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Abstract

Background: MicroRNAs (miRNAs) are a class of non-coding regulatory RNAs approximately 22 nucleotides in
length that play a role in a wide range of biological processes. Abnormal miRNA function has been implicated in
various human cancers including prostate cancer (PCa). Altered miRNA expression may serve as a biomarker for
cancer diagnosis and treatment. However, limited data are available on the role of cancer-specific miRNAs.
Integrative computational bioinformatics approaches are effective for the detection of potential outlier miRNAs
in cancer.

Methods: The human miRNA-mRNA target network was reconstructed by integrating multiple miRNA-mRNA
interaction datasets. Paired miRNA and mRNA expression profiling data in PCa versus benign prostate tissue
samples were used as another source of information. These datasets were analyzed with an integrated
bioinformatics framework to identify potential PCa miRNA signatures. In vitro q-PCR experiments and further
systematic analysis were used to validate these prediction results.

Results: Using this bioinformatics framework, we identified 39 miRNAs as potential PCa miRNA signatures. Among
these miRNAs, 20 had previously been identified as PCa aberrant miRNAs by low-throughput methods, and 16 were
shown to be deregulated in other cancers. In vitro q-PCR experiments verified the accuracy of these predictions.
miR-648 was identified as a novel candidate PCa miRNA biomarker. Further functional and pathway enrichment
analysis confirmed the association of the identified miRNAs with PCa progression.

Conclusions: Our analysis revealed the scale-free features of the human miRNA-mRNA interaction network and
showed the distinctive topological features of existing cancer miRNA biomarkers from previously published studies.
A novel cancer miRNA biomarker prediction framework was designed based on these observations and applied to
prostate cancer study. This method could be applied for miRNA biomarker prediction in other cancers.
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Background
MicroRNAs (miRNAs) are a class of small non-coding
RNAs of approximately 22 nucleotides in length with
the potential to regulate human genes through transla-
tion inhibition or mRNA cleavage [1]. Recent studies
have shown that miRNAs are involved in a wide variety
* Correspondence: guofeng27@suda.edu.cn; bairong.shen@suda.edu.cn
†Equal contributors
1Center for Systems Biology, Soochow University, Suzhou 215006, China
4Central lab, the First Affiliated Hospital of Soochow University, Suzhou
215006, China
Full list of author information is available at the end of the article

© 2014 Zhang et al.; licensee BioMed Central
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
of biological processes such as cell proliferation [2], de-
velopment [3], and apoptosis [4]. Abnormal expression
of miRNAs has been implicated in various human can-
cers and may constitute a potential signature for cancer
diagnosis [5-7]. However, limited data on cancer related
miRNAs are available, and their regulatory mechanisms
remain largely unknown.
Extensive research efforts have focused on the identifica-

tion of potential cancer miRNA biomarkers [6-10]. The pre-
liminary detection of differentially expressed (DE) miRNAs
from large-scale miRNA expression profiling data and low-
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throughput experimental validation for selected outlier
miRNAs are the routine methods used in these studies.
As the activities of outlier miRNAs are at least partially
reflected in the aberrant expression of their target genes
[11], systematic computational approaches that integrate
miRNA regulatory data and gene expression profiling data
were shown to be more effective to infer potential outlier
miRNA activities in cancers [11,12].
MiRNAs are known to function in a multiple-to-multiple

relationship with their target genes, and a concept referred
to as miRNA regulation module was proposed based on
this theory [13]. This idea was further explored in cancer
studies, and attempts have been made to identify candi-
date abnormal miRNAs or miRNA regulatory modules
in cancer [12,14-17]. The assumption that abnormal
miRNAs associated with cancer show increased func-
tional synergism because of their co-regulatory effects
on the same genes [18] was the underlying founda-
tion of these computational approaches.
In contrast to these analyses, the miRNA regulatory

network was shown to follow power-law distribution in
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technology were used to verify the accuracy of our predic-
tion results. Finally, systematic methods were applied to
explore the relationship between PCa and the unique
target genes of candidate PCa miRNA biomarkers.
The results indicated that our method can detect po-
tential miRNA-mRNA target relationships in specific
cancers and can be applied for the identification of
miRNA biomarkers in cancer.

Methods
Dataset collection
Expression profiles (GSE34933 from NCBI GEO) for
PCa and benign prostate tissue (BPH) samples generated
by Zhong and colleagues [19,20] were used. Eight avail-
able paired miRNA and mRNA expression profiles (each
containing 4 samples for PCa and BPH) were selected
for further analysis. Information on these profiles is pro-
vided in Additional file 1. Normalized miRNA and mRNA
data were downloaded directly. For mRNA expression
data, the average probe intensity was calculated and used
as the gene expression level for genes with multiple
probes. Finally, the profiles included information on the
expression of 851 miRNAs and 19595 genes.
Another dataset used in this study was the miRNA-

mRNA network. This dataset consisted of a combination
of experimentally validated targeting data and computa-
tional prediction data. The experimentally validated data
included information from miRecords [21], TarBase [22],
miR2Disease [23], and miRTarBase [24], while the com-
putational prediction data consisted of miRNA-mRNA
target pairs residing in no fewer than 2 datasets from
HOCTAR [25], ExprTargetDB [26], and starBase [27]. In
total, there were 32739 regulatory pairs among 641 miR-
NAs and 7706 target genes.

Prostate cancer miRNA biomarker identification
We developed a novel approach to identify candidate
miRNA biomarkers for PCa. The schematic workflow of
our pipeline is described in Figure 1. Paired miRNA and
gene expression, and miRNA-mRNA networks were in-
tegrated to predict outlier miRNAs associated with PCa
progression. This procedure consisted of four separate
stages. First, differentially expressed miRNAs and genes
between PCa and BPH samples were detected using the
two-sample t-test. Second, Pearson’s correlation was used
to detect negative correlations between the expression
profiles of outlier miRNAs and outlier genes. In the third
step, the intersection data of the negative correlations and
miRNA-mRNA binding pairs were retrieved to identify
miRNA regulatory networks related to PCa progression.
In the fourth and final step, a new index designated as
novel out-degree (NOD) was defined to measure the inde-
pendent regulatory power of an individual miRNA, and
used to prioritize novel PCa miRNA biomarkers.
Step 1: Detection of differentially expressed miRNAs and
genes associated with prostate cancer
The detection of cancer-specific abnormal changes in
miRNA and gene expression is the aim of cancer studies
[28-31]. Here, we used two-sample t-tests to identify dif-
ferently expressed miRNAs and genes associated with
PCa progression on the basis of their expression profiles.
The top 30% miRNAs (or genes) ranked by their statis-
tical significance (p-value) were retrieved for further
analysis. As a result, 256 miRNAs and 5878 genes were
considered as candidate PCa outliers.
The threshold for the expression of outlier miRNAs

and outlier genes is often arguable. A less stringent cut-
off (top 40%) and a stricter cut-off (top 20%) were tested
for candidate miRNA biomarker prediction. Details of
the comparison between these predictions are listed in
Additional file 2. The data indicated that the prediction
results were highly conserved and only the number of
candidate miRNAs changed with the different thresh-
olds. Therefore, we adopted a moderate threshold (top
30%) in the present study.

Step 2: Acquisition of inverse correlation pairs
One major function of miRNAs is the cleavage of tran-
scripts of its target genes at the post-transcriptional
level. Thus, the inverse correlation of expression profiles
should be one prerequisite for miRNAs and candidate
targets. In the present study, the Pearson’s correlation
method was used to detect negative correlations be-
tween outlier miRNAs and outlier genes. The cut-off for
the correlation coefficient was roughly chosen to be -0.6,
as it has been used as a threshold in several correlation
studies [32,33].

Step 3: Constructing a prostate cancer miRNA-mRNA
binding network
According to the above miRNA-mRNA binding data from
experimental validation and computational prediction da-
tabases, we identified possible human miRNA-mRNA tar-
get pairs. We further filtered these target pairs with the
collected information on miRNA-mRNA negative correla-
tions to generate a PCa miRNA regulatory network. As a
result, the miRNA-mRNA target sub-network consisted of
136 miRNAs and 551 target genes.

Step 4: Prioritizing candidate prostate cancer miRNA
biomarkers
Generally, we face two main challenges for the predic-
tion of miRNAs related to cancer based on miRNA-
mRNA regulatory data. First, for genes with abnormal
expression that are regulated by more than one miRNA,
it is difficult to discriminate which miRNA contributed
to the deregulation of this gene. Second, besides miRNA
regulation, other factors such as DNA methylation may
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also result in abnormal expression of the studied gene. To
overcome these problems, we defined a novel out-degree
(NOD) index to measure the independent regulatory
power of an individual miRNA, i.e., the genes uniquely
regulated by one specific miRNA. Based on the observa-
tion that miRNAs with greater independent regulatory
power were more likely to be cancer biomarkers as de-
scribed in the Results section, we prioritized candidate
PCa miRNA biomarkers according to their NOD values,
as calculated from the PCa miRNA regulatory network.
In summary, the number of uniquely regulated genes

was first computed as a NOD value for each miRNA in
the PCa miRNA regulatory network. These miRNAs
were further ranked by their NOD values. The Wilcoxon
signed-rank test was then applied to assign a statistical
significance value (p-value) to each miRNA, which indi-
cated whether the NOD value of an individual miRNA
was significantly greater than the median level of all
these candidate miRNAs. Herein, the threshold of the
p-value was set at 0.01. Finally, 39 miRNAs were detected
as potential PCa miRNA biomarkers in our study.

Performance comparison with other computational
methods
To evaluate the accuracy of our method, we compared
its performance with that of two other computational
approaches, the miRNA expression fold-change based
on the t-test method [34] and another method based on
the cancer miRNA synergism theory [12]. The same
numbers of top ranked miRNAs as in our prediction re-
sults were extracted from these two methods for compari-
son. The performance of each computational method
was expressed as the percentage of known PCa abnormal
miRNAs in their prediction results.

In vitro q-PCR confirmation of candidate prostate cancer
miRNA biomarkers
When normal prostate tissue (NPT) samples are unavail-
able, benign prostatic hyperplasia (BPH) samples can be
used as normal prostate samples for comparison with
PCa samples [35,36]. The study group consisted of 25
Han Chinese patients with PCa and 20 Han Chinese in-
dividuals with BPH with ages ranging from 60 to 91.
The PCa and BPH samples were part of a sample set col-
lected for clinical diagnostic tests at the First Affiliated
Hospital of Soochow University (Suzhou, China). No extra
samples were collected from the study subjects; therefore,
verbal consent was obtained from all participating individ-
uals. The study procedure was approved by the ethics
committee of Soochow University. The PCa and BPH tis-
sues were snap-frozen in liquid nitrogen and stored at
-80°C. Total RNA was extracted with the TRIzol reagent
(Invitrogen, China). RNA quantity was measured on a
Nanodrop 1000 Spectrophotometer (Thermo Scientific,
China). Universal reverse transcription of all the ma-
ture miRNAs was performed by enzymatic tailing of the
miRNAs by using Poly(A) Polymerase. MiRNAs were first
tailed and then reverse transcribed by using universal
primers. The sequences of miRNAs were obtained from
the miRNAMap database [37]. MiRNA specific primers
were designed with Primer 3 software. Quantitative PCR
was performed in a volume of 20 μl containing 2 μl of
cDNA diluted 10 times, 10 μl of LightCycler® 480 SYBR
Green I Master (Roche, China), and 200 nM of each pri-
mer. U6 expression was used as the internal control, and
all quantitative PCR values were normalized to those of
U6 RNA. Triplicates were performed for all reactions with
a LightCycler® 480 System (Roche, China). Relative expres-
sion was analyzed by the Pfaffl method. All the statistical
analyses were carried out on Graphpad Prism software.

Systematic analysis of the target genes of candidate
prostate cancer miRNA biomarkers
The uniquely regulated genes associated with our pre-
diction miRNAs from the PCa miRNA-mRNA target
network were retrieved. Gene Ontology (GO) analysis
and pathway analysis were performed to explore the re-
lationships between these genes and PCa. The Database
for Annotation, Visualization and Integrated Discovery
(DAVID) [38] was used for GO annotation and KEGG
pathway [39,40] analysis. Another pathway source, Meta-
Core™ Database from GeneGo Inc., was used for GeneGo
pathway mapping analysis. The highly significantly mapped
pathways (p-value < 0.01) were further confirmed for
their association with PCa via NCBI PubMed literature
exploration.

Results
Global features of the miRNA-mRNA target network
Individual miRNAs can regulate multiple genes, and an
individual target gene can be co-regulated by several
miRNAs [41,42]. However, further exploration of the in-
degree distribution of targets and out-degree distribution
of miRNAs for the whole human miRNA-mRNA target
network revealed that the multiple-to-multiple relation-
ship between miRNA and mRNA is over-emphasized.
Compared with the random network simulated with the
same nodes and binding links, the in-degree distribution
and out-degree distribution of the real miRNA-mRNA
target network followed the power-law distribution (see
Figure 2), with slopes of -2.37 and -0.71, respectively.
This indicated that the distribution of the miRNA regu-
latory network was also scale-free and similar to other
biological complex networks such as the protein inter-
action network [43].
The analysis of our reconstructed miRNA-mRNA net-

work indicated that a large fraction (34.41%) of genes
was exclusively regulated by an individual miRNA. Based
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Figure 2 Degree distribution of the whole human miRNA-mRNA target network. Panels (A) and (B) respectively illustrate the In- and
Out- degree distributions of the random network, whichwas simulated with the same number of miRNA and mRNA nodes and miRNA-mRNA
target pairs. The x-axis represents log-2 based degrees, and the y-axis indicates the log-2 based frequencies of nodes with corresponding degrees.
The in-degree and out-degree distributions for the random network were symmetrical while the panels (C) and (D) show the power law
distributions with slopes of -2.37 and -0.71 for the in-degree and out-degree distributions of the real network, respectively. The circle inside the
small pane in panel (C) represents genes (34.41% of total genes) that were uniquely targeted by an individual miRNA.
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on this observation, we defined a new index designated
as novel out degree (NOD) to measure the independent
regulatory power of an individual miRNA (see Figure 3
and Methods). Interestingly, the distribution of miRNA
NOD values was also shown to follow the power law.
According to their NOD levels, we further classified
these miRNAs into three categories: miRNAs with no
independent regulatory power (NOD = 0); miRNAs with
a small independent regulatory power (0 < NOD < 4);
and miRNAs with a large independent regulatory power
(NOD > 3). We then explored the current cancer related
miRNAs by text mining of PubMed citations. Briefly,
we first checked whether each miRNA had been pre-
viously claimed as a cancer biomarker by using the NCBI
PubMed search engine. Then, to strengthen our findings,
we used a previously described method [44] to further ex-
plore differentially expressed (DE) miRNAs in cancer de-
tected by low-throughput technology in studies published
before January 1st 2013. A statistically significant differ-
ence of their biomarker potentials could be observed be-
tween miRNAs without independent regulatory power
and those with independent regulatory power. The results
shown in Figure 3C and Figure 3D indicated that miRNAs
with larger independent regulatory power were more
likely to be potential cancer miRNA biomarkers and show
aberrant functions in cancer.

Prediction of candidate prostate cancer miRNA
biomarkers
Based on the above observation that miRNAs with larger
independent regulatory power are more likely to be can-
cer abnormal miRNAs, we developed a pipeline to infer
candidate cancer miRNA biomarkers from cancer condi-
tional miRNA regulatory networks, and then applied this
pipeline for PCa study, as described in the Methods sec-
tion. A total of 39 miRNAs were predicted to be candi-
date PCa miRNA biomarkers in our study. Among these
miRNAs, 20 (51.3%) had previously been shown to be
PCa aberrant miRNAs by low-throughput methods in
early studies, and thus could be potential miRNA bio-
markers in PCa. Among the remaining 19 candidates,
16 miRNAs had been reported to show outlier activities
in other cancers, whereas the activities of the other three
miRNAs had not been explored yet. These miRNAs were
considered potential PCa miRNAs requiring further in-
vestigation. Detailed information about the prediction
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miRNAs and known PCa miRNAs used in this study
can be found in Additional files 3 and 4, respectively.
We further evaluated the performance of our method

by comparing our results with data on fold-changes
in miRNA expression obtained using the t-test ap-
proach [34] and a method based on the cancer miRNA
synergism theory [12] (see Methods). The results are
shown in Figure 4. As a computational method based
on the integration of expression fold-change and miRNA
regulatory network feature information, our method
performed better than fold-change of t-test based methods.
The performance of our method was comparable to
that of the method described by Xu et al. [12], based
on the reported PCa miRNA information (Figure 4).
Nevertheless, Xu’s method is based on a SVM classi-
fier, and is therefore highly dependent on the PCa
miRNA training data, whereas our approach does not
require any prior knowledge. Overall, these results in-
dicated the satisfactory performance of our prediction
method.
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In vitro validation of candidate prostate cancer miRNA
biomarkers
To further investigate the activities of PCa miRNA
biomarkers predicted by our approach, we randomly
selected three miRNAs (miR-155, miR-648, and miR-
197) to detect differences in their expression between
PCa tissues and benign prostatic hyperplasia tissues
by q-PCR technology. The detection results are shown
in Figure 5. Two out of 3 miRNAs (66.7%) were differ-
entially expressed in the two groups of samples (p-value <
0.01).
Among these two miRNAs, miR-155 downregulation

in PCa was in agreement with the results of a previous
report [45], whereas miR-648 was identified as a novel
PCa miRNA biomarker by our study. Although miR-197
did not show significant outlier activity in PCa, it was
previously proposed as a potential miRNA biomarker for
lung cancer in another study [46]. The experimental
analysis of the activities of outlier miRNAs verified the
reliability of our method.

Functional analysis of target genes of candidate prostate
cancer miRNA biomarkers
In our study, the predicted candidate PCa miRNA bio-
markers, along with their uniquely regulated genes (see
Additional file 3), provide potential miRNA-mRNA tar-
get pairs in PCa. The unique target genes regulated by
these candidate miRNAs may also be involved in PCa, as-
suming that the predicted miRNAs are true PCa miRNAs.
To validate our hypothesis, we retrieved the uniquely
regulated genes of our predicted miRNAs from the PCa
miRNA-mRNA target network, and explored their
relationships with PCa through GO analysis and Path-
way enrichment analysis (see Methods).
The Database for Annotation, Visualization, and Inte-

grated Discovery (DAVID) [38] was applied for the Gene
ontology (GO) annotation at three levels: molecular
function, biological process, and cellular component.
The ten most highly enriched items for each domain are
shown in Figure 6. The results indicated that these genes
are well mapped in several PCa associated biological pro-
cesses, such as cell cycle [47] and regulation of apoptosis
[48]. These results further confirmed the accuracy of the
predicted PCa miRNA biomarkers to a certain extent.
We used the DAVID and the MetaCore™ Database

from GeneGo Inc. to map these outlier genes in KEGG
pathways and MetaCore™ pathways, respectively. Statisti-
cally significantly enriched pathways (p-value < 0.01)
from these two datasets were retrieved. For KEGG path-
ways, we found that these target genes were only consid-
erably enriched in one PCa related pathway termed as
“Pathways in cancer”. The top 10 highly enriched path-
ways from the GeneGo Database were plotted in Figure 7.
Significantly enriched pathways, such as cytoskeleton re-
modeling [49], have been previously shown to be PCa re-
lated pathways. Text mining searches in NCBI PubMed
were used to explore the relationships between enriched
pathways and PCa. The results showed that 20 out of 24
(87.5%) pathways found in the GeneGo database were re-
lated to PCa. The PubMed citations regarding the associ-
ation of these pathways with PCa are listed in Additional
file 5. We also compared our enrichment pathways with
novel PCa associated pathways detected using other sys-
tematic methods [50]. Of 24 enriched pathways from the
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Figure 6 Gene ontology annotation for the uniquely regulated genes of the predicted prostate cancer miRNA biomarkers. The uniquely
regulated genes of the predicted PCa miRNA biomarkers identified by our method were retrieved and annotated with DAVID tools in three
domains of gene ontology: Molecular Function, Biological Process, and Cellular Component. The top 10 significantly enriched items for each
domain are shown.

*** p-value < 0.0001 *** p-value = 0.0087

* p-value = 0.0767

*** Highly significant (p-value < 0.01)

**  Significant (0.01< p-value < 0.05)

*    Less Significant (p-value > 0.05)

Figure 5 q-PCR results for selected candidate prostate cancer miRNA biomarkers. Three miRNAs were randomly selected from our
prediction results to detect their outlier activity in PCa samples by using the q-PCR method. Endogenous U6 expression was used as control for
normalization. The statistical significance of differences between groups was calculated using the Student’s t-test.
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GeneGo database in our study, 18 (75%) were common
pathways with those of previous studies. Taken together,
these analyses confirmed the correlation between the tar-
get genes and PCa, and thus verified the reliability of our
predicted PCa miRNAs.

Discussion
Previous studies have provided evidence of multiple-to-
multiple relationships between miRNAs and their target
genes [41,42,51]. From the average view of the miRNA-
mRNA target network, that conclusion seems reason-
able. Indeed, there are on average 51 target genes for
each individual miRNA, and 4 co-regulator miRNAs for
each gene in the whole miRNA-mRNA targeting net-
work according to our analysis of the reconstructed net-
work, as described in the Methods section. Based on this
theory, numerous attempts have been made to predict
cancer related miRNA regulatory modules [14], and can-
cer miRNAs were shown to have more synergism with
their co-regulatory effects on the same genes [18].
In the present study, we conducted an in-depth ex-

ploration of this matter. Our results revealed the scale-
free feature of the miRNA-mRNA target network. We
introduced the NOD index to measure the independent
regulatory power of an individual miRNA. Contrary to
the functional synergism of cancer miRNAs, our data
showed that miRNAs with greater independent regula-
tory power were more likely to be potential biomarkers
in human cancers. Based on this evidence, we developed
a novel integrative method to infer candidate cancer
miRNA biomarkers from the miRNA regulatory network
by linking paired miRNA and gene expression data, and
highly reliable miRNA-mRNA target data. This pipeline
was further applied to PCa. A total of 39 miRNAs were
predicted as potential PCa miRNA signatures. Among
these miRNAs, 20 have previously been reported to be
PCa aberrant miRNAs by low-throughput methods, and
16 miRNAs were shown to be deregulated in other can-
cers. In vitro q-PCR experiments and functional ana-
lysis further verified the accuracy of our predictions
and miR-648 was identified as a novel candidate PCa
miRNA biomarker. The target genes of miR-648 are
listed in Figure 8. With the exception of BCL11A, the
other nine genes are exclusively regulated by miR-648.



miR-648 BCL11A

PAK3

SRPX

PPP1R3C

IL15RA

IRF2

KLF9

CALM1BLCAP

PPAP2B

microRNA

GeneGene
Genes involved 
in other cancers

Prostate cancer 
associate gene

Regulations

miR-93

Figure 8 Target genes of novel identified biomarker - miR-648(NOD = 9). The target genes of query miRNA were retrieved from above
collected prostate cancer miRNA-mRNA binding network. Genes that were reported to associate with prostate cancer progress were marked
in red.
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Among these 10 genes, PAK3 and IL15RA were previ-
ously shown to be involved in PCa progression [52,53],
and PAK3 was identified as an epigenetic biomarker for
the prognostic diagnosis of PCa [52]. Despite the fact that
no reports on the association of the remaining genes with
PCa were found, these genes were shown to be associated
with the progression of other cancers, such as breast
cancer [54] pancreatic cancer [55] and leukemia [56].
These evidences support that miR-648 could be in-
volved in PCa and act as a novel molecular biomarker
for PCa diagnosis.
The miRNA-mRNA network reconstructed in this study

consisted of experimentally validated data and computa-
tional predicted data. The data resources of the computa-
tional prediction databases used in this study, HOCTAR
[25], ExprTargetDB [26], and starBase [27], were derived
from the predictions based on gene expression informa-
tion, such as microarray data and Next-generation se-
quencing data. Therefore, this predicted data should be
more accurate than data predicted by programs merely
based on sequence level, such as TargetScan [57] and
RNAhybrid [58]. The reliable miRNA-mRNA targeting
data could guarantee the accuracy of the predicted activ-
ities of outlier miRNAs.
The present results provide a basis for the development

of algorithms for cancer miRNA biomarker identification.
Indeed, two points require further improvement. Firstly,
as the gene transcriptional expression data do not reflect
changes in protein expression levels [11], the cancer
miRNA activity cannot be predicted by our method for
miRNAs that function through translational repression.
Secondly, the detailed outlier patterns (up-regulation or
down-regulation) for the prediction of outlier miRNAs
need to be further explored. The integration of protein
expression data, transcription factor (TF) information
and other omics data is a potential method to improve the
prediction. This information will be incorporated in future
studies aimed at further developing and refining our
method.

Conclusions
The present analysis revealed novel distinctive fea-
tures of cancer miRNA biomarkers. A novel bioinfor-
matics framework was proposed to infer candidate
cancer miRNA biomarkers from a miRNA regulatory
network. The methodology may accelerate the discov-
ery of novel miRNA signatures for cancer diagnosis and
treatment, and should also be feasible for the study of
other diseases.
Additional files

Additional file 1: MicroRNA and gene expression datasets. Paired
miRNA and gene expression profiles from the same samples of four
prostate cancer and four benign prostate hyperplasia individuals were
used. Detailed information about these datasets is provided in this table.

Additional file 2: Comparison of the prediction prostate cancer
miRNA biomarkers with different outlier miRNA (gene) thresholds.
MicroRNAs with high statistical significance (p-value < 0.01, Wilcoxon
signed-rank test) were considered as candidate prostate cancer miRNA
biomarkers. MiRNAs common to three groups are highlighted in yellow,
while miRNAs common to two groups are marked in red.
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significance (p-value < 0.01, Wilcoxon signed-rank test) were considered as
candidate prostate cancer miRNA biomarkers. The references on
abnormally expressed miRNAs previously validated in prostate cancer or
in other cancers are listed in this table.

Additional file 4: Aberrantly expressed miRNAs in prostate cancer
detected by low-throughput methods. Detailed information about
known aberrantly expressed miRNAs in prostate cancer was extracted
from previous publications through text mining with the NCBI pubmed
engine.

Additional file 5: Significantly enriched GeneGo pathways for the
uniquely regulated genes of candidate prostate cancer miRNA
biomarkers. MetaCore™ was used for GeneGo pathway enrichment for
the uniquely regulated genes of our prediction prostate cancer miRNA
biomarkers. The significant enrichment pathways (p-value < 0.01) and the
citations reporting their association with prostate cancer are listed in this
table. Common pathways with those identified by Wang et al [50] are
marked in yellow. The PubMed citation count may change with the
updating of the database.
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