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Abstract

Background: Clear cell renal cell carcinoma (ccRCC) represents the most invasive and common adult kidney
neoplasm. Mounting evidence suggests that microRNAs (miRNAs) are important regulators of gene expression. But
their function in tumourigenesis in this tumour type remains elusive. With the development of high throughput
technologies such as microarrays and NGS, aberrant miRNA expression has been widely observed in ccRCC.
Systematic and integrative analysis of multiple microRNA expression datasets may reveal potential mechanisms by
which microRNAs contribute to ccRCC pathogenesis.

Methods: We collected 5 public microRNA expression datasets in ccRCC versus non-matching normal renal tissues
from GEO database and published literatures. We analyzed these data sets with an integrated bioinformatics
framework to identify expression signatures. The framework incorporates a novel statistic method for abnormal
gene expression detection and an in-house developed predictor to assess the regulatory activity of microRNAs. We
then mapped target genes of DE-miRNAs to different databases, such as GO, KEGG, GeneGo etc, for functional
enrichment analysis.

Results: Using this framework we identified a consistent panel of eleven deregulated miRNAs shared by five
independent datasets that can distinguish normal kidney tissues from ccRCC. After comparison with 3 RNA-seq based
microRNA profiling studies, we found that our data correlated well with the results of next generation sequencing. We
also discovered 14 novel molecular pathways that are likely to play a role in the tumourigenesis of ccRCC.

Conclusions: The integrative framework described in this paper greatly improves the inter-dataset consistency of
microRNA expression signatures. Consensus expression profile should be identified at pathway or network level to
address the heterogeneity of cancer. The DE-miRNA signature and novel pathways identified herein could provide
potential biomarkers for ccRCC that await further validation.

Keywords: Meta-analysis, Network biomarker, MicroRNA, Clear cell renal cell carcinoma, Pathway analysis, Heterogeneity

Background

Renal cell carcinoma (RCC) represents the leading cause of
death among urological malignancies [1]. Clear cell renal
cell carcinoma (ccRCC) is the most common histological
subtype of RCC. Early stage of renal cancers do not usually
cause symptom and it’s difficult to establish an accurate
diagnose. ccRCC is relatively resistant to chemotherapy or
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radiotherapy [2] and the overall clinical outcome is poor [3].
Thus the need for diagnostic and prognostic biomarkers in
ccRCC is urgent. Nevertheless, to our knowledge there are
still no biomarkers in routine clinical practice in ccRCC.
microRNAs are single-stranded, non-coding RNAs that
regulate gene expression at the post-transcriptional level
[4]. Aberrant changes in microRNA expression have been
shown to be associated with human malignancies [5,6].
Various studies have investigated the miRNA profile in
ccRCC lesions in comparison to non-tumoral kidney tissues
by microarray technologies [7-13], RT-qPCR [14-16] and
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more recently with next generation sequencing [17-19].
Altered expression of miRNAs in ¢cRCC has been fre-
quently reported. Nevertheless, the DE-miRNA lists from
different laboratories vary widely due to the inter-platform
differences and the limited sample sizes. Potential mecha-
nisms by which miRNAs contribute to ccRCC pathogen-
esis are still poorly understood.

Cancer is a systems biology disease, therefore the bio-
markers discovery should take into account the heterogen-
eity and complexity of carcinogenesis. There is a growing
movement from individual marker discovery to a systems-
oriented paradigm. Due to this recognition, we describe
herein an integrated bioinformatics approach to obtain a
consistent microRNA expression signature as well as novel
microRNA-regulated molecular pathways that contribute
to the pathogenesis of ccRCC. The analysis pipeline of this
paper is outlined in Figure 1.

Methods

Dataset collection

Five publicly available microRNA expression datasets on
ccRCC versus non-matching normal renal tissues were
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downloaded, four of them from the GEO (Gene Expression
Omnibus) database, and one from supplementary materials
of published literature. Table 1 gives detailed information
of the miRNA expression datasets including the original
statistical methods used for the DE-miRNA identification.
Four mRNA expression datasets by Affymetrix arrays were
also extracted from GEO (detailed information given as
Additional file 1). All the datasets are downloaded in raw
data file format. Probe sequences were mapped to Sanger
miRBase 18 [20] for unified miRNA names.

Data processing

The quantified probing signals were background corrected
using Normexp, with offset value set as 0. The background-
subtracted data were normalized using the Quantile algo-
rithm. Averages were derived from all quantile normalized
data per miRNA for statistical analysis. Missing data were
imputed with the k-nearest neighbors imputation approach
(k = 5). We wrote the R scripts to run the processing proce-
dures for all datasets. The mRNA expression data were an-
alyzed using affy package from Bioconductor with RMA
method. For the gene annotation, genes that correspond to
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Figure 1 Schematic diagram depicting the analysis pipeline in this study.
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Table 1 Summary of microRNA expression datasets used in this study

GEO Reference Platforms Probe Number of samples Statistics
accession Number normal tissue cancer tissue
GSE11016 [6] LC MRA-1001 835 17 17 t-test
GSE12105 [7] Agilent Human microRNA Microarray 490 12 12 t-test
GSE16441 [8] Agilent Human microRNA Microarray 851 8 8 SAM
GSE23085 [10] LC MRA-1001 881 20 20 t-test
Weng [18] Agilent Human microRNA Microarray 723 3 3 t-test

multiple probes were removed and those with unique probe
were retained for further analysis.

Comparison of the outlier detection methods

We compared the performance of five prevailing outlier
detection algorithms, COPA (Cancer Outlier Profile Ana-
lysis) [21], MOST (Maximum Ordered Subset T-statistics)
[22], ORT (Outlier Robust T-statistics) [23], OS (Outlier
Sum) [24] and t-test.

All the algorithms were implemented in R scripts written
by Lian [22] and Wang [25]. Outliers for each expression
dataset were determined by five methods respectively. The
threshold for outlier detection was set 0.05 (5%) for all the
methods. The outliers detected by at least 3 methods were
taken as the putative DE-miRNAs. The proportion of the
putative DE-miRNAs in the outlier list found by each
method was then calculated. Median value of the percent-
age among 5 datasets was then calculated as the accuracy
for each method.

Determination of the differentially expressed microRNAs
and mRNAs

Outlier microRNAs and mRNAs were detected with MOST,
implemented in R scripts by Lian et al. [22]. Outliers that
rank top 5% were extracted as differential candidates.

Target gene prediction for DE-microRNAs

The mRNAs targeted by the DE-microRNAs were obtained
from three target prediction algorithms (TargetScan [26],
PicTar [27] and miRanda [28]) as well as a database with
experimental evidence (miRecord [29]). In order to obtain a
more reliable result, we removed the targets found by only
one prediction programs.

Functional enrichment of DE-miRNA targets

We then mapped the target genes of DE-miRNAs to dif-
ferent databases, such as GO (Gene Ontology), KEGG,
GeneGo, for functional enrichment analysis. GO and
KEGG pathway enrichment were performed using DAVID
Bioinformatics Resources 6.7 [30]. GeneGo pathway ana-
lysis was performed by MetaCoreTM (GeneGo Inc). In
MetaCoreTM, P-values were calculated by hypergeometric
distribution to evaluate the statistical significance of the

enriched pathways. MetaCoreTM used FDR (False Discov-
ery Rate) adjustment for multiple test correction.

Results

Detection of DE-miRNAs with a novel statistical method
T-statistics is most widely used in differential gene ex-
pression detection for microarray studies. However, there
is a growing realization that the activation patterns of on-
cogenes are highly heterogeneous. Some oncogenes show
altered expressions only in a minor fraction of samples.
Tomlins et al. [31] showed that t-statistics has poor de-
tection power for such unconventional circumstance.
The problem with t-statistics has motivated a variety of
novel analytical methods such as COPA (Cancer Outlier
Profile Analysis) [21], MOST (Maximum Ordered Sub-
set T-statistics) [22], ORT (Outlier Robust T-statistics)
[23] and OS (Outlier Sum) [24]. In our previous study
[32] we have applied these novel methods to prostate
cancer microarray datasets. We have demonstrated that
the choice of outlier detection method can greatly affect
the genes that are identified.

We compared the performance of these methods in
outlier detection based on microRNA expression data in
ccRCC. Each method was applied to 5 public microRNA
profiling datasets (details of these datasets are given in
method section) to obtain the outliers. Outliers detected
by at least 3 methods were designated as putative DE-
miRNAs. The proportion of the putative outliers in the
original gene list was then calculated and the median ob-
servation among 5 datasets was defined as the accuracy
for the method, as illustrated in Figure 2.

Among the five algorithms for comparison, MOST gives
best accuracy. ORT also displays favorable performance.
COPA performs a little worse than ORT, but still offers
some improvement over the t-statistics. The performance
of the OS statistics is noticeably worst. The advantage over
t-test is apparent for the majority of the novel methods.
Thus we come to the conclusion that the newly developed
statistics show superior performance in detecting outliers,
and therefore provide promising alternatives to the trad-
itional t-statistics. In this study we chose MOST to identify
differentially expressed outliers from public datasets.
MOST seems to have superior performance when the num-
ber of activated samples is unknown [22]. The threshold of
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Figure 2 The percentage of the putative outliers in the original gene list by different methods. The overlapping percentage was
calculated for 5 datasets respectively. The median value among the 5 datasets was defined as the accuracy for the method.

outliers is set as 0.05 to select the top 5% of the miRNA
outliers.

Refinement of DE-miRNA lists with the Pipeline of Outlier
microRNA Analysis (POMA)

We used an in-house prediction model POMA (Pipeline of
Outlier microRNA Analysis) to remove false positive dis-
coveries from the outlier microRNAs detected by MOST.
POMA is a model created by our colleagues [33] to evalu-
ate the relevance of microRNAs to given disease conditions.
MiRNAs with poor regulatory activity will be excluded
from further analysis. POMA is based on two hypotheses:
the microRNA activity could be reflected by the deregulated
expression of its target genes; if the deregulated genes are
targeted exclusively by certain microRNA, that microRNA
is more likely to show regulatory activity. The stepwise pro-
cedure of POMA is described as follows:

a) We conducted a comprehensive search of all
possible microRNA-mRNA interactions for human.
Experimentally validated interactions were extracted
from 4 databases: miRecords, miRTarbase,
miR2Disease and TarBase. Computationally
predicted interactions were retrieved from
HOCTAR, starBase, and ExprTargetDB. Based on
these data, we reconstructed a human microRNA-
mRNA interaction network.

b) We reanalyzed 4 public gene expression data in
¢cRCC vs. normal kidney samples, and identified
deregulated genes in ccRCC.

¢) The deregulated genes detected in step (b) were
subsequently mapped to the microRNA-mRNA
interaction network established in step (a), to
construct a ccRCC-specific microRNA-mRNA
interaction sub-network.

d) We defined a Z_score to measure the probability of
microRNA having regulatory role in ccRCC:

Zscore = “/ﬁ (1)

a: Number of outlier genes targeted exclusively by a
specific microRNA; f: Number of all the outlier genes
targeted by that microRNA; (a, p >1).

7 score is calculated for each candidate microRNA in
the sub-network. Using a threshold of 0.1, we identified
a list of miRNAs with potential regulatory role in ccRCC
for each mRNA expression dataset. The final list was an
overlap of the active microRNA identified in at least 3 of
the 4 gene expression datasets.

e) The active microRNA list found in step (d) was cross-
matched with the DE-microRNA list of each miRNA
dataset. The intersected microRNAs (listed in
Additional file 2) were retained for further analysis.

POMA improves inter-dataset consistency

POMA predicts a list of microRNA that might play regula-
tory role in ccRCC. These microRNAs serve as a filter that
removes the DE-miRNAs without actual function. After
filtration, the DE-miRNA list is greatly reduced, resulting
in a robust set of functional microRNAs. In addition, a
higher overlap between different miRNA datasets was ob-
served. The inter-dataset overlapping percentage before
and after POMA filtration is illustrated in Figure 3.

The p-values for the overlapping percentage were
4.38165E-05 by paired t-test, indicating the significance of
the difference. Although the number of DE-microRNAs de-
creased, the consistency between multiple datasets is greatly
improved. The enhanced consistency enables us to extract



Chen et al. Journal of Translational Medicine 2013, 11:169
http://www.translational-medicine.com/content/11/1/169

Page 5 of 11

datasets. Y axis denotes the overlapping percentage at different levels.

35 r
% Before POMA filtration
30 O After POMA filtration
8 25l
51
£
5 7
I} P
g 7
a
& Y ,
T 2
S 7
" " &
%Q%g 4@&0 bb?‘ ,\,JQ% q\zﬁw %Qq’(—) & $é‘¢0
v S & & S iz S S
Ry & &L Q&L S & & S
Q\b Q\b \Qé, $ \Q% > o ch‘)
N > N & N N P

Datasets for Comparison

Figure 3 Pair-wise comparison between 5 datasets at different levels. X axis shows the 10 pair-wise comparison sets derived from 5

common microRNA expression signatures from different
datasets. As a result, we retrieved a set of 11 microRNAs
(listed in Table 2), which were shared by at least 4 of the 5
datasets.

Furthermore, we performed a literature search of the 11
microRNA markers to validate their relevance in the regu-
lation of ccRCC. It’s found that all of them have been
reported for their roles in renal cell carcinoma. The num-
bers of supporting literatures for each microRNA are also
given in Table 2. These “literature curated” microRNAs
provide a focused and robust signature to separate normal
from cancerous kidney tissues.

Targets prediction and functional enrichment
We conducted a high-stringency target prediction for the
DE-miRNAs. Target genes were obtained from both

experimentally supported databases and prediction algo-
rithms. Number of target genes for each dataset is listed in
Table 3. Detailed list of target genes are available in Add-
itional file 3. The targets of each individual dataset were
mapped to functional databases, e.g. GO [34], KEGG [35]
and GeneGo. Table 3 illustrates the number of various bio-
logical themes significantly enriched with target genes for
each dataset. Detailed lists of the enriched functional cat-
egories and pathways could be found in Additional file 4.

Identification of ccRCC related functions and pathways

DE-miRNA target genes are statistically enriched in GO
terms of cell cycle and transcription. The top enriched
GO terms include: regulation of cyclin-dependent pro-
tein kinase activity, transcription, DNA-dependent regu-
lation of transcription, regulation of cell proliferation,

Table 2 DE-miRNAs with outlier activity in ccRCC pathogenesis

Human microRNA Accession No. Chr Chromosomal location microRNA cluster Family PubMed citation No.

hsa-miR-210 MIMATO0000267 11 transcripts 0 210 15
hsa-miR-138-5p MIMATO0000430 3 intergenic 0 138 5
hsa-miR-16-5p MIMATO0000069 13 transcripts 1 15 2
hsa-miR-224-5p MIMAT0000281 X transcripts 1 224 9
hsa-miR-34a-5p MIMATO0000255 1 intergenic 0 34 5

hsa-miR-184 MIMATO0000454 15 intergenic 0 184 6
hsa-miR-122-5p MIMATO0000421 18 intergenic 1 122 6
hsa-miR-126-3p MIMAT0000445 9 transcript 0 126 5
hsa-miR-155-5p MIMAT0000646 21 transcript 0 155 14
hsa-miR-15b-5p MIMAT0000068 3 transcript 1 15 3

hsa-miR-660 MIMAT0003338 X transcript 6 188 1
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Table 3 The number of various enriched biological themes for different datasets
Dataset DE-miRNA Target GO-BP GO-MF KEGG GeneGo
(FDR < 0.05) (FDR < 0.05) FDR < (0.05) (FDR < 0.001)
GSE 11016 21 853 18 9 2 99
GSE 12105 22 764 54 1 7 152
GSE 16441 35 1136 110 15 1 149
GSE 23085 31 895 53 1 13 125
Weng 25 921 67 10 9 135
Shared 5 388 8 7 6 62

sequence-specific DNA binding and transcription regu-
lator activity.

KEGG pathways that are significantly enriched with the
DE-miRNA targets were also identified, many of which
are associated in cancer, e.g. colorectal cancer, Cell cycle,
Neurotrophin signaling pathway, Renal cell carcinoma,
Prostate cancer, MAPK signaling pathway, and p53 signal-
ing pathway.

The top GeneGo pathway maps regulated by DE-miRNA
converge on cell adhesion, cell cycle and cytoskeleton re-
modeling, most of which are known to play a part in tumor
development. Among the significantly enriched GeneGo
pathways (FDR < 0.001), 60 were shared by all of the 5
datasets (see Additional file 4). To evaluate the relevance of
these pathway maps in ccRCC, we searched PubMed for
the published papers describing their constituent network
objects in ccRCC. The network objects with previous litera-
ture support were considered to be ccRCC-related.

After text mining, 36 out of the 60 pathways (60%) were
found to be highly saturated with well-characterized ccRCC-
related objects (enrichment ratio>0.15, p-value<0.0001). To
visualize the most significantly enriched pathways we

constructed a scatter plot (Figure 4) by plotting the -log10
of p-value versus gene enrichment ratio on the y- and x-
axes, respectively. The most meaningful points that dis-
play both large enrichment ratio (>0.15, x-axis) as well as
high statistical significance (P<0.0001, y-axis) were shown
in red. These points could be the potential regulatory
pathways in renal carcinogenesis. The top 10 significant
GeneGo pathways enriched with ccRCC-related objects
are listed in Table 4.

A further PubMed search highlighted 22 out of the 36
putative ccRCC-related pathways with literature support
in ccRCC pathogenesis. The remaining 14 pathways with-
out previous annotation are considered to be promising
novel pathways contributing to ccRCC (See details in Add-
itional file 5). Among the novel GeneGo pathways, TGE,
WNT and cytoskeletal remodeling is most significantly
enriched. The pathway is highly saturated with network
objects previously found to associate with RCC, such as
TCE, AKT, VEGF-A, WNT, Frizzled, TGF-beta, RhoA,
Beta-catinin, c-Myc, Cyclin D1 and c-Jun. This pathway
focuses on WNT protein family and its downstream ef-
fectors. The WNTT signaling pathway plays a central role

16

14

-log p-value

0 0.1 0.2

Enrichment ratio

Figure 4 Volcano plot of pathways enriched with RCC-related genes. The red points indicate pathways of interest that display both large
enrichment ratio (>0.15, x-axis) as well as high statistical significance (P < 0.0001, y-axis).
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Table 4 Top 10 of the significant GeneGo pathways enriched with both DE-miRNA targets and RCC-related genes

Pathway map Pathway map Ratio of RCC related  P-value  PubMed citation count
category objects

TGF, WNT and cytoskeletal remodeling Cytoskeleton remodeling 25/111 241E-16

AKT signaling Signal transduction 17/43 5.00E-16 70
Brcal as a transcription regulator DNA damage 13/30 3.70E-13

PTEN pathway Signal transduction 15/46 7.79E-13 22
PIP3 signaling in cardiac myocytes Development 15/47 1.12E-12

Regulation of epithelial-to-mesenchymal transition (EMT) Development 16/64 11211 12
Influence of Ras and Rho proteins on G1/S Transition Cell cycle 14/53 1.14E-10 2
Cytoskeleton remodeling Cytoskeleton remodeling 18/102 3.30E-10 2
Regulation of G1/S transition (part 1) Cell cycle 11/38 743E-10 4
Receptor-mediated HIF regulation Transcription 11/39 1.02E-9 7

during tumorigenesis and inappropriate activation of
this pathway has been observed in many human cancers.
Wnt ligands first bind to Frizzled family of Wnt receptors
to form Wnt-Frizzled complexes. Upon binding with the
Axin-related protein, Wnt regulates the stability of catenin
[, which is known to play essential roles at cell-cell adher-
ence junctions. Catenin  then binds to TCF, a family of
transcription factors, inducing the transcription of Wnt
target genes, such as c-Myc, c-Jun and Cyclin D1. Both c-
Myc and c-Jun are oncogenic transcription factors that
function in cell cycle progression, apoptosis and cellular
transformation. Cyclin D1 is a nuclear protein involved in
cell cycle progression in G1/S transition. Activation of
these genes contributes to early RCC development. These
findings are consistent with the observation that WNT
signaling pathway is deregulated during renal carcinoma
development. Actin and a variety of actin-binding proteins
are also central in the pathway. Remodeling of actins regu-
lates the motility of cells and maintains the cytoskeleton.
Cytoskeletal actin disruption is the key factor that triggers
apoptosis.

TGE, WNT and cytoskeletal remodeling pathway also
contains some objects without previous annotation in
ccRCC carcinogenesis, such as ROCK, MEK1, p38, MAPK,
axin. These objects could be putative therapeutic targets for
novel treatment strategies against ccRCC.

Another pathway preferentially targeted by the DE-
miRNAs is Brcal as a transcription regulator, which be-
longs to the DNA damage category. The pathway map is
illustrated in Figure 5 (drawn by MetaCore™). It's evident
in Figure 5 that the pathway is enriched with RCC-related
objects such as c-Myc, E2F1, Rb protein, IGF1-receptor,
VEGF-A and cyclin D1, most of which are predicted targets
of miRNAs differentially expressed in ccRCC. The pathway
also includes several targets of DE-miRNAs whose associ-
ation with ccRCC has not been reported before, e.g. Brcal,
spl, sp3, MSH2, p21, GADD45 alpha and statl. Central in

the pathway is the Breast cancer associated gene-1 (Bracl)
which plays a central role in DNA repair. BRCA1 is a well-
known tumor suppressor gene in breast cancer and ovarian
cancers [36], but its role in other cancer types remains elu-
sive [37]. This is the first study demonstrating the tumor
suppressor activity of Bracl in ccRCC. Brcal regulates the
transcription of proteins at DNA repair pathways via tran-
scription factor p53, such as mismatch repair protein MSH2
[38]. Brcal also participates in cell cycle regulation. In the
absence of DNA damage, Brcal is associated with ZBRK1 in
a complex which inhibits transcription of GADDA45 alpha.
Upon DNA-damage, Brcal is phosphorylated and dissoci-
ated from the Brcal-ZBRK1 repression complex [39]. The
released Brcal stimulates transcription of GADD45 alpha
[40]. GADDA45 alpha participates in DNA-damage-induced
G1/S checkpoint arrest [41] and DNA-damage-induced G2/
M checkpoint arrest [42]. In addition, Brcal regulates the
transcription of some other G1/S checkpoint arrest regula-
tors, e.g. p21 and Cyclin D1. Transcription of p21 [43] may
be activated through p53 whereas transcription of Cyclin D1
is regulated via c-Myc [44].

Signatures at pathway level are more consistent

We performed pair-wise comparison between five
datasets at different observation levels, including DE-
microRNA, target gene, GO-MF (Molecular Function),
GO-BP (Biological Process), and GeneGo pathway, re-
spectively. For 5 miRNA expression datasets, 10 pairs
are available for comparison. P-values by paired t-test
are well below 0.05, indicating that the overlapping
percentages at functional level are significantly higher
than that at individual DE-microRNA and target gene
level.

Discussion
In this study, we performed systematic and integrative ana-
lysis of 5 ccRCC-related microRNA expression datasets, in
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order to find more reliable expression signatures. We in-
corporated a novel outlier detection algorithm and a func-
tional microRNA prediction model, into an integrative
framework which could enhance the reproducibility of re-
sults across multiple datasets.

We first applied a new statistics, MOST, to the identifi-
cation of differentially expressed microRNAs. It was found
that some oncogenes have highly heterogeneous activation
patterns and are activated in only a small subset of patient
samples. This well explains the inter-dataset inconsistency.
These subset-specific cancer genes however, cannot be
detected with traditional t-tests. As our previous studies
[32,45] have indicated, new statistics generally outperform
traditional t-statistics and are therefore more competent
for cancer data analysis.

We then used POMA to refine the DE-miRNA list by re-
ducing false discoveries. POMA is designed to find the
microRNAs with regulatory activity in ccRCC condition.

Those DE-miRNAs without real regulatory activity in the
disease were excluded from subsequent analysis. POMA
has been employed by our laboratory in the context of
prostate cancer (Zhang, unpublished). This model focuses
not only on the profile of microRNAs, but also on mRNA
transcripts with altered expression in ccRCC. After POMA
filtration, final lists of DE-miRNAs are significantly reduced
yet improved consistency is observed between the 5 inde-
pendent datasets.

Finally we obtained a list of 11 DE-microRNAs with regu-
latory roles. Literature mining confirmed that all of these
microRNAs have been reported to be deregulated in renal
cell carcinoma, which lends credibility to our list.

We further characterized the concordance of our 11 DE-
miRNA list with the results from NGS (Next-Generation
Sequencing) technologies. Next-generation sequencing tech-
nology facilitates genome-wide miRNA expression profiling
at unprecedented speed and accuracy. It also enables
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discovery of novel miRNAs. After comparison with 3 NGS-
based microRNA profiling studies in ¢ccRCC [17-19], we
found that our data correlated well with the results of next
generation sequencing. For instance, among our 11-
miRNA panel, up to 9 miRNAs (82%) were also detected
by Osanto et al. [17], except that miR-180 and 660 were
not detected. A higher overlap (10 out of 11) was seen
comparing with the DE-miRNAs lists by Weng et al.
[18], the only mismatch is represented by miR-16-5p.
An even better concordance was seen in comparison
with the data of Zhou et al. [19]. Here, all of 11
microRNAs were also among the list of deregulated
microRNAs.

The comparison with NGS-based data further confirmed
that the DE-miRNAs identified by us are authentic cancer
related miRNAs in ccRCC and could provide potential bio-
markers which await further wet lab validation. Moreover,
the general DE-miRNA detection pipeline proposed herein
is not limited to ccRCC, but also applicable to a wide range
of other diseases.

In order to find novel miRNAs without previous anno-
tation, we also tried to expand the list of POMA filter by
lowering the threshold for active miRNA selection. We re-
trieved active microRNA shared in at least 2 of the 4 mRNA
dataset. In this way, a less strict filter with more active
miRNA is obtained, which might include some additional
novel microRNAs worthy of further investigation. The ex-
panded list of miRNAs is provided as Additional file 7.

The ability of miRNAs to target multiple target genes al-
lows them to induce changes in various pathways and pro-
cesses, which present a further level of mechanism by which
ccRCC may be induced. Overlap analysis at different levels
confirms that expression signatures across multiple datasets
are more consistent at pathway level than at gene level. It's
been recognized cancer is a highly heterogeneous disease.

Single biomarker is unlikely to dictate diagnosis or prog-
nosis success. Consequently, the future of cancer biomarker
might rely on coordinated molecular changes instead [46].
As functionally related genes often display a coordinated
expression to accomplish their roles in the cell [47,48], one
might expect that the inconsistent microRNA lists, when
mapped to higher functional levels, could fall within the
same functional modules, pathways or networks [49] and
become more consistent.

Functional analysis revealed some biological processes
which are preferentially targeted by the DE-miRNAs.
Interestingly, the top enriched GO terms are mostly in-
volved in cell cycle regulation (e.g., G1/S transition). Ab-
errant expression of cell cycle regulators could possibly
lead to deregulated cell cycle, which is a hallmark of can-
cer. It’s showed that cell cycle checkpoint regulators such
as cyclins and cyclin-dependent kinases are coregulated by
the DE-miRNAs. For example, miR-16 family is reported
to trigger a cell cycle arrest by coordinately suppressing
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multiple cell cycle regulatory genes [50]. It's worth noting
that miR-16 happens to be among the 11 deregulated
microRNAs identified in this study. All the evidences above
corroborate the validity of the results of the present study.

To evaluate the relevance of the enriched GeneGo
pathways in ccRCC, we performed text mining at path-
way level as well as object level. Many of the objects that
constitute the pathways are known to be critical in the
renal carcinogenesis. In addition to the known pathways
in RCC tumorigenesis, this study also identified 14 novel
ccRCC related pathways. This is the first study demon-
strating their relevance in ccRCC. The multiple pathway
alterations identified suggest that the miRNAs are poten-
tially regulating many of the necessary steps required by
ccRCC development, from changes in the cellular cyto-
skeleton to regulating cell cycle as well as DNA damage.
The cellular functions of these pathways are consistent with
the current view on ccRCC pathogenesis. Therefore, these
pathways could be a prospective source of novel drug tar-
gets and biomarkers. The inhibition of these pathways by
synthetic antisense antagomirs provides potential thera-
peutic interventions in ccRCC.

Conclusions

In this study we created a bioinformatics framework and
applied it to integrative analysis of multiple microRNA
expression datasets. The methodology would hopefully
improve the reproducibility of miRNAs across independ-
ent datasets. The DE-miRNAs and novel pathways iden-
tified herein might be candidate biomarkers and drug
targets for ccRCC diagnosis and treatment.
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