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Abstract

Background: There is a continued need to develop more effective cancer immunotherapy
strategies. Exosomes, cell-derived lipid vesicles that express high levels of a narrow spectrum of
cell proteins represent a novel platform for delivering high levels of antigen in conjunction with
costimulatory molecules. We performed this study to test the safety, feasibility and efficacy of
autologous dendritic cell (DC)-derived exosomes (DEX) loaded with the MAGE tumor antigens in
patients with non-small cell lung cancer (NSCLC).

Methods: This Phase | study enrolled HLA A2+ patients with pre-treated Stage lllb (N = 4) and
IV (N = 9) NSCLC with tumor expression of MAGE-A3 or A4. Patients underwent leukapheresis
to generate DC from which DEX were produced and loaded with MAGE-A3, -A4, -Al0, and
MAGE-3DPO4 peptides. Patients received 4 doses of DEX at weekly intervals.

Results: Thirteen patients were enrolled and 9 completed therapy. Three formulations of DEX
were evaluated; all were well tolerated with only grade 1-2 adverse events related to the use of
DEX (injection site reactions (N = 8), flu like illness (N = 1), and peripheral arm pain (N = 1)). The
time from the first dose of DEX until disease progression was 30 to 429+ days. Three patients had
disease progression before the first DEX dose. Survival of patients after the first DEX dose was
52-665+ days. DTH reactivity against MAGE peptides was detected in 3/9 patients. Immune
responses were detected in patients as follows: MAGE-specific T cell responses in /3, increased
NK lytic activity in 2/4.

Conclusion: Production of the DEX vaccine was feasible and DEX therapy was well tolerated in
patients with advanced NSCLC. Some patients experienced long term stability of disease and
activation of immune effectors
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Introduction

Vaccine immunotherapy as an approach to cancer treat-
ment has evolved over the last 10 years as the basic biol-
ogy of the immune response has been elucidated. Tumor-
associated antigens that are capable of eliciting cytotoxic T
cell responses have been identified. Among the most fre-
quently expressed across many malignancies are the
MAGE antigens, originally described in melanoma, but
expressed by other tumors including non-small cell lung
cancer (NSCLC) [1-3]. Immune responses to MAGE 3
have been correlated with clinical outcome in melanoma
patients [4]. This has lead to many tumor antigen-specific
strategies for the treatment of cancer, including the use of
an immunodominant peptide alone, protein or peptide-
pulsed dendritic cells, and antigen/co-stimulatory fusion
proteins expressed from viral vectors. Although each strat-
egy has its proponents, none have achieved the goal of
activating significant immune responses that correlate
with clinical responses in a majority of patients; therefore,
there is a continued need to develop even more effective
strategies. Recently, a novel platform for delivering high
levels of antigen in conjunction with costimulatory mole-
cules has been described, called exosomes, cell-derived
lipid vesicles that express high levels of a narrow spectrum
of cell proteins.

A variety of cells have been shown to release exosomes
including dendritic cells [5], B lymphocytes [6], T lym-
phocytes [7], mast cells [8], platelets [9], and tumor cells
[10]. The small (60-90 mm) vesicles form within the late
endosomes or multivesicular bodies and have biologic
functions dependent on the cell type from which they
were secreted [11-13]. Originally described as vesicles
released from reticulocytes containing proteins (transfer-
ring receptor) that were no longer required in the mature
red blood cell [14], they have subsequently been demon-
strated to play a role in activation of the immune
response. Exosomes derived from B lymphocytes were
able to stimulate CD4+ T cells in an antigen/MHC class 11
restricted manner [6] and have been demonstrated to be
the source of MHC class II molecules on follicular den-
dritic cells [15]. In addition, tumor cells release vesicles
that function in cross-priming by transferring a protein
antigen from the tumor cell to a dendritic cell for immune
presentation [10,16]. Importantly, dendritic cells release
vesicles (named "dexosomes") that have been demon-
strated to prime specific T cells in vitro and eradicate estab-
lished murine tumors [5]. In vitro, dexosomes have the
capacity to present antigen to naive CD8+ cytolytic T cells
and CD4+ T cells [17,18].

Human dexosomes are enriched in the components nec-
essary to function as an antigen-presenting entity. Exten-
sive electron microscopic and protein characterization has
revealed that dexosomes contain a specific set of proteins
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that differentiate them from other plasma membrane
derived vesicles (such as apoptotic cells for example),
including MHC class I and Il molecules and CD1a, b, ¢, d
molecules, as well as the co-stimulatory molecule CD86
and several tetraspan proteins (CD9, CD37, CD53, CD63,
CD81, and CD82) [Anosys unpublished data, [19,20]].

Dexosomes have been demonstrated to participate in
antigen presentation in the following way [21,22]. After
capturing antigens at the periphery, DC incorporate
MHC-antigenic peptide complexes in dexosomes with
immunostimulating factors. Released dexosomes subse-
quently transfer MHC-antigenic peptide complexes and
associated proteins to antigen-naive DC in the regional
lymph nodes. The latter thereby acquire the ability to
stimulate CD4+ and CD8+ T cells. Thus, dexosomes
appear to act as a vehicle for disseminating antigen
amongst DC, representing a potentially important mech-
anism of immune response amplification. This hypothe-
sis forms the rationale for the potential use of dexosomes
as a therapeutic cancer immunotherapy.

Dexosomes have demonstrated significant antitumor
activity in a mouse tumor model, suggesting that the use
of dexosomes derived from dendritic cells may result in
improved efficacy relative to the ex vivo dendritic cell
approach for eradication of advanced cancer. Purified dex-
osomes were shown to be effective in both suppressing
tumor growth and eradicating an established tumor in
this model. Furthermore, the effect of the dendritic cell-
derived dexosome was greater than that of the dendritic
cell from which it was produced [5]. Therefore, we
hypothesized that dendritic cell-derived dexosomes
would be an effective platform for activating tumor anti-
gen-specific immune responses in humans.

We performed this study to investigate the safety, feasibil-
ity, and efficacy of administering autologous dexosomes
loaded with tumor antigens (subsequently referred to as
DEX) to patients with advanced NSCLC. We also evalu-
ated the immunologic responses in selected patients and
monitored the clinical outcomes.

Methods

Patients

This phase I clinical protocol was approved by the Duke
University Medical Center Institutional Review Board and
conducted in compliance with the Helsinki Declaration
and under an IND from the United States Food and Drug
Administration held by Anosys Corporation. All subjects
provided written informed consent. Patients were eligible
for enrollment if they had histologically confirmed, unre-
sectable Stage III A or B or Stage IV NSCLC, were HLA
A*0201 positive, at least 18 years of age, and had ade-
quate organ function and a Karnofsky performance status
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Table I: Dose Groups and Product Formulations
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Dose Cohorts

Number of patients in
Cohort (Patient number)

Peptides loaded/HLA class

Peptide loading method

and concentration

DEX dose (expressed as numbers
of MHC class Il molecules)

A 3(DUS5, 6,8) MAGE-A3 (112-120)/class | Indirect (10 pg/mL) 0.13x 104
MAGE-A4 (230-239)/class | Indirect (10 pg/mL)
MAGE-A10 (254-262)/class | Indirect (10 pg/mL)
CMV ppé5/class Il Indirect (10 pg/mL)
Tetanus toxoid/class Il Indirect (10 pg/mL)
B 5 (DU 24, 39, 44, 50, 63) MAGE-A3 (112-120)/class | Direct (10 pg/mL) 0.13x 104
MAGE-A4 (230-239)/class | Direct (10 pug/mlL)
MAGE-A10 (254-262)/class | Direct (10 pg/mL)
CMYV ppé5/class | Direct (10 pg/mL)
MAGE-A3 (247-258)/class Il Indirect (10 pg/mL)
Tetanus toxoid/class Il Indirect (10 pg/mL)
C 4 (DU 49, 73, 81, 83) MAGE-A3 (112-120)/class | Direct (100 pg/mL) 0.13x 104

MAGE-A4 (230-239)/class |
MAGE-A10 (254-262)/class |
MAGE-A3 (247-258)/class Il

Direct (100 pg/mL)
Direct (100 pg/mL)
Indirect (10 pg/mL)

The amino acid sequences of the peptides used for loading the dexosomes are: MAGE-A3(112-120) = KVAELVHFL; MAGE-A4(230-239) =
GVYDGREHTV; MAGE-A10(254-262) = GLYDGMEHL; MAGE-A3(247-258) = TQHFVQENYLEY; CMV ppé = NLVPMVATYV; tetanus toxoid =

QYIKANSKFIGITE
Note: DU39, DU44, and DUS83 were not treated.

of at least 80%. Patients were required to have been
treated with at least one prior standard chemotherapy reg-
imen and have measurable disease. In addition, patients
were required to have tumor expressing MAGE A3 or
MAGE A4. To avoid performing repeat biopsies, this was
achieved by detecting MAGE A3 or MAGE A4 expression
in peripheral blood tumor cells by RT-PCR using estab-
lished methods.

The main exclusion criteria were: prior therapy within 4
weeks of the leukapheresis, CNS disease, history of
autoimmune disease, concurrent use of systemic steroids,
presence of HIV infection or acute or chronic viral hepati-
tis B or C. Pregnant or lactating women were also
excluded.

Manufacture of DEX

Dexosomes were manufactured from peripheral blood
mononuclear cells (PBMCs) as previously described [23].
Briefly, PBMCs were obtained from the patient during a 2-
blood volume leukapheresis and shipped overnight to
Anosys, Inc.,, Menlo Park CA. The cells were washed,
adhered to plastic to isolate monocytes and placed in a 7-
day serum-free culture at 37°C in a humidified 5% CO,
atmosphere in the presence of 50 ng/mL GM-CSF
(Immunex, Seattle, Washington) and 10 ng/mL of IL-4
(Schering-Plough, Kennilworth, NJ). On the 7th day of cul-
ture, the supernatant of the resulting dendritic cell prepa-
ration was harvested, filtered, and concentrated.
Dexosomes were then isolated by ultracentrifugation on a
D,0/sucrose cushion. As described in table 1, the final

dexosome product (DEX) consisted of one of three differ-
ent formulations based on different methods for loading
the following peptides onto the dexosomes: MAGE-
derived, HLA-A2 restricted Class I peptides KVAELVHFL
(MAGE-A3(112-120)), GVYDGREHTV (MAGE-A4(230-
239)) and GLYDGMEHL (MAGE-A10(254-262)); MAGE
derived HLA-DPO4 restricted Class II peptide TQHFVQE-
NYLEY (MAGE-A3(247-258)) [24]; and the control pep-
tides, the cytomegalovirus (CMV) pp65-derived, HLA-A2
restricted Class I peptide NLVPMVATV and the tetanus
toxoid-derived, promiscuous HLA-DR Class II peptide
QYIKANSKFIGITE (produced by Multiple Peptide Sys-
tems, San Diego, CA). Peptides were loaded either
"directly" onto dexosomes (i.e., following purification of
dexosomes from the DC culture) or "indirectly" (i.e. onto
cultured DCs that are the source of the dexosomes). The
quantity of DEX prepared from a single leukapheresis was
measured by ELISA as previously described [23]. The
measured number of MHC class II molecules present in
the DEX product was utilized for the purpose of dosing.
The final DEX product was diluted in 0.9% normal saline
for injection, sterile filtered, and stored at -80°C; subse-
quently the DEX product was shipped overnight to the
investigative site, and maintained in its frozen state until
1 hour before use.

Treatment and Follow-up Schedule

Patients were enrolled into three cohorts (A,B,C) that var-
ied in the method of MHC Class I peptide loading and
concentration as described in Table 1. The quantity of
DEX administered to the patients in each cohort was iden-
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tical: 1.3 x 1013 MHC class I molecules in a volume of 3
mL (divided into twoinjections given at two sites on
opposite sides of the body) as a combination of subcuta-
neous (90% of the volume) and intradermal (10%) injec-
tions weekly for 4 weeks. No retreatment was allowed.
Vital signs were monitored for 1 hour after each injection.
Clinical responses were assessed by RECIST criteria. CT
scans of the chest through the upper abdomen were
obtained at baseline, 1 month following the last dose of
DEX and every 3 months after last dose of DEX for 1 year,
but scans to confirm responses were not required in this
phase I study. All surviving patients have been followed
every 6 months for assessment of vital status.

Delayed type hypersensitivity (DTH) testing

Prior to the initial leukapheresis and 1 week after the last
dose of DEX, the following peptides were injected intra-
dermally, in addition to the standard recall antigen panel
of Candida, Mumps, and tetanus: MAGE-A3(112-120),
MAGE-A4(230-239), MAGE-A10(254-262), and MAGE-
A3(247-258), each at 10 pg in 0.1 mL saline. The diame-
ter of the induration and erythema was measured 48
hours following the peptide injection.

ELISPOT testing

Immune response was evaluated at baseline and 1 week
following last dose of DEX with cryopreserved PBMCs
obtained by leukapheresis. The ELISPOT assay was per-
formed by ImmunoSite, Inc. (Pittsburgh, PA) according to
previously reported methods [25] using both direct assess-
ment of thawed PBMCs, and when possible, following in
vitro stimulation of PBMCs with autologous DCs pulsed
with the MAGE-A3(112-120), MAGE-A4(230-239), and
MAGE-A10(254-262). The number of spots (interferon-
gamma-secreting T cells) per 20,000 responding PBMC
was reported. The background number of spots against an
irrelevant antigen was subtracted from the number of
spots for the experimental conditions.

Natural killer cell activity

NK cells were isolated from cryopreserved PBMCs using
an NK Cell Isolation Kit (Miltenyi Biotec, Bergisch Glad-
bach, Germany) according to the manufacturer's instruc-
tion. NK cell purity was checked by flow cytometry using
anti-CD3-FITC, anti-CD45-PerCP, and anti-CD56-APC
antibodies (BD Bioscience, San Jose, CA). Isolated NK
cells and NK cells activated for 40 hours by IL-2
(Proleukin, Chiron) 600 Units/ml were incubated at vari-
ous effector to target rations with chromium-51 labeled
K562 cells, an NK target, for 4 hours at 37°C and cytotox-
icity was assessed by the amount of radiolabeled chro-
mium released. Cytotoxicity was calculated as follows:
percentage of target cell lysis = 100 x (counts per minute
(cpm) of experimental release - cpm of spontaneous
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release) / (cpm of maximum release - cpm of spontaneous
release).

Statistics

The primary endpoints of this study were safety and feasi-
bility, with secondary endpoints of clinical and immuno-
logic response rates. The incidence, type and severity of
adverse events were recorded during the study treatment
through 30 days following the last dose of DEX. Descrip-
tive statistics were used to present the data. Adverse events
were coded using MEDDRA version 5.0. Survival and time
to progression were measured from the date of the first
injection to the date of documented disease progression
or death. For patients who progressed, the time to disease
progression was determined by the interval from the first
injection+ 1 day to the last evaluation of disease staging.
For patients who did not progress or die during the two
year follow up period, the time of disease progression and
survival was determined by the interval between the first
dose of DEX and the date of last evaluation of disease stag-
ing + 1 day and concatenated with the '+' sign.

Results

Patient Characteristics

Thirteen patients, (8 female, 5 male) median age 62 years
(range 44-72 years) with unresectable pretreated Stage I11
or IV NSCLC were enrolled. The median time from origi-
nal diagnosis to study entry was 9.9 months (range 2-61
months) and the median Karnofsky score of the patient
population was 80% (range 80-100). DEX therapy was
administered to 9/13 (6 female and 3 male) patients. Of
the 9 dosed patients, 5 patients had Stage IV and 4
patients had Stage IIIB disease. Six patients had stable dis-
ease and 3 patients had progressive disease at study entry.
Two patients had squamous cell carcinoma, 4 patients
had adenocarcinoma, 2 patients had large cell carcinoma,
and in 1 case the histological type was not reported. All
patients had received prior chemotherapy (median
number of cycles: 6.5, range: 3-30), 6/9 patients had
received prior radiotherapy and 4/9 patients had prior sur-
gery for cancer treatment. Four patients did not receive
DEX for the following reasons: manufacturing failure in 2
cases (DU39, DU83), one of whom had received chemo-
therapy 13 days prior to leukapheresis and one of whom
(DU39) also had rapid disease progression at the time of
leukapheresis; delay in shipment in one instance (DU14);
and, rapid disease progression prior to planed dosing with
DEX in one case (DU44). The characteristics of all dosed
patients are listed in Table 2 (see separate file for Table 2).

Dexosome manufacture

The dose of DEX that was selected corresponded to the
maximum dose that could be achieved from healthy
donors. We confirmed that this dose could be generated
in all but two patients with NSCLC. The mean dexosome
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generation consisted of a total class Il number of 3.14 x
1014 (range 4.1 x 1012t0 9.1 x 1014). This quantity of dex-
osomes in our advanced NSCLC patients is similar in
quantity to that generated from healthy donors (mean for
111 healthy donors was 3.9 x 104 total class II).

Toxicity

The DEX immunotherapy was generally well tolerated
without evidence of serious toxicity. The most frequently
reported adverse events causally related to the use of DEX
were mild (Grade 1-2) in severity and included: Injection
site reactions (erythema, contusion, induration and
edema) in 8 patients; flu like syndrome (1 patient); and,
peripheral edema and pain in the arm (1 patient). There
were no significant organ or laboratory toxicities attribut-
able to the vaccine. No autoimmune reactions were
observed.

Immunologic Response

DTH analysis

All 9 dosed patients underwent DTH testing with individ-
ual tumor-associated peptides prior to and following all
doses of DEX. There was no DTH response to the specific
peptide antigens prior to DEX therapy. Three patients
(DU06, DU24 and DU49) had a positive response of at
least 5 mm erythema or induration in the longest dimen-
sion 48 hours after skin testing with one of the MAGE pep-
tides. Specifically, DU06 had 5 mm induration and
erythema with MAGE-A4(230-239), DU24 had 6 mm
induration and erythema with MAGE-A10(254-262) and
DU49 had 5 mm induration and erythema with MAGE-
A3(112-120), respectively.

In vitro immunologic analysis

The peptide-specific immune response to MAGE and
CMV was analyzed using ELISPOT in 5 of 9 dosed patients
(Du24, DuU49, DU50, DU63, DU81). One patient
(DU49) exhibited detectable increases in T cell precursor
frequency to MAGE-A10(254-262) following in-vitro
stimulation (an increase of 12 MAGE-A10-specific cells/
20,000 responders). Assays for DU50 and DUG63 could
not be completed because of poor viability. Robust
responses to anti-CD3 and to the control peptide CMV
pp65 were observed in DU24, DU81, and DU49, but no
MAGE-specific responses were detected.

Since most patients did not exhibit a significant increase
in antigen-specific T cell activity, we hypothesized that
regulatory influences such as CD4+CD25+ regulatory T
cell populations might inhibit augmentation of the T cell
response. In 2/3 patients who had analyzable specimens
available, an increase in CD4+CD25+ T cells as a percent-
age of CD4+ T cells was observed following completion of
DEX therapy when compared with baseline values
(DUO5: increase from 19.49 to 26.64%, DUOS: minimal
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change from 20.39 to 23.42%, DUS50: increase from 17.45
to 31.81%). The small number of samples available for
this analysis precludes any conclusions but does suggest
that CD4+CD25+ T cell analyses should accompany
future studies of DEX immunotherapy.

During the study, new data from Escudier et al (manu-
script submitted) suggested that the immunologic activity
of DEX might be due to activation of NK cells. We there-
fore explored the hypothesis that NK cells may be acti-
vated following DEX therapy. This was not planned as
part of the initial analysis and therefore specimens of
PBMC were limiting in all but 4 patients (DU05, DUO0S,
DU24, DU50). Although there was no consistent change
in NK percentage before and after immunization (Table 1:
DUO05: 10.7 to 9.2%; DUO08: 6.0 to 5.4%; DU24: 8.8 to
8.5%; DUS50: 9.9 to 13.9%), NK activity as determined by
the ability to lyse K562 target cells was observed to
increase in 2/4 patients following immunizations (Fig 1 -
see additional file Fig 1). Short-term culture with IL-2 was
required to activate the NK cells in vitro as there was very
low activity in the absence of IL-2. Although addition of
IL-2 increased the NK cell activity, it did not change the
relative pattern of activity, i.e., in no instance did the order
of the results change as a result of IL-2 stimulation.

Clinical Outcomes

At approximately 2 years of follow up, survival from the
first dose of DEX ranged from 52 to 309 days for cohort A,
280 to 665+ days for cohort B, and 244 to 502 days for
cohort C (Table 1). In order to obtain preliminary data on
response rate, CT scans were obtained prior to immuniza-
tion and at 1 month and 3 month intervals following
completion of the immunizations, but additional scans
were not obtained to confirm responses. Of the two
patients (DUO05, DU08) with disease progression at study
entry, DUO5 was stable at the end of the immunizations
but was felt to have clinically progressed at day 88 shortly
before death. DUO8 also had stable disease at the end of
the immunizations and on every three month follow-up
until having progression at day 302. Of four additional
patients (DUO06, DU24, DU63, DU81) who began the
study with stable disease, two (DU24 and DU63) have
remained without progression for greater than 12
months. DUOG was stable at the post-immunization CT
but subsequently died unexpectedly of unknown etiology
and without a follow-up scan, and DU81 was stable at the
post-immunization CT but had progressed by the next CT
scan at the three month follow-up. The remainder of the
patients had progressed at the post-immunization CT scan
including DU73 who had disease progression prior to the
first dose of DEX. The time until progressive disease, as
documented from the first dose of DEX, ranged from 30+
to 302 days for cohort A, 40 to 429+ days for cohort B, and
51 to 166 days for cohort C.
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Cytolytic activity of NK cells. Cytolytic activity of NK cells isolated from the PBMC of 4 patients (DU05, DU08, DU24,
DUS50) pre (squares) and post (circles) immunization and cultured with (dark shapes) or without (open shapes) IL-2 was deter-
mined. The percentage lysis of the NK target (K562) cells is reported at effector to target ratios of 0.2:] to 25:I.

Discussion

The objective of this study was to show that DEX could be
manufactured from NSCLC patients and could be safely
administered. We demonstrated the feasibility of produc-
ing dexosomes loaded with specific MAGE and other
peptides and demonstrated that this form of immuno-
therapy was well tolerated in patients with advanced
NSCLC. Leukapheresis products could be shipped to a

central processing facility with good cell viability after
transport in a majority of cases, in contrast to other autol-
ogous therapies involving tissues where logistics of tissue
harvest and processing are complex. The dexosome prod-
uct was successfully manufactured and loaded with multi-
ple peptides in the majority of patients. This suggests that
different panels of tumor antigen-derived peptides could
be successfully loaded onto dexosomes. Using multiple
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peptide panels may allow for targeting various tumor
types and larger patient populations, and decreases the
likelihood of antigenic escape.

We observed increases in systemic immune responses
against MAGE by DTH reactivity in 3/9 patients who had
no reactivity to the MAGE peptides prior to immunization
and activation of NK cells, but found minimal increases in
antigen-specific T cell activity in in vitro assays performed
circulating PBMCs. Possible explanations include nonop-
timized or low-sensitivity assays, inadequate antigen pres-
entation, counter-regulatory mechanisms that dampen
immune responses, or the lack of persistence of antigen-
specific Tcells in the circulation (i.e., the T cell may have
migrated to tumor tissue or lymph nodes). The possible
role of negative regulatory mechanisms was suggested by
the presence of elevated levels of CD4+CD25+ regulatory
T cells following immunization in some patients.

An intriguing immunologic observation was the increase
in NK activity following immunization in 2/4 patients
analyzed. Although DEX are intended to activate antigen-
specific, MHC-restricted T cell responses, it is possible that
cytokines released in response to DEX therapy could cause
activation of NK cells or that DEX could directly activate
NK cells. DEX therapy may stimulate both innate and
adaptive arms of the immune response and thereby pro-
vide a rationale for maximizing the anti-tumor effect of
this approach, even in cases where tumors have lost Class
I antigens, a common finding as cancers become more
advanced [26]. Indeed, in a phase I study in melanoma
patients, DEX loaded with MAGE peptides were well tol-
erated and associated with both clinical response and
increased NK activity (Escudier, manuscript submitted to
J. Trans Med).

Despite the small sample size and the fact that 3/9 dosed
patients had disease progression at the time of initiation
of DEX treatment, we observed prolonged disease stabili-
zation in some patients. Large clinical trials in patients
with advanced NSCLC have generally reported median
time to progression of 3-5 months in patients with
advanced NSCLC treated with systemic chemotherapy
regimens [27-30]. The lack of toxicity and interesting clin-
ical and immunologic observations support further inves-
tigation of DEX immunotherapy as a treatment approach
for both advanced and early stage NSCLC and other
tumors. Phase II clinical studies in non-small cell lung
cancer and other tumor types are planned to continue to
explore the efficacy of this novel immunotherapy.

Conclusion

DEX therapy was well. Immune activation and stability of
disease was observed in some immunized patients with
advanced NSCLC.

http://www.translational-medicine.com/content/3/1/9

Competing Interests

Michael Morse received funding from NIH
5R21CA89957-02. Additionally, portions of this study
were funded by Anosys, Inc.

Nancy Valente, Revati Shreeniwas, Mary Ann Sutton,
Alain Delcayre, Di-Hwei Hsu, and Jean BernardLe Pecq
held stock and were employees in Anosys,

H. Kim Lyerly was a consultant for Anosys, Inc.

Authors' contributions

MAM was the principal investigator of the study and over-
saw all aspects including protocol development, patient
management, data collection and analysis, and manu-
script preparation.

JG enrolled patients to the study and managed their care
and participated in data analysis.

Takuya Osada performed the NK assays and analyzed the
data.

SK enrolled patients to the study and managed their care.

AH performed in vitro immunologic assays and analyzed
the data.

TMC oversaw the immunologic analyses performed at
Duke University and analyzed the data.

NV, RS, and MAS oversaw development of the protocol,
data collection and analysis, and manuscript preparation.

AD developed and oversaw the MAGE screening for
patient eligibility.

D-H H oversaw portions of the immunologic analysis and
data analysis.

J-B L provided scientific direction regarding generation of
the dexosomes, protocol development, and data analysis
and manuscript preparation

HKL provided consultation on immunologic assay devel-
opment All authors read and approved the final
manuscript.

Page 7 of 8

(page number not for citation purposes)



Journal of Translational Medicine 2005, 3:9

Additional material

Additional File 1

Table 2 (DOC) presents the remainder of clinical and immunological
data from all patients

Click here for file
|http://www.biomedcentral.com/content/supplementary/1479-
5876-3-9-S1.doc]

Acknowledgements

The authors thank Allyson Gattis for helping coordinate the long-term fol-
low-up of patients. Statistical support was provided by Carol Zhao, PhD,
ICON Clinical Research, 555 Twin Dolphin Drive, Redwood Shores, CA.

This study was supported by NIH grant 5R21CA089957-01 (Morse,
Michael), and a grant from Anosys Inc., Menlo Park, CA, and was performed
in the Duke General Clinical Research Unit (MOIRR00030).

This work was presented as an abstract at the American Society of Clinical
Oncology in May 2002 and published in the abstract book as: Morse MA,
Garst ), Khan S, etal. Preliminary results of a phase I/1l study of active immu-
notherapy with autologous dexosomes loaded with MAGE peptides in HLA
A2+ patients with stage IlI/IV non-small cell lung cancer. Proc Am Soc Clin
Oncol 2002;1 la (abstract 42).

References

Gotoh K, Yatabe Y, Sugiura T, Takagi K, Ogawa M, Takahashi T, Taka-
hashi T, Mitsudomi T: Frequency of MAGE-3 gene expression in
HLA-A2 positive patients with non-small cell lung cancer.
Lung Cancer 1998, 20:117-25.

Shichijo S, Hayashi A, Takamori S, Tsunosue R, Hoshino T, Sakata M,
Kuramoto T, Oizumi K, Itoh K: Detection of MAGE-4 protein in
lung cancers. Int | Cancer 1995, 64:158-65.

Park JW, Kwon TK, Kim IH, Sohn SS, Kim YS, Kim CI, Bae OS, Lee
KS, Lee KD, Lee CS, Chang HK, Choe BK, Ahn SY, Jeon CH: A new
strategy for the diagnosis of MAGE-expressing cancers. |
Immunol Methods 2002, 266:79-86.

Reynolds SR, Zeleniuch-Jacquotte A, Shapiro RL, Roses DF, Harris
MN, Johnston D, Bystryn JC: Vaccine-induced CD8+ T-cell
responses to MAGE-3 correlate with clinical outcome in
patients with melanoma. Clin Cancer Res 2003, 9:657-62.
Zitvogel L, Regnault A, Lozier A, Wolfers ], Flament C, Tenza D, Ric-
ciardi-Castagnoli P, Raposo G, Amigorena S: Eradication of estab-
lished murine tumors using a novel cell-free vaccine:
dendritic cell-derived exosomes. Nat Med 1998, 4:594-600.
Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV,
Melief CJ, Geuze HJ: B lymphocytes secrete antigen-presenting
vesicles. | Exp Med 1996, 183:1161-1172.

Martinez-Lorenzo M), Anel A, Gamen S, Monle n |, Lasierra P, Larrad
L, Pineiro A, Alava MA, Naval |: human T cells release bioactive
Fas ligand and APO?2 ligand in microvesicles. | Immunol 1999,
163:1274-81.

Skokos D, Le Panse S, Villa I, Rousselle JC, Peronet R, David B,
Namane A, Mecheri S: Mast cell-dependent B and T lymphocyte
activation is mediated by the secretion of immunologically
active exosomes. | Immunol 2001, 166:868-76.

Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ: Activated
platelets release two types of membrane vesicles: microves-
icles by surface shedding and exosomes derived from exocy-
tosis of multivesicular bodies and alpha-granules. Blood 1999,
94:3791-9.

Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, Fla-
ment C, Pouzieux S, Faure F, Tursz T, Angevin E, Amigorena S, Zitvo-
gel L: Tumor-derived exosomes are a source of shared tumor
rejection antigens for CTL cross-priming. Nat Med 2001,
7:297-303.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

http://www.translational-medicine.com/content/3/1/9

Farsad K: Exosomes: novel organelles implicated in immu-
nomodulation and apoptosis. Yale | Biol Med 2002, 75:95-101.
Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W, Geuze HJ: Exo-
some: from internal vesicle of the multivesicular body to
intercellular signaling device. J Cell Sci 2000, 113:3365-74.
Schartz NE, Chaput N, Andre F, Zitvogel L: From the antigen-pre-
senting cell to the antigen-presenting vesicle: the exosomes.
Curr Opin Mol Ther 2002, 4:372-81.

Johnstone RM: The Jeanne Manery-Fisher Memorial Lecture
1991. Maturation of reticulocytes: formation of exosomes as
a mechanism for shedding membrane proteins. Biochem Cell
Biol 1992, 70:179-90.

Denzer K, van Eijk M, Kleijmeer M, Jakobson E, de Groot C, Geuze
HJ: Follicular dendritic cells carry MHC class ll-expressing
microvesicles at their surface. | Immunol 2000, 165:1259-65.
Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P,
Pomel C, Lhomme C, Escudier B, Le Chevalier T, Tursz T, Amigorena
S, Raposo G, Angevin E, Zitvogel L: Malignant effusions and
immunogenic tumor derived-exosomes. Lancet 2002,
360:295-305.

Thery C, Duban L, Segura E, Veron P, Lantz O, Amigorena S: Indi-
rect activation of naive CD4+ T cells by dendritic cell-
derived exosomes. Nat Immunol 2002, 3:1156-62.

Hsu DH, Paz P, Villaflor G, Rivas A, Mehta-Damani A, Angevin E,
Zitvogel L, Le Pecq |B: Exosomes as a tumor vaccine: enhancing
potency through direct loading of antigenic peptides. |
Immunother 2003, 26:440-50.

Thery C, Boussac M, Veron P, Ricciardi-Castagnoli P, Raposo G,
Garin ], Amigorena S: Proteomic analysis of dendritic cell-
derived exosomes: a secreted subcellular compartment dis-
tinct from apoptotic vesicles. | Immunol 2001, 166:7309-18.
Thery C, Regnault A, Garin J, Wolfers |, Zitvogel L, Ricciardi-Castag-
noli P, Raposo G, Amigorena S: Molecular characterization of
dendritic cell-derived exosomes. Selective accumulation of
the heat shock protein hsc73. | Cell Biol 1999, 147:599-610.
Thery C, Zitvogel L, Amigorena S: Exosomes: Composition, bio-
genesis and function. Nat Rev Immunol 2002, 2:569-579.

André F, Chaput N, Schartz NEC, et al.: Exosomes as potent cell-
free peptide-based vaccine. |. Dendritic cell-derived exo-
somes transfer functional MHC Classl/peptide complexes to
dendritic cells. | Immunol 2004, 172:2126-2136.

Lamparski H, Metha-Damani A, Yao J, Patel S, Hsu D, Ruegg C, Le
Pecq J: Production and characterization of clinical grade exo-
somes derived from dendritic cells. | Immunol Methods 2002,
270:211.

Schultz ES, Lethé B, Cambiaso CL, et al.: A Mage-A3 peptide pre-
sented by HLA-DP4 is recognized on tumor cells by CD4*
cytolytic T lymphocytes. Cancer Res 2000, 60:6272-6275.
Whiteside TL: Immunologic monitoring of clinical trials in
patients with cancer: technology versus common sense.
Immunol Invest 2000, 29:149-162.

Garcia-Lora A, Algarra |, Garrido F: MHC class | antigens,
immune surveillance and tumor immune escape. | Cell Physiol
2003, 195:346-351.

Schiller JH, Harrington D, Belani CP, et al.: Comparison of four
chemotherapy regimens for advanced non-small-cell lung
cancer. N Engl | Med 2002, 346:92-98.

Fossella FV, DeVore R, Kerr RN, et al.: Randomized phase Il trial
of docetaxel versus vinorelbine or ifosfamide in patients with
advanced non-small-cell lung cancer previously treated with
platinum-containing chemotherapy regimens. The TAX 320
Non-Small Cell Lung Cancer Study Group. | Clin Oncol 2000,
18:2354-2362.

Massarelli E, Andre F, Liu DD, et al: A retrospective analysis of
the outcome of patients who have received two prior chem-
otherapy regimens including platinum and docetaxel for
recurrent non-small-cell lung cancer. Lung Cancer 2003,
39:55-61.

Pfister DG, Johnson DH, Azzoli CG, et al.: American Society of
Clinical Oncology treatment of unresectable non-small-cell
lung cancer guideline: update 2003. | Clin Oncol 2004,
22:330-353.

Page 8 of 8

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1479-5876-3-9-S1.doc
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9711530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9711530
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7622303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7622303
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12133624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12133624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12576432
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12576432
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12576432
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9585234
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9585234
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9585234
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8642258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8642258
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10415024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10415024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11145662
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11145662
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11145662
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10572093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10572093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10572093
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11231627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11231627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12230314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12230314
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10984428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10984428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10984428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12222875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12222875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1515120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1515120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1515120
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10903724
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10903724
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12147373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12147373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12426563
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12426563
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12426563
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12973033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12973033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11390481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11390481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11390481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10545503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10545503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10545503
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12154376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12154376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14764678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14764678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14764678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12379326
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12379326
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11103782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11103782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10854184
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10854184
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12704644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12704644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11784875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11784875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11784875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10856094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10856094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10856094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12499095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12499095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12499095
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14691125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14691125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14691125

	Abstract
	Background
	Methods
	Results
	Conclusion

	Introduction
	Methods
	Patients
	Manufacture of DEX
	Treatment and Follow-up Schedule
	Delayed type hypersensitivity (DTH) testing
	ELISPOT testing
	Natural killer cell activity
	Statistics

	Results
	Patient Characteristics
	Dexosome manufacture
	Toxicity
	Immunologic Response
	DTH analysis
	In vitro immunologic analysis

	Clinical Outcomes

	Discussion
	Conclusion
	Competing Interests
	Authors' contributions
	Additional material
	Acknowledgements
	References

