by rIL-2 sup-
porting the hypothesis that rIL-2 (and indirectly IL-15)
promotes clonal expansion of CD8+ T cells independently
of IL-7 in the early phases of activation while it may not
be involved in the maintenance of memory T cells which
requires both IL-7Rα and IL-15Rα expression. This is also
supported by the significant down-regulation of CD62L
observed in rIL-2-stimulated PBMC (paired Student t test
p2-value <0.001) compatible with an effector memory T
cell phenotype [70,71]. The significance of the complete
shut down of IL-7R transcription warrants more detailed
analysis in the future since it was not as clearly seen in T
cell subsets stimulated in the absence of PBMC. This sug-
gests that this important modulation is dependent upon
the influence of other immune cells present in the PBMC
population. Subset analysis also demonstrated that the IL-
2Rα chain was preferentially up regulated in CD4 com-
pared with CD8 cells at this rIL-2 concentration. As for
several other genes, cyto-fluorimetric analysis demon-

strated that the changes in IL-2Rα (Figure 2C) and IL-7Ra
(Figure 2D) progressed incrementally in time (3 to 7 days)
underlying the lag existing between transcriptional activa-
tion and functional effect.

At the protein level, rIL-2 induced a significant release of
cytokines belonging to the common cytokine-receptor γc
chain family including IL-4, IL-7, IL-9 and IL-15 (Figure
2E). Obviously, IL-2 levels were also significantly
increased in culture by it was not possible to distinguish
whether endogenous expression of IL-2 by PBMC contrib-
uted to this increase. Thus, rIL-2 induces a generalized
release of cytokines belonging to the common cytokine-
receptor γc chain family but modulates cell responsive-
ness though the differential expression of cytokine-spe-
cific sub-units of the IL-2R. The significant modulation of
different subunits of receptors associated to the common
γc was not associated with modulation of the γc subunit
itself suggesting that cytokine responsiveness within the
family relies primarily on the differential expression of
private cytokine-specific receptor subunits. Lack of modu-
lation of the γc subunit of the IL-2R contrasts others exper-
imental conditions in which IL-2 rendered T cells
susceptible to apoptotic cell death through down-regula-
tion of the γc in mice in vivo [72] underlining the strong
dependence of cytokine signaling studies on the experi-
mental condition tested.

3) Modulation of TCR signaling
The expression of IL-2 and other cytokines is controlled at
multiple levels by T cells and it is mutually linked to TCR
signaling [73,74]. Neither the TCR nor its associated co-
receptors (CD3, ZAP-70, CD28 and CTLA-4) were affected
by rIL-2. However, rIL-2 significantly affected downstream
modulators of TCR signaling [14] converging toward
cytokine promoter domains. For instance, the phospholi-
pase C (PLC)γ-dependent pathway [75,76]. activates three
major classes of transcription factors: NFAT, NF-kB and
AP-1. In turn, rIL-2 can modify the expression of genes
associated with these pathways (Figure 3A). The immedi-
ate signaling down-stream of linker for the activation of T
cells (LAT) was consistently down-regulated (LcK, PLCγ)
while the spleen tyrosine kinase (SYK) associated with
TCR signaling was not significantly induced by rIL-2 (data
not shown). However, downstream activators of cytokine
transcription were up regulated. Ras associated GTPases
expression was up-regulated in association with several
MAP kinases (AMPK6, 7, 8). Tightly co-up regulated in the
same cluster with NF-kB were several cDNA clones repre-
senting TANK (TRAF family member associated with NF-
kB activation), NFAT-5 and Oct-1. Rho-C and associated
genes were co-expressed in a separate cluster (Figure 3B).
No induction of expression of either Jun or Fos (AP-1
complex) was observed (data not shown). A very interest-
ing cluster included genes most consistently induced by
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rIL-2 in all donors (between yellow horizontal bars, Fig-
ure 3B). This cluster was enriched with genes classically
associated with TCR signaling such as PKC-θ, SOS, GRP-1,
and VAV. Particularly interesting was the up-regulation of
CISH (cytokine inducible SH-2 domain containing pro-
tein) (paired t test p2-value 1 × 10-23). This was by far the
gene most consistently up-regulated by rIL-2. CISH is a
member of the SOCS adaptor family associated with TCR-
mediated proliferation and survival of T cells [77] and its
expression is specifically dependent upon the activation
of STAT-5).)[45]. Increased expression of CISH has been
reported in association with MAP kinase activation fol-

lowing TCR triggering leading to proliferative responses
and prolonged survival of activated T cells [28,77]. CISH
is a known early responder to IL-2 stimulation [78] and
the high consistency of its induction suggests a crucial role
of CISH in the interface between TCR-dependent and
cytokine-dependent T cell proliferation and survival [28].
CISH and SOCS-2 were the only two members of the
SOCS family to be significantly modulated by rIL-2 (Fig-
ure 4A and 4B). The expression of these two genes corre-
lated loosely in resting PBMC (R2 value = 0.23; blue
empty circles, Figure 4C) but was tightly correlated fol-
lowing rIL-2 stimulation (R2 value = 0.72; red full circles,

A – Signaling pathways downstream if TCR and CD28 as exemplified by modulation of IL-2 expression in T helper cells accord-ing to Gaffen SL and Liu KD [14]Figure 3
A – Signaling pathways downstream if TCR and CD28 as exemplified by modulation of IL-2 expression in T helper cells accord-
ing to Gaffen SL and Liu KD [14]. In gray are genes whose expression was not significantly affected by rIL-2, in green those sig-
nificantly down-regulated and in red those significantly up-regulated. B – Clusterogram of genes shown in panel A. Light blue 
and red horizontal bares underline PBMC sample from Caucasian and Chinese donors; in separate panels CD4 (small red hor-
izontal bar) and CD8 T cells (light blue bar) exposed to rIL-2 in the presence of PBMC and subsequently isolated are compared 
with CD4 and CD8 T cells (orange and dark blue horizontal bars respectively) purified before exposure to rIL-2. The dashed 
orange arrow points at the expression of CISH in the clusterogram. Ratios are displayed according to the central method for 
display using a normalization factor [92].
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Figure 4C). The same correlation was described by Li S et
al. [77] in response to TCR stimulation suggesting over-
lapping biology and function of these two members of the
SOCS family. Of interest, however, is the distinct behavior
of STAT-5 in rIL-2 stimulated PBMC compared with TRC
stimulated T cells. While in our study, IL-2 significantly
induced the expression of STAT-5A, LI S et al. [77] did not
observe induction of expression of STAT-5 mRNA follow-
ing TCR stimulation although phospho-activation of the
protein was observed. Thus, it is possible that rIL-2
enhances the down-stream signaling of TCR stimulation
not only by allowing the activation of STAT-5 but also by
enhancing its expression. However, since no correlation

was noted, in our study, between STAT-5 expression and
that of CISH or SOCS-2 (data not shown) it is possible
that CISH modulation of TCR and IL-2 signaling is STAT-
5 independent in the early phases of the response to rIL-2
as suggested by others [77]. CISH expression may be cen-
tral to TCR-dependent signaling as it may function as an
intermediate regulator transmitting signals from the TCR
to the MAP kinase pathway through regulation of protein
kinase-C (PKC) θ and subsequent activation of c-Jun-N-
terminal kinase (JNK, TCR/CD28 dependent pathway)
and ERK (TCR-dependent pathway) [77,79]. It is possible
that the IL-2-induced enhancement of the expression of
genes associated with the JNK pathway might be at the

Relative expression (Log2 CY5/Cy3 ratio) of CISH (A), SOCS-2 (B) and scatter plot of their expression in baseline conditions (blue circles) and in response to rIL-2 (red circles) (C)Figure 4
Relative expression (Log2 CY5/Cy3 ratio) of CISH (A), SOCS-2 (B) and scatter plot of their expression in baseline conditions 
(blue circles) and in response to rIL-2 (red circles) (C). Relative expression of BCL-2 and related genes (D); the p2-values refer 
to a two-tailed paired t test. Light blue and red horizontal bars underline PBMC sample from Caucasian and Chinese donors; in 
separate panels CD4 (small red horizontal bar) and CD8 T cells (light blue bar) exposed to rIL-2 in the presence of PBMC and 
subsequently isolated are compared with CD4 and CD8 T cells (orange and dark blue horizontal bars respectively) purified 
before exposure to rIL-2. Ratios are displayed according to the central method for display using a normalization factor [92]. 
The average expression of BCL-2 and BCL-2L1 is shown of PBMC and individual T cell subsets in the graph below.
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basis of the reduced dependence of T cells on CD28-medi-
ated co-stimulation in presence of this cytokine. It is also
not clear what the biological effects of SOCS-2 could be in
response to rIL-2 stimulation. It was recently reported that
SOCS-2 may participate in enhancing IL-2 signaling by
accelerating the degradation of SOCS-3 [80]. Thus, rIL-2
induces in the conditions described here only two genes
belonging to the SOCS family both of them possibly asso-
ciated with stimulatory effects on T cell activation. Inter-
estingly, contrary to others' reports [29], we did not
identify significant alterations in the expression of SOCS-
1. Subsets analysis again suggested that with few excep-
tions (i.e. CISH and Rho-C) the up-regulation of these sig-
naling pathways was strongly dependent upon bystander
PBMC as primarily isolated CD4 and CD8 cultures were
not sensitive to this modulation (Figure 3B).

IRF-4 expression was strongly up regulated by rIL-2 (Fig-
ure 1C) confirming previous observations [39]. Expres-
sion of this transcription factor is specific to lymphoid
and myeloid cells and combines adjacent to NFAT bind-
ing motives on cytokine promoter regions interacting
with NFATc1 to enhance the production of IL-2, IL-4, IL-
10 and IL-13 [81]. It has been shown that IRF-4 expression
is driven through activation of NF-kB and NFAT pathways
[82] and it is dependent upon antigen-mimetic stimuli
such as TCR cross-linking or treatment with phorbol ester
[83]. Interestingly, while IL-4 (Figure 2D) and IL-13 (Fig-
ure 5) were up-regulated by rIL-2 no change in the release
of IL-10 was noted in this study either at mRNA or protein
level.

4) Lymphokine and immune-effector molecule regulation by rIL-2
Immune effector functions including lymphokines, lytic
granule-associated molecules and TNF/TNFR family
members were extensively modulated by rIL-2 (Figures 5
and 6). Four major clusters were identified. Cluster a
included genes down-regulated such as IL-8 and TGF-β
also reduced at the protein level in culture supernatants
(data not shown). This is in contrast with our previous in
vivo observation of consistently increased serum levels fol-
lowing systemic rIL-2 administration suggesting that the
release of these cytokines is dependent upon interactions
with cells other than PBMC [11,24]. Down regulation of
these cytokines was specific to CD4 and CD8 cells inde-
pendent of the presence of bystander PBMC. Consistent
with others' reports [29,39]., several receptors associated
with cell survival were also down-regulated including CD-
27, the nerve growth factor receptor and TOSO. TIA-1 (a
lytic granule associated protein whose over expression
before rIL-2 therapy but not after has been linked to the
immune responsiveness of melanoma metastases) was
down-regulated in accordance to others' in vitro experi-
mental findings [29]. Interestingly, down regulation of
TIA-1 occurred only in CD4 and CD8 subsets exposed to

rIL-2 in the absence of bystander PBMC suggesting that
the regulation of this biomarker of responsiveness to rIL-
2 is strongly dependent upon the immunological micro-
environment [26]. Cluster b) included genes associated
with lytic function such as cathepsins, granzyme-B, per-
forin 1, NK-4/IL32 and NKG7 which we have previously
reported over expressed by in vitro-activated immuniza-
tion-induced T cells [25]. Several of these genes were also
found to be over expressed in a melanoma metastasis
regressing in response to rIL-2 therapy [24]. Interestingly,
this cluster also included IL-15, lymphotoxin-α and β,
IFN-γ, FLT-3, caspase-2 and -8 and BCL-2. The expression
of the genes included in this cluster was strictly dependent
on rIL-2 stimulation as practically none of the non-stimu-
lated samples expressed them at any level. CD4 and CD8
subsets stimulated in the presence of bystander PBMC
behaved similarly with strong up regulation of all the
genes included in cluster b. However, the induction was
subset-specific in CD4 and CD8 cells exposed to rIL-2 in
the absence of bystander cells. In particular, CD4 T cells
over expressed caspase-8, lymphotoxin-α and β, FLT-3,
and NK-4/IL-32 while the over expression of granzyme-B,
perforin and NKG-7 became restricted to CD8 T cells (see
also later). This information may be extremely important
for future interpretation of in vivo data. For instance, as
later discussed, NK-4/IL-32 is becoming increasingly rec-
ognized as a biomarker central to immune effector func-
tion. Its over expression in acutely inflamed organs may
depend upon modulation by bystander cells.

Cluster c) included predominantly lymphokines (CSF-1,
TNF-α, IL-15, SCYE, MCP-1, MIP-1α and MIP-1β) whose
expression was coordinately associated with that of NF-kB
and TANK [84]. This cluster was characterized by expres-
sion of genes preferentially expressed by CD4 and CD8 T
cells in the absence of by-stander PBMC even in the
absence of rIL-2 stimulation. Finally, cluster d) contained
a functionally heterogeneous array of genes including IP-
10 and IL-12A also found to be over-expressed at the pro-
tein level in culture supernatants (paired t test p2-value <
0.01 and = 0.005 respectively) as well as survival/apopto-
sis associated factors such as calpain-1, Enolase-3 and
SMAD-7 [85,86].

5) T cell subset-specific effects of rIL-2 stimulation
The transcriptional alterations induced by rIL-2 in PBMC
were largely consistent with previous reports [29,39].
However, it remained to be elucidated to what degree rIL-
2 acts directly on T cells rather than through bystander
interactions. Therefore, we compared the transcriptional
profile of CD4 and CD8-expressing T cell obtained from 6
donors (3 Chinese: D12, 15 and 36 and 3 Caucasian: D38,
43 and 45). T cell subsets were sorted by negative bead
separation before (referred thereafter as CD4 or CD8 T
cells) or after (referred here as PBMC/CD4 or PBMC/
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CD8) exposure to 300 IU/ml rIL-2 for 4 hours. Purity after
separation was similar in all conditions and averaged
89.3% ± 0.9% (range 80% to 97%). This approach could
segregate transcriptional alterations induced in CD4 and
CD8 T cells by rIL-2 directly (CD4 and CD8 subsets) from
those requiring the presence of PBMC (PBMC/CD4 or
PBMC/CD8 subsets). The complete data set is available as
additional file 3. All subsequent analyses were performed

by comparing samples with a two-tailed paired or
unpaired Student t test as appropriate. For the subset anal-
yses the cut-off p2-value of significance was set at < 0.05
due to the smaller sample size as done by others [29,39].

Baseline differences between CD4 and CD8 T cells
Baseline differences between CD4 and CD8 T cells were
first evaluated (paired t test p2-value < 0.05) comparing

A – Clusterogram of genes coding for immune effector molecules including lymphokines, lytic granules and TNF family mem-bersFigure 5
A – Clusterogram of genes coding for immune effector molecules including lymphokines, lytic granules and TNF family mem-
bers. Only genes whose expression is significantly altered by rIL-2 (paired t test p2-value < 0.001) are shown. Light blue and red 
horizontal bares underline PBMC sample from Caucasian and Chinese donors; in separate panels CD4 (small red horizontal 
bar) and CD8 T cells (light blue bar) exposed to rIL-2 in the presence of PBMC and subsequently isolated are compared with 
CD4 and CD8 T cells (orange and dark blue horizontal bars respectively) purified before exposure to rIL-2. Four predominant 
nodes are underlined: node a) included genes down-regulated by rIL-2; node b) enriched with genes associated with lytic path-
ways; node c) enriched with cytokine genes and associated NF-kB pathways and node d) including a less characteristic mixture 
of genes. Horizontal blue bars above the clusterogram denote Caucasian and horizontal red bars Chinese subjects. Ratios are 
displayed according to the central method for display using a normalization factor [92]. B – Cartoon postulating the effector 
pathways affected by rIL-2 treatment; in light blue are genes whose expression is down regulated and in red genes whose 
expression is up-regulated. In dark blue are presented genes whose expression is not significantly affected by rIL-2. This car-
toon represents an oversimplification of the various pathways and we refer the reader to the text for further details.
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the combined PBMC/CD4 and CD4 samples to the
respective PBMC/CD8 and CD8 samples not exposed to
rIL-2. This analysis identified 1,078 cDNA clones differen-
tially expressed (869 with annotated function). As
expected, CD4 T cells consistently expressed CD4 (Figure
7). In addition, CD4 T cells expressed proportionally
higher levels of genes associated with T cell signaling/acti-
vation (ZAP-70, JAK-3, AATF, Jun-b and JAG-1) and
immune modulation (IL-4, IL-15, Lymphotoxin-α and -β,
CCL11/Eotaxin, CSF-2 and TNF-α). The structurally and
physically related accessory molecules CD5 and CD6 were
preferentially expressed in CD4 T cells. This may be
important since these co-receptors co-localize in the
immunological synapsis to provide complementary acces-

sory signals during T cell activation and/or differentiation
[87]. CD8 T cells preferentially expressed CD8; CD9, a tet-
raspanin previously known to be selectively expressed by
CD4(+)CD45RA(+) naïve T cells and involved in their
activation [88] was coordinately expressed with CD8. This
may be interesting since CD9 functions as an alternative
receptor for the chemoattractant interleukin-16 whose
primary ligand is CD4 [89]. It is possible that CD9
expressed by CD8 T cells might compensate for lack of
CD4 allowing responsiveness to IL-16 during inflamma-
tion. CD8 expression was also tightly linked to several
killer cell-like receptors (KLR) such as KLRG1 (an inhibi-
tory C-type lectin expressed in natural killer and activated
CD8 cells [90,91]. KLRC3 and KLRD1. In addition, CD8 T

Average concentration of cytokines/chemokines (pg/ml) in the supernatant of PBMC cultures from 47 donors harvested 24 hours after stimulation with (rIL-2) or without (No Stim) rIL-2 (300 IU/ml)Figure 6
Average concentration of cytokines/chemokines (pg/ml) in the supernatant of PBMC cultures from 47 donors harvested 24 
hours after stimulation with (rIL-2) or without (No Stim) rIL-2 (300 IU/ml). Statistical significance refers to a pair wise t test. 
Chemokine nomenclature is reported according to the IUIS/WHO subcommittee on chemokine nomenclature [121]. 
Cytokine/chemokines are displayed in order of significance. In addition to these cytokines/chemokines also IFN-γ (p2-value < 
0.01), IFN-α (p2-value = 0.01), lymphotoxin-α (p2-value = 0.02), IL-5 (p2-value = 0.03) and CCL10/IP-10 (p2-value = 0.04) were 
significantly up-regulated though to a lower degree of significance.
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cells expressed proportionally higher levels of genes asso-
ciated with effector functions including granzyme-B and
K, perforin, NKG-7, granulysin and pro-inflammatory
cytokines including IFN-α, CCL4/MIP-1β, CCL2/MCP-1
and OX40 Ligand. Of interest was the differential expres-
sion of the IL-2R subunits by CD4 and CD8 T cells. CD4
cells displayed higher expression of CD25 (IL-2Rα chain)
while CD8 displayed higher levels of the IL-2/15Rβ chain
(Figure 7). This pattern was recognized also at the protein
level by FACS analysis which demonstrated that IL-2Rα
expression was higher in CD4 then CD8 T (Figure 2C).

Importantly, rIL-2 exposure did not significantly change
the proportional expression of most of these lineage-spe-

cific genes suggesting that T cell differentiation is not
influenced by rIL-2. It is important to emphasize, how-
ever, that this analysis portrays proportional differences
between CD4 and CD8 T cells according to a central
method of normalization [92]. Thus, it should not be
implied that: 1) higher expression by a subset corresponds
to no expression by the other; 2) rIL-2 does not modulate
the expression in a given subset.

Transcriptional changes consistently induced by rIL-2 in T cell subsets
We first identified genes consistently induced by rIL-2 in
either CD4 or CD8 T cells independent of the presence of
bystander PBMC by combining data from PBMC/CD4,
CD4, PBMC/CD and CD8 samples. This analysis identi-

Baseline differences between the transcriptional profiles of CD4 and CD8-expressing T cells obtained from 3 Chinese (D12, 15 and 36) and 3 Caucasian (D38, 43 and 45) donorsFigure 7
Baseline differences between the transcriptional profiles of CD4 and CD8-expressing T cells obtained from 3 Chinese (D12, 15 
and 36) and 3 Caucasian (D38, 43 and 45) donors. T cell subsets were separated by negative bead separation (Miltenyi Biotech, 
Bergisch Gladbach, Germany) at the time of thawing before exposure to 300 IU/ml rIL-2 (referred here simply as CD4 or CD8 
T cells, orange and dark blue horizontal bars respectively) or after in vitro culture with or without rIL-2 for four hours (referred 
here as PPBMC/CD4 or PBMC/CD8; red or light blue horizontal bars respectively). Analysis of significance is based on a paired 
two-tailed Student t test with a cut off p2-value < 0.05 comparing the combined CD4 and PBMC/CD4 samples to the respec-
tive CD8 and PBMC/CD8 samples not stimulated with rIL-2 (No Stim); Data from samples exposed to rIL-2 (rIL-2) are also 
shown. Selected genes with known immune function are shown in this clusterogram (see text for details). The dashed vertical 
line separated CD4 from CD8 T cell samples. Ratios are displayed according to the central method for display using a normal-
ization factor [92].
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fied 717 clones (597 with known annotation) that pre-
dominantly recapitulated the finding observed in whole
PBMC. However, their proportional expression was
strongly biased according to stimulatory condition (Fig-
ure 8). Distinct patterns could be identified based on self
organizing clusters: a) genes predominantly up-regulated
by rIL-2 in the absence of PBMC. These genes included
several cytokines such as IL-7, IL-13, TNF-α, IFN-γ and IP-
10; b) genes similarly up regulated independently of con-
dition of stimulation including MIP-1β, MCP-1 and Cas-
pase-10; c) genes preferentially induced in the presence of
PBMC. These included anti-apoptotic factors such as BCL-
2 and BCL-2L1 and signaling molecules associated with T
cell activation belonging to the MAP kinase pathway rein-
forcing the impression that T cell survival and activation is

strongly dependent upon the presence of bystander cells.
The same group also contained several cytokine receptor
genes indicating that up-regulation of receptors follows
pathways quite different from that of cytokine activation.
A good example was the induction of the IFN-γ receptor in
T cells stimulated in the presence of PBMC while IFN-γ
was induced predominantly when T cells were stimulated
individually; d) genes predominantly down regulated
when T cells are exposed to rIL-2 in the absence of
bystander PBMC. This group included cytokines such as
IL-16 and IL-24 associated with important chemoattract-
ant activity for T cells. In addition, this cluster included
genes associated with T cells survival such as CD27, nerve
growth factor (NFG) and several surface markers known
to be down-regulated by rIL-2 [29], thus bystander PBMC

Genes differentially expressed by CD4 and CD8 cells upon in vitro exposure to rIL-2 (300 IU/ml) independent of the presence or absence of the rest of the PBMC populationFigure 8
Genes differentially expressed by CD4 and CD8 cells upon in vitro exposure to rIL-2 (300 IU/ml) independent of the presence 
or absence of the rest of the PBMC population. In spite of significance in expression in all populations compared with baseline 
conditions, clusters could be identified with preferential expression according to the in vitro condition in which rIL-2 was 
administered. In blue are clusters of genes up regulated by rIL-2 (main clusters a, b and c) and in maroon those down regulated 
(clusters d and e).
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may regulate some of the negative effects or rIL-2 on T
cells; e) Genes down regulated by rIL-2 independent of
stimulatory condition. These included several cytokine
receptors such as IL-7R and IL-13Rα which were strongly
down-regulated in contrast with the up-regulation of IL-7
and IL-13 by the same population of lymphocytes sug-
gesting the production of these cytokines is meant for cells
other than those receiving the rIL-2 stimulus. Interest-
ingly, also the TCR-β chain and its co-receptor CD8 were
down-regulated in this model.

Subset-specific changes
To better characterize subset-specific changes induced by
rIL-2 we normalized the data set subtracting Log2Cy5/Cy3
ratios of non-stimulated samples from the corresponding
values in samples exposed to rIL-2. A paired Student t test
was applied to the normalized data set to identify differ-
ences between PBMC/CD4 and PBMC/CD8 (Figure 9A)
or CD4 and CD8 T cells (Figure 9B). This analysis empha-
sizes the changes from baseline in the expression of genes
rather than their absolute expression. The first analysis

Genes differentially expressed by CD4 and CD8 cells upon in vitro exposure to rIL-2 (300 IU/ml) depending upon the presence or absence of the rest of the PBMC population (for labeling see Figure 6)Figure 9
Genes differentially expressed by CD4 and CD8 cells upon in vitro exposure to rIL-2 (300 IU/ml) depending upon the presence 
or absence of the rest of the PBMC population (for labeling see Figure 6): a) genes differentially modulated between CD4 and 
CD8 cells that were stimulated in the whole PBMC population and subsequently separated (paired Student t test p2-value < 
0.05);b) genes differentially modulated between CD4 and CD8 cells that were stimulated after being separated from the whole 
PBMC population by negative selection (paired Student t test p2-value <0.05); c) selected genes differentially modulated 
between CD4 and CD8 cells that were stimulated in the whole PBMC population and subsequently separated (from series in 
panel a) associated with T cell activation/effector function; c) selected genes differentially modulated between CD4 and CD8 
cells that were stimulated after separation from the whole PBMC population by negative selection (from series in panel b) asso-
ciated with T cell activation/effector function.
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identified 675 cDNA clones (569 with annotated func-
tions) differentiating rIL-2-exposed PBMC/CD4 from
PBMC/CD8. The second analysis identified 936 cDNA
clones (777 annotated) differentially expressed between
rIL-2 exposed CD4 and CD8 T cells suggesting stronger
functional differentiation in the absence of bystander
effect. There was very little overlap of genes induced in
CD4 and CD8 cells in the presence of absence of PBMC.
Specialized function of CD4 and CD8 cells appeared to be
dampened by rIL-2 stimulation in the presence of
bystander effects. This could be exemplified by the analy-
sis of a restricted number of genes with known effects on
T cell activation and effector function. A striking example
was the lack of differential induction of typical effector
molecules such as Granzyme A and B and NK-4/IL-32 in
CD8 T cells stimulated in the presence of bystander PBMC
(Figure 9C). On the contrary typical functions commonly
associated with CD4 or CD8 T cells were clearly present in
CD4 and CD8 subsets exposed to rIL-2 in the absence of
bystander PBMC (Figure 9D). In particular, while the
granzymes, KLRD1 and NK4/IL-32 were typically up-reg-
ulated in CD8 cells, several cytokines such as CCL26/
eotaxin-3, IL-6, IFN-α, CXCL1/GRO-α and CCL20/MIP3α
were specifically expressed by CD4. Novel was the identi-
fication of the differential expression of IRF-5 over
expressed in CD8 T cells compared to the over expression
of IRF-1 and IRF-6 in CD4 T cells. In the absence of
bystander effect CD8 cells expressed several chemokine
receptors including CXCR1 and CCR2. The expression of
CXCR1 is noteworthy considering that CD4 T cells
expressed instead its ligand CXCL1/GROα suggesting a
possible chemotactic activity of activated CD4 T cells on
CD8 T cell. This analysis emphasized the intensification
of specialized CD8 and CD4 functions in the absence of
bystander effects while the presence of bystander PBMC
resulted in a global enhancement in activation and sur-
vival signals. Thus, it appears that the transcriptional pro-
file of T cell subsets follows a bipolar pattern whereby
some molecular signatures are emphasized in the pres-
ence of bystander cells while others are emphasized in the
absence of them.

Discussion
The systemic effects of rIL-2 administration have been dif-
ficult to characterize due to the pleiotropism of this
cytokine resulting from the cross talk of immune and
other bystander cells [11,24]. In vitro human models and
experimental animal models suggest contrasting proper-
ties of rIL-2 ranging from pro-inflammatory to regulatory
effects. [7,15,16,26,93-95] Empirically, rIL-2 can induce
dramatic regressions in about 15% of patients with
advanced cancer [1,23]. representing a powerful human
model to study the requirement(s) for tumor immune
rejection and, more generally, the implementation of
effective immune responses. We have argued that tools are

available for high-throughput, hypothesis-generating
investigations of such mechanism(s) through serial sam-
pling of tumors before, during and after rIL-2 treatment
[24,26,96,97]. In addition, insights on the mechanisms of
action or rIL-2 in vivo might help understanding it possi-
ble role as an adjuvant for active-specific immunization
efforts [98] or for the expansion of tumor-reactive T cells
ex vivo [99]. Regrettably, practical restrictions have so far
limited the broad exploitation of this strategy for a conclu-
sive characterization of the biological signatures predic-
tive of immune responsiveness. Anecdotal studies from
our group, combined with review of the literature suggest
that tumor immune responsiveness follows a pattern con-
sistent with an immunological constant of rejection that
applies also to acute allograft rejection [100,101], flares of
autoimmune disease [102,103], clearance of virus during
acute infections or tissue damage during chronic viral
infection [104-106].

An indolent pattern of low grade inflammation is com-
monly observed in pathological conditions in which a
chronic inflammatory status does not lead to resolution of
the process by clearing its cause. This occurs in chronic
viral infections, chronic allograft rejection well-controlled
by mild immune suppression, lingering autoimmune
reactions and cancer. In such cases, transcriptional profil-
ing consistently identifies the activation of ISGs whose
expression seems to be part of the inflammatory process
but not sufficient for its clearance [26,90,100,104-106]
Similarly, treatments inducing immune stimulation con-
sistently induce ISGs independent of clinical outcome
[24,107]. Clearance of the pathogenic process requires the
incremental activation of additional immune effector
functions related to cytotoxic function [24,26,90,100]. A
recent prospective double-blinded study applying tran-
scriptional analysis to basal cell carcinoma samples
treated with a toll receptor 7 agonist at doses that consist-
ently induce immune-mediated regression of lesions
[108-111]. confirmed that the expression of ISGs is only
part of a complex picture in which immune effector signa-
tures predominate through the enhancement of acute
inflammation and cytotoxic mechanisms (Panelli et al. in
preparation).

Pending further in vivo clinical studies, we studied in vitro
molecular patterns induced by rIL-2 that could provide a
road map for the interpretation of future in vivo observa-
tions. PBMC were selected to approximate the lively cross
talk occurring among immune cells in vivo. For this rea-
son, we elected not to use cycloheximide to block protein
synthesis to discriminate the direct effects of rIL-2 from
those induced secondarily through autocrine or bystander
intermediaries. Information about the immediately/early-
regulated genes by rIL-2 is already available through an
elegant analysis in which such parameters were carefully
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controlled [39]. This study was primarily aimed at mim-
icking the interactive effects of rIL-2 in the host. A limita-
tion of this model is the absence of other important cells
involved in the cross talk such as specialized immune cells
sequestered in immune organs, endothelial cells etc. An
example of such limitation was the expression of IL-8 sig-
nificantly down-regulated in vitro (Figure 6) but consist-
ently up regulated at the transcriptional [24] and protein
levels [11] in blood samples obtained from patients
receiving systemic rIL-2 therapy. Thus, an obvious conclu-
sion of this study is that the effects of rIL-2 are strictly
dependent upon the immunological environment in
which the cytokine is received. Monocytes and macro-
phages have long been known to play a key role in T cell
activation through the production of cytokines such as IL-
1, IL-6, IL-12, IL-18 and TNF-α or through direct cell-cell
interactions [39,112]. Interestingly, IL-1R, IL-12-R and IL-
18R were all up-regulated by rIL-2 in PBMC and in CD4
and CD8 subsets exposed to rIL-2 in the presence of
bystander PBMC suggesting that these accessory signals
are strongly enhanced only in the presence of additional
immune cells. In addition, T cell interactions may influ-
ence each other. This might explain the paradoxical obser-
vation that regulatory T cells may be increased in
frequency when rIL-2 is administered to cancer patients
with a normal immune system [7] while lymphodeple-
tion may enhance the immune effectiveness of this
cytokine upon removal of regulatory mechanisms [8].
Indeed, the activation of some effector cytotoxic T cell
function was more appreciable when CD8 expressing T
cells were exposed to rIL-2 in the absence of bystander
PBMC (Figure 5A, Figure 8 and Figure 9D).

Microarray analysis and other high throughput technolo-
gies have been previously utilized to identify novel IL-2
target genes [29,39,113]. However, the analyses were per-
formed on a relatively small number of individuals of
homogeneous background. This limited the power of the
analysis to a relatively high threshold of false discovery (p-
value ≤ 05). Even with this relatively lax threshold only
460 genes were found to be consistently up-regulated and
419 down-regulated by rIL-2 exposure for a total of 879
differentially expressed genes in one study [29] and a total
of 316 in another [39]. The present study expanded these
observations surveying 47 donors of two ethnic back-
grounds (Chinese and Caucasian) allowing the identifica-
tion of 1,690 genes differentially expressed at a 10-fold
more stringent threshold (paired two-tailed Student t test
p2-value < 0.005). The data almost perfectly matched pre-
vious descriptions [29,39]. For instance 14 of 19 genes
identified by an Affymetrix U95Av2 platform as regulated
by rIL-2 were found to be concordantly altered in expres-
sion with a high degree of significance (p2-value <0.001)
by our study, four where not included in our cDNA plat-
form and only two did not match the described results

[39]. Similarly, strong concordance was observed with
subsequent observations based on transcriptional analy-
ses performed on Affymetrix platforms [29,39]. This is
remarkable because in other's experimental conditions
PBMC or T cells had been pre-activated for 72 hours with
anti-CD3 antibody to induce IL-2R expression and T cell
activation [29,39]. suggesting that at the rIL-2 concentra-
tions used here pre-activation of T cells is not necessary to
induce rL-2 responsiveness. This is an important detail
because the concentrations used in this study are likely to
exceed those present in physiological conditions but are
close or even below those achieved during systemic rIL-2
administration with therapeutic purposes [24]. However,
some important differences were noted in our model
compared with the previous studies that combined rIL-2
stimulation with T cell pre-activation by anti-CD3 or anti-
CD28 mAbs [29,39]. For instance, among genes involved
in feedback regulation of IL-2 signaling, we found that
several dual specificity phosphatases (DUSP) were altered
in expression including DUSP-5 but not DUSP-6 as
reported by others [29] (Figure 1A). In addition, we did
not observe up-regulation of SOCS-1 while SOCS-2 was
dramatically up-regulated. This is diametrically opposite
to others' observation suggesting that these pathways may
be strongly dependent upon T cell pre-activation. Since
SOCS-2, opposite to SOCS-1 has protective effects on T
cell survival [80] it may explain why T cells that had not
been pre-activated through TCR-associated signaling may
be least prone to activation-induced cell death [16]. This
also is reflected by the lack of effects of rIL-2 on FasL
expression which is required for activation-induced cell
death [114] and it is induced by rIL-2 in T cells pre-acti-
vated through TCR triggering [29].

Genetic differences have been shown to be associated
with distinct pathologies [32]. However, genetic back-
ground did not appear to affect significantly the response
to rIL-2 although borderline differences where observed
between the two ethnic groups. Moreover, a polymor-
phism of the IL-2Rβ chain (asp→glu, 391) adjacent to a
tyrosine residue that serves at docking site for STAT sign-
aling was relatively conservative and observed only in het-
erozygous conditions. Comparison of PBMC bearing the
mutant allele (relatively more frequent in the Chinese
population) did not predict particular patterns of gene
expression. Thus, it could be safely concluded that the
response to rIL-2 is genetically conserved and ethnic dif-
ferences between these two populations are unlikely to
affect significantly the individual response to rIL-2. This is
important because it is unclear to what degree genetic
background is responsible for the broad range of individ-
ual immune responsiveness and susceptibility to the toxic
effects of rIL-2. This study did not identify dramatic differ-
ences directly related to rIL-2 signaling that could account
for such variability.
Page 17 of 23
(page number not for citation purposes)



Journal of Translational Medicine 2006, 4:26 http://www.translational-medicine.com/content/4/1/26
Transcriptional patterns induced by rIL-2 where found to
be quite consistent in PBMC largely overlapping those
observed in T cell subsets stimulated in the presence of by-
stander PBMC. In particular, gene functions associated
with T cell survival and proliferation were induced simi-
larly in CD4 and CD8 T cells stimulated in the presence of
bystander PBMC suggesting that cytokine or cell-to-cell
interactions may be important for T cell survival in either
subset. This is consistent with previous reports [29]. In
contrast, several functions specific to CD4 and CD8 T cells
remained unaltered or where accentuated when T cells
were exposed to rIL-2 in the absence of bystander PBMC
suggesting that rIL-2 directly nurtures specialized T cell
functions. In particular, CD8 T cell activation toward a
natural killer phenotype was clearly fostered by rIL-2 in
the absence of bystander PBMC (Figure 8). This may be
important because the in vivo conditions either in the cir-
culation or within the tumor microenvironment may
most often approximate the presence of bystander PBMC.
Transcriptional patterns of melanoma metastases biop-
sied three hours after rIL-2 administration consistently
lack pattern suggestive of CD8 effector gene activation
[24]. Interestingly, ISGs were equally induced by rIL-2 in
PBMC and T cell subsets (data not shown) as a most con-
sistent pattern associated with the activity of this cytokine
in vitro and in vivo [24] although it bears little relevance to
the implementation of immune effector function
[24,100,102,104].

In summary, this study suggests that the predominant
effect of rIL-2 administration at the doses used in this
study is stimulatory to T cells with induction of prolifera-
tion, maintenance of survival and activation of effector
functions while regulatory mechanisms associated with
induction of apoptosis, suppression of cytokine signaling
were not observed during these early phases of PBMC
stimulation. This is consistent with others' observations in
PBMC and purified CD4 and CD8 T cells that could not
readily explain the survival versus death-inducing func-
tions of rIL-2 based on the kinetics of gene induction [29].
Moreover, presence of bystander PBMC appears to
dampen the effector function of CD4 and CD8 subsets, a
finding that might explain the recent clinical observation
of the enhanced efficacy of rIL-2 based therapies in the
context of lymphodepletion [8].

Materials and methods
Donor's characteristics and PBMC collection
Specimens were obtained from normal donors at the
Department of Transfusion Medicine, National Institutes
of Health (NIH) under an institutionally approved proto-
col (04-CC-0007). All donors signed an institutionally
approved informed consent. PBMC were collected by
apheresis in the DTM Research Clinic using the standard
DTM operating procedures and the Fenwal CS3000 blood

cell separator. PBMC were isolated by Ficoll gradient sep-
aration and frozen immediately in 1 × 108 cells/vial aliq-
uots until analysis.

In vitro stimulation
After thawing, PBMC were placed at 1×107 cells per well in
6 well plate (Costar Cambridge, MA) using OPTI-MEM-
without serum supplementation and were incubated at
37°C overnight. Next day, rIL2 (300 IU/ml) was added to
the cells. As suggested by others [29,39]. and according to
our previous experience [24] the stimulation was carried
for 4 hours. After 4 hour adherent and non-adherent cells
were removed from each well and centrifuged. An addi-
tional set of experiments was performed by stimulating in
identical conditions PBMC from 6 donors (3 Caucasian,
donors 38, 43 and 45 and 3 Chinese, donors 12, 15 and
36). In these experiments CD4 and CD8 subsets were sep-
arated from PBMC after the 4 hour stimulation period
using negative selection (Miltenyi Biotech, Bergisch Glad-
bach, Germany) as previously described [25] at 4°C to
prevent RNA metabolism/degradation. In parallel, PBMC
from the same donors were subjected to negative separa-
tion for CD4 and CD8 selection. The two subpopulations
were then stimulated with rIL-2 following identical proce-
dure.

Supernatant collection and protein analysis platform
Supernatants from cell cultures were obtained 24 hours
after stimulation with rIL-2 (300 IU/ml) or from parallel
cultures in which no rIL-2 had been supplemented. The
supernatants were immediately stored in cryogenic vials
(Nunc cat# 363401, St Pleasant Prairie, WI) in 1 ml/vial
aliquots, snap frozen in dry ice and stored at -80°C. Pro-
tein levels was assesses on multiplex protein-based plat-
form (Pierce SearchLight Proteome Arrays, Boston, MA) as
previously described [11] covering a total of 80 soluble
factors. Data are presented as pg/ml)

RNA preparation, amplification and labeling
Total RNA from test PBMC from normal donors was
extracted and amplified into anti-sense RNA as previously
described (aRNA) [115])[24,116]. Total RNA from PBMC
pooled from six normal Caucasian individuals not part of
the present protocol was extracted and amplified into
aRNA to serve as constant reference [115])[24]. Test and
reference RNA were labeled with Cy5 (red) and Cy3
(green) respectively and co-hybridized to a custom-
made17.5 K cDNA (UniGene cluster) micro-array. Micro-
arrays were printed at the Immunogenetics Section, DTM,
CC, NIH with a configuration of 32 × 24 × 23 and con-
tained 17,500 elements. Clones used for printing
included a combination of the Research Genetics
RG_HsKG_031901 8 k clone set and 9,000 clones selected
from the RG_Hs_seq_ver_070700 40 k clone set. The
17,500 spots included 12,072 uniquely named genes, 875
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duplicated genes and about 4,000 expression sequence
tags.

Flow cytometry
PBMC from leukocyte aphaeresis of 6 donors were thawed
and plated in complete Iscove medium (Life Technolo-
gies, Grand Island, NY) supplemented with 10% heat
inactivated human AB serum, 10 mM HEPES buffer, 100
U/ml penicillin-streptomycin, 0.5 mg/ml amphotericin B
and 0.03% glutamine, at the density of 10^6 cells/well in
48 multiwell plate. After resting overnight half of the wells
were treated with human recombinant IL-2 300 U/ml
(rHuIL-2, Chiron Co, Emeryville, CA). IL-2 was added
every two days. Treated and untreated cells were harvested
after 1–3–7 days. The modulation of the expression of
CD25 (IL-2 receptor alpha chain) and CD127 (IL-7 recep-
tor) were tested by staining the cells with the following
antibodies: CD4-APC, CD8-PE or CD8-FITC, CD3-PerCP
and CD25-FITC (all from BD Biosciences Pharmingen,
San Diego, CA) or CD127-PE (Beckman Coulter, Fuller-
ton, CA). As negative control cells were stained with IgG
FITC or PE conjugated, according with the antibody's iso-
type. Cells were analyzed with FACS sort (BD Bioscience)
gathering them on living lymphocytes CD3 positive.

ILRβ sequencing
Total RNAs were extracted from each donor's PBMC as
previous described and converted to cDNA by reverse
transcription. PCR was performed by using iProof High-
Fidelity DNA polymerase (Bio-Rad) according to the man-
ufacturer protocol.

The following primers were used in the PCR reaction: for-
ward: 5'-TGCCACCGCCCCATGTCTCA-3' reverse: 5'-
CACAAAGATGGTACACACGGATCATT-3' using the fol-
lowing conditions:

98° 30 seconds, 98° 10 seconds, 62° 30 seconds, 72° 2
minutes for 30 cycles, 72° 10 minutes for final extension.
PCR products were purified by adding 3 µl ExoSAP-IT
(USB) per 20 µl of PCR product, at 37° for 15 minutes fol-
lowed by incubation at 80° 15 minutes to inactivate the
enzyme. The sequencing reaction was set up using the
BigDye Terminator v3.1 Cycle Sequencing kit and ABI
Prism 3700 DNA Analyzer.

The following primers were used for sequencing:

F1: 5'-TGCCACCGCCCCATGTCTCA-3'

F2: 5'-CCATCCAGGACTTCAAGCC -3'

F3: 5'-AGGACAAGGTGCCTGAGC-3'

F4:5'-TGGTGCTGCGAGAGGCTG-3'

F5: 5'-CAGCCTGAGCGTGCTTTC-3'

F6: 5'CCTGCTGCATCTTCCCACA-3'

F7: 5'TCTGACCAGCAGCCTATGAG-3'

R1: 5'-CGAACTCCAGGTGTCTTTCAA-3'

R2: 5'-CTCTATCTCCAAGGCATCCG-3'

R3: 5'-AACAGGGTCCTTCTGAGGCT-3'

R4: 5'-GGAATAGCATGTGCAACAGAG-3'

R5: 5'-GTCAGAGTTAGCTGGGACTGG-3'

R6: 5'-GGATAAGGAGACCGACTTGC-3'

Statistical analysis
The raw data were filtered to exclude spots with minimum
intensity by arbitrarily setting a minimum intensity
requirement of 300 in both fluorescence channels. If the
fluorescence intensity of one channel was over and that of
the other below 300 the fluorescence of the low intensity
channel was arbitrarily set to 300. Spots with diameters
<25 µm and flagged spots were excluded from the analy-
sis. The filtered data were then normalized using the low-
ess smother correction method. All statistical analyses
were performed using the log2-based ratios normalizing
the normal value in the array equal to zero.

Validation and reproducibility were measured using an
internal reference concordance system based on the
expectation that results obtained through the hybridiza-
tion of the same test and reference material in different
experiments should perfectly collimate. The level of con-
cordance was measured by periodically re-hybridizing the
melanoma cell line A375-melanoma (American Type Cul-
ture Collection, Rockville MD) to the reference samples
consisting of pooled PBMC as previously described [117].
This analysis demonstrated a higher than 95% concord-
ance level. Non-concordant genes were excluded from
subsequent analysis.

Principal component analysis (PCA) was performed using
Partek array analysis software (Partek Inc., St Charles, Mis-
souri) over the entire data set. Supervised class compari-
son utilized the BRB ArrayTool [118] developed at NCI,
Biometric Research Branch, Division of Cancer Treatment
and Diagnosis. Paired samples (i.e. unstimulated and rIL-
2 stimulated PBMC from the same donors) were com-
pared with a two-tailed paired Student t test. Unpaired
samples were tested with a two-tailed un-paired Student t
test assuming unequal variance. All analyses were tested
for a univariate significance threshold set at a p2-value
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<0.005. Gene clusters identified by the univariate t test
were challenged with two alternative additional tests, a
univariate permutation test (PT) and a global multivariate
PT. The multivariate PT was calibrated to restrict the false
discovery rate to 10%. Genes identified by univariate t test
as differentially expressed (p2-value < 0.005) and a PT sig-
nificance <0.05 were considered truly differentially
expressed. Gene function was assigned based on Database
for Annotation, Visualization and Integrated Discovery
(DAVID) [119] and Genontology [118].
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