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Nerve growth factor: from the early discoveries to
the potential clinical use
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Abstract

The physiological role of the neurotrophin nerve growth factor (NGF) has been characterized, since its discovery in
the 1950s, first in the sensory and autonomic nervous system, then in central nervous, endocrine and immune
systems. NGF plays its trophic role both during development and in adulthood, ensuring the maintenance of
phenotypic and functional characteristic of several populations of neurons as well as immune cells. From a
translational standpoint, the action of NGF on cholinergic neurons of the basal forebrain and on sensory neurons in
dorsal root ganglia first gained researcher’s attention, in view of possible clinical use in Alzheimer’s disease patients
and in peripheral neuropathies respectively. The translational and clinical research on NGF have, since then,
enlarged the spectrum of diseases that could benefit from NGF treatment, at the same time highlighting possible
limitations in the use of the neurotrophin as a drug. In this review we give a comprehensive account for almost all
of the clinical trials attempted until now by using NGF. A perspective on future development for translational
research on NGF is also discussed, in view of recent proposals for innovative delivery strategies and/or for
additional pathologies to be treated, such as ocular and skin diseases, gliomas, traumatic brain injuries, vascular and
immune diseases.
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Nerve growth factor
Nerve growth factor (NGF) is the first discovered mem-
ber of the neurotrophin family [1]. NGF is essential for
the development and phenotypic maintenance of neu-
rons in the peripheral nervous system (PNS) and for the
functional integrity of cholinergic neurons in the central
nervous system (CNS) (Figure 1) [2]. The amino acid
and messenger RNA sequences of this neurotrophin
have been classified and indicate that NGF is a highly
conserved molecule that shares considerable homology
within different species [3]. The mature, active form of
NGF descend from proteolitic cleavage of a precursor
form (ProNGF), that have important roles during devel-
opment and in adult life, having both pro-apoptotic and
neurotrophic properties [4,5].
NGF exerts its biological action by challenging the

specific receptor tropomyosin kinase receptor A (TrkA),
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which is a typical tyrosine kinase receptor [6]. The major
cytosolic/endosomal pathways activated by the TrkA are
Ras-mitogen activated protein kinase (MAPK), extracel-
lular signal-regulated kinase (ERK), phosphatidylinositol
3-kinase (PI3K) -Akt, and Phospholipase C (PLC) -γ
[7-9]. NGF also binds to and activate the low-affinity,
non-selective p75 pan-neurotrophin receptor (p75NTR).
This receptor is a transmembrane glycoprotein that regu-
lates signaling through TrkA [9-11]; binding of NGF to
p75NTR activates additional signaling pathways that, in
the absence of co-expressed TrkA, may signal a cell to
die via apoptosis [10-12]. Signaling pathways activated by
p75NTR are the Jun kinase signaling cascade, NF-κB and
ceramide generation [13].
The discovery of NGF dated the ‘50s of the last cen-

tury and was awarded with the Nobel prize in 1986 [13].
In 1953, Rita Levi-Montalcini, working in the Victor
Hamburger laboratory at Washington University (Saint
Louis, MA, USA), grafted a piece of mouse sarcoma tis-
sue onto chick embryos whose wing buds had been
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Figure 1 NGF is produced by every peripheral tissue/organ that is innervated by sensory afferents and/or sympathetic efferents, as
well as by central and peripheral nervous system and immune cells. The largest amount of the neurotrophin is produced in mice
submaxillary glands, as revealed by immunofluorescence staining depicted in panel A, that are the source for murine NGF used in several clinical
trials. When intravenously injected in rats (B), NGF levels quickly increases in the bloodstream, reaching a peak within 30 min and remaining
above baseline levels up until 72 h. Peripheral NGF injection induces peculiar effects on immune circulating cells, such as the overexpression of
its receptor TrkA on circulating lymphocytes (C) or degranulation of peritoneal mast cells (D). Radiolabelled, intra-cerebroventricular injected NGF
is captured by TrkA-expressing neurons, such as cholinergic neurons in the basal forebrain complex (E).
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extirpated. She discovered that the tumor tissue pro-
duced a soluble factor that promoted the growth of
nearby sensory and sympathetic ganglia [13]. Collaborat-
ing with the biochemist Stanley Cohen, they isolated the
substance responsible and named it NGF. For over
35 years, NGF has been considered as a very powerful
and selective growth factor for sympathetic and sensory
neurons and for cells derived from the neuronal crest
(Figure 2) [14-16]. In these neurons, NGF dynamically
controls neurotransmitters and neuropeptides synthesis.
In sympathetic neurons the production of norepineph-
rine is regulated by NGF through selective induction of
tyrosine hydroxylase (TH) [17]. In the dorsal root gan-
glion (DRG) the expression of neuropeptides such as
Substance P (SP) and Calcitonin Gene-Related Peptide
(CGRP) by primary sensory neurons is under NGF con-
trol [18] and in vivo deprivation of NGF, as a result of
nerve transection or anti-NGF treatment, causes a
marked decrease in SP and CGRP synthesis [19]. NGF
supply from the innervation field influences the neur-
onal plasticity that allows the adult nervous system to
modify its structure and functions in response to stimuli.
Indeed, the constitutive synthesis of NGF in adult tissues
correlates with PNS neurons phenotypic features, such
as innervation density, cell body size, axonal terminal
sprouting, dendrites arborization, induction or inhibition
of neuropeptides and neurotransmitters or transmitter-
producing enzymes [17-21].
In the central nervous system (CNS), the greatest

amount of NGF is produced in the cortex, the hippo-
campus and in the pituitary gland; although significant
quantities of this neurotrophin are also produced in
other areas, including the basal ganglia, thalamus, spinal
cord and in the retina [22]. The NGF plays a pivotal role
in the survival and function of cholinergic neurons of
the basal forebrain complex (BFC) (Figures 1 and 2)
[23], such functions include attention, arousal, motiv-
ation, memory and consciousness. Since BFC neurons
are highly affected in Alzheimer’s disease (AD), NGF has
been indicated as a potential protective and/or curative
factor for neurodegenerative disorders associated with
these neurons [24]. In the CNS, NGF also regulates
phenotypic features in noradrenergic nuclei of hypothal-
amus and brainstem, participating in the central regula-
tion of autonomic response and in the modulation of
stress axis activity [25-29].
Cells of the immune-hematopoietic system also pro-

duce and utilize NGF [2,30,31]. Since the early descrip-
tion of the effects of NGF on mast cells (Figures 1 and 2)
[32,33], the role played by the neurotrophin in the regu-
lation of immune functions and immune cells' behavior
has been greatly characterized. NGF receptors are



Figure 2 The huge amount of research data produced since its discovery in the 1950s, first characterized the physiological role of the
neurotrophin NGF in the regulation of development and phenotypic maintenance of peripheral nervous system (PNS). A similar role for
central cholinergic neurons was described starting from the 1980s, while more recently NGF has been characterized as a survival, differentiative
and trophic factors also for cells belonging to the immune system and the epithelial lineage. Basic and translational research based on such
described NGF activities have then explored the possibility to develop NGF-based pharmacotherapies for peripheral neuropathies, brain degenerative
and traumatic diseases, several kinds of epithelial derangements. A possible, yet unexplored field for clinical development of NGF as a drug, is based
on its activity as immune-regulator, possibly involved in autoimmune and chronic inflammatory pathologies.
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expressed in immune organs and on immune cell popu-
lations (Figure 1) allowing NGF to modulate cell differ-
entiation and regulate the immune response. NGF affects
the survival and/or differentiation and/or phenotypic fea-
tures of hematopoietic stem cells [34-37], granulocytes
[38-46], lymphocytes [47-54] and monocytes [47,54-59].
NGF concentrations in the tissues change during inflam-
mation and inflammatory mediators induce NGF synthe-
sis in a variety of cell types [60-62]. Enhanced production
of NGF has been reported in inflamed tissues of patients
with inflammatory and autoimmune diseases [60,61,63],
but the reasons why NGF concentration is enhanced and
how this can affect inflammatory responses are far from
being fully understood.

Clinical use of NGF
Peripheral neuropathies
According to the classical neurotrophic model, NGF is
produced in and released by target tissues, is then cap-
tured by specific receptors expressed on nerve terminals
and retrogradely transported to the neuron body, where it
exerts its neurotrophic activity [64,65]. Any perturbation
in the neurotrophic circuit could generate peripheral
nerve dysfunction and neuronal sufferance, as those
characterizing peripheral neuropathies. Data obtained in
animal models and in human pathologies demonstrated
that disease-associated peripheral neuropathies could be
associated with either deregulation of NGF synthesis,
transport and utilization by PNS neurons [66-71]. This
gives to NGF an etiological value in the development of
neuropathic symptoms associated with, i.e., diabetes, HIV
infections or chemotherapy, and point to the neurotro-
phin as a possible pharmacological tool in the treatment
of peripheral neuropathies (see Table 1 for a comprehen-
sive summary of clinical trials on NGF in peripheral
neuropathies).

Diabetes
Diabetes is often characterized by major complications
such as dysfunction and degeneration of several types of
PNS neurons/fibers [72,73]. Sensory involvement is pre-
dominant, the small diameter sensory fiber degeneration
being responsible for the more debilitating symptoms. Def-
icits of NGF transport [66,67,74], serum and tissue content
[66,67,75,76] have been demonstrated in experimental dia-
betes. Major components of the NGF signaling pathway
have been also found deregulated in experimental diabetes
[77-79], as well as the production of neuromodulators that



Table 1 Summary of clinical trials with NGF on peripheral neuropathies

Disease Study type NGF type and
dosage

Delivery
route

Outcome Side effects References

Healthy
subjects

Phase I double-masked,
randomized, placebo-
controlled study.

Recombinant human
NGF. Doses ranging
from 0.03 to 1 μg/kg.

Subcutaneous,
intravenous.

The study evaluated the safety of single doses
of rhNGF in healthy human volunteers. No
life-threatening adverse events were seen at
any dose. Dose-dependent mild to moderate
muscle pain and hyperalgesia at the injection
site was reported.

[84,85]

Diabetic
polyneuropathy

Phase II, placebo-controlled
clinical trial.

Recombinant human
NGF. 0.1 and 0.3 μg/
kg.

Subcutaneous. Significant improvement of
neuropathic symptoms
after 6 months of
treatment.

Dose-dependent
hyperalgesia at
the injection site.

[86,87]

Phase III, randomized,
double-blind, placebo-
controlled clinical trial.

Recombinant human
NGF. 0.1 μg/kg.

Subcutaneous. Not significant compared
to placebo.

Dose-dependent
hyperalgesia at
the injection site.

[87,88]

HIV-associated
peripheral
neuropathy

Phase II, multicenter, placebo-
controlled, randomized
clinical trial.

Recombinant human
NGF. 0.1 and 0.3 μg/
kg.

Subcutaneous. Significant improvements
in daily and global pain
assessments.

Injection site
pain. Severe
transient myalgic
pain.

[92,93]

Long term (48 weeks) phase
II, multicenter, placebo-
controlled, randomized
clinical trial.

Recombinant human
NGF. 0.1 and 0.3 μg/
kg.

Subcutaneous. No improvement in
neuropathy severity.

Injection site
pain.

[94]
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is known to be under NGF control [80,81]. On the other
hand NGF supply in animal models of diabetic neuropa-
thies reverses neuropathic signs, by protecting the affected
PNS neurons and normalizing their activity [82,83].
The production of recombinant human NGF (rhNGF)

has been first developed and tested in phase I clinical
trial, where moderate side effects, such as myalgias and
injection site hyperalgesia, were evidenced in healthy
subjects [84,85]. A phase II clinical trial on 250 patients
affected by diabetic polyneuropathy was then performed
[86,87]. The study revealed a significant improvement of
neuropathic symptoms in the NGF-treated patients, but
also evidenced the occurrence of side effects, such as in-
jection site hyperalgesia, myalgias and arthralgias, that
limited the blinding of the study [86,87]. The results of
the study were, however, considered encouraging and
clinical trial continued in a phase III study [88]. Those
enrolled 1019 patients who were treated subcutaneously
with rhNGF, 3 times a week for 48 weeks. The study
revealed almost the same side effects of the previous
ones, but failed to demonstrate substantial benefits from
the NGF treatment. The relative failure of the study,
compared to previous phase II trial, was attributed to
the low dosage, limited by the occurrence of side effects,
but other causes, as the characteristic of patient popula-
tion, choice of end points, measurement of neuropathy
and the possible low quality of the rhNGF used, were
not excluded [87].

Human immunodeficiency virus
Peripheral nerve complications in human immunodefi-
ciency virus (HIV) patients could arise from the virus
itself or from the anti-viral drugs [89-91]. A phase II,
multicenter, placebo-controlled, randomized clinical trial
with subcutaneous rhNGF on 270 HIV-infected patients
affected by sensory neuropathy has been performed a
decade ago [92,93]. A significant positive effect of
rhNGF was found on neuropathic pain, with injection
site pain as the most frequent side effect. It was con-
cluded that rhNGF was safe and well tolerated. In con-
trast with the latter study, the same group published a
report on the long-term (48 weeks) effect of rhNGF in
an open-label study of 200 subjects with HIV-associated
distal sensory neuropathy [94]. While apparently safe
and well tolerated, the NGF did not improve the severity
of neuropathy, measured by neurological examination,
quantitative sensory testing and epidermal nerve fiber
density.
Other peripheral neuropathies that could benefit from NGF
treatment
In vitro and in vivo studies provided support for clinical
trials on rhNGF in chemotherapy-induced peripheral
neurotoxicity (CIPN). The development of sensory neu-
ropathies often limits the dosage and time-extension of
anti-tumor therapies based on cytotoxic agents [90,95].
NGF has been demonstrated to counteract the reduction
of neurite outgrowth from rat DRG in vitro, induced by
cisplatin, vincristine or Taxol [96] and the development
of behavioral manifestations of cisplatin-induced neur-
opathy [69,97-101]. Moreover, a positive correlation was
found between the decrease of circulating NGF and the
severity of CIPN in humans [102].



Aloe et al. Journal of Translational Medicine 2012, 10:239 Page 5 of 15
http://www.translational-medicine.com/content/10/1/239
A decrease in NGF has been also reported in leprosy-
affected human skin and nerve [103,104]. The NGF pro-
duced by keratinocytes has been found decreased in skin
biopsies from leprosy patients [103]. Moreover, a signifi-
cant loss of intra-epidermal innervation [105], and a
lowered expression of sensory neuromodulators that are
under NGF control, such as Substance P [104] and the
sodium channel SNS/PN3 [103], have been found in
leprosy-affected skin. From a clinical standpoint all these
NGF system alterations found in leprosy skin correlated
with the characteristic sensory deficit and the loss of
Table 2 Summary of clinical trials with NGF on central nervou

Disease Study type NGF type and dosage D
ro

Alzheimer’s
Disease

Single case report. Mouse NGF. 75 μg/day for three
months, total amount: 6.6 mg.

IC

Three patients case
report.

Mouse NGF. Two patients:75 μg/day
or three months, total amount:
6.6 mg. One patient: 16 μg/day for
2 weeks and 3.4 μg/day for further
10 weeks, total amount: 0.55 mg.

IC

Phase I clinical trial. Human NGF genetically
engineered into autologous
grafted fibroblasts.

G
th

Phase I randomized,
controlled dose-
escalating study to
assess the safety and
tolerability of CERE-110.

Human NGF genetically
engineered into adeno-
associated virus vector (CERE-
110).

G
th

Open label, 12 month
study on 6 patients.

Human NGF genetically
engineered in human retinal cells
encapsulated in implantable
device

G
th

Parkinson’s
disease

Single case report. Mouse NGF. 3.3 mg infused via
implanted cannula over 23 days,
as support for adrenal medulla
graft.

In
p

Optic
glioma and
advanced
optic nerve
atrophy.

Five patients case
study.

Mouse NGF. 1 mg total over
10 days in daily applications.

To
(e

Single patient case
study.

Mouse NGF. 1 mg total over
10 days in daily applications.

To
(e

Hypoxic-
ischemic
perinatal
brain injury

Two patients case
study.

Mouse NGF. 0.1 mg/day for
10 days.

IC

Two patients case
study.

Mouse NGF. 0.1 mg/day for
10 days.

IC
skin neurotrophism that might lead to trophic ulcers
and mutilation [106].

CNS diseases
Studies on rodents and primates have demonstrated that
exogenous NGF was able at neuro-protecting BFC neu-
rons by both traumatic insults and age-related choliner-
gic decline [107-111]. It has also been demonstrated that
NGF could directly act on two classical hallmark of AD:
β-amyloid neurotoxicity and tau hyperphosphorylation.
Indeed in vitro and in vivo experiments indicated NGF
s system’s diseases

elivery
ute

Outcome Side effects References

V. Increase of cortical blood flow
and brain nicotine uptake.
Improvement of verbal episodic
memory.

Weight loss. [119]

V. Increase of brain nicotine uptake. Weight loss.
Back pain.

[120]

ene
erapy.

Improvement in the rate of
cognitive decline. Significant
increases in cortical 18-
fluorodeoxyglucose after
treatment, as revealed by PET
scans.

Absence of
long-term
adverse
effect in 6
out of 8
patients.

[182]

ene
erapy.

Ongoing. Ongoing. [183-185]

ene
erapy.

The phase I trial was a safety and
tolerability study. The
implantation and removal of
device were safe and well
tolerated. Positive neurological
outcomes were also found in 2
out of 6 patients.

No NGF-
related
adverse
events were
found.

[187,190]

tra-
utaminal.

NGF treatment could prolong
the effect of adrenal chromaffin
grafts in human PD.

Not reported. [121]

pical
ye).

Improvement in visual evoked
potentials (VEP).

Not reported. [206]

pical
ye).

Reversible improvements of
visual function and
electrophysiological
measurements.

Not reported. [207]

V. Improvement in the comatose
status, increased alpha/theta ratio
in the EEG, reduction of malacic
areas and improvement, in right
temporal and occipital cortices
perfusion.

Not reported. [123]

V. Improvement in EEG and SPECT
parameters. An increase of
doublecortin in CSF.

Not reported. [122]



Aloe et al. Journal of Translational Medicine 2012, 10:239 Page 6 of 15
http://www.translational-medicine.com/content/10/1/239
as a direct anti-amyloidogenic factor, being able to regu-
late both amyloid gene expression and protein proces-
sing [112-114]. Furthermore NGF has been shown to
counteract tau hyperphosphorylation both in vitro [115]
and in vivo [116]. Further studies on human tissues
failed to demonstrate a reduction of NGF production in
the cortex and hippocampus of AD patients, while the
evidence for a decreased NGF immunoreactivity in the
BFC suggested that impaired NGF supply via retrograde
transport could be the effective cause of cholinergic neu-
rodegeneration in AD [117]. Thus, the correct thera-
peutic strategy should pursue NGF deliverance in the
proximity of cholinergic cell bodies, where the effective
NGF deficits have been revealed, rather than in axon ter-
minal regions (i.e. cortex and hippocampus).
The greatest challenge in the delivery of NGF to CNS

resides in its inability in crossing the blood–brain barrier
(BBB), when systemically administered [118]. For this
reason, the intra-cerebro-ventricular (ICV) way of NGF
delivery has been pursued in AD patients in two separ-
ate clinical trials (see Table 2 for a summary of NGF
clinical trials in CNS disease). In the first study, a single
patient was treated with murine NGF (mNGF) infusion
into the right ventricle [119]. The treatment resulted in
a marked transient increase in uptake and binding of
[11C] -nicotine in the frontal and temporal cortex, a per-
sistent increase in cortical blood flow and a progressive
decrease of slow wave EEG activity Tests of verbal epi-
sodic memory were also improved whereas other cogni-
tive tests were not. As relevant side effect, weight loss
was reported [119]. The results of a second study on
ICV mNGF delivery was published in 1998 [120]. The
relative positive outcomes found in the first study were
confirmed in the two patients treated with higher doses
of mNGF. However, the major finding of the study could
be considered the occurrence of important and severely
limiting side effects: reversible weight loss during the
mNGF infusion period and, most importantly, develop-
ment of back pain symptoms after the beginning of ICV
infusion that most probably reflects the NGF-mediated
hyper-activation of nociceptive transmission system in
the spinal cord. These side effects were considered to
outweigh the positive outcomes and lead to discontinu-
ation of ICV infusion-based trials in AD patients.
The ICV NGF infusion has been also pursued in single

or small groups of patients in diseases such as Parkin-
son’s disease (PD) [121] and hypoxic-ischemic perinatal
brain injury [122-124]. The rationale for the use of NGF
infusion in PD is linked to its supportive role for adrenal
medullary cells engrafted in the basal ganglia of PD
patients [125,126]. The cell replacement therapy for PD
patients by autologous chromaffin adrenal tissue grafting
into the caudate nucleus was pursued in the 1980’s
[127,128], and based on previous positive indications
coming from animal studies on models of PD [129,130].
Overall, these studies lead to consensus over the lack of
long-lasting effects, due to lack of specific support to
engrafted cells. NGF ICV infusion was then attempted,
in light of NGF effects on survival, neurite outgrowth,
and functionality of grafts of adrenal chromaffin cells to
the basal ganglia. The study [121] reports the case of a
63 year-old patient that underwent autologous graft of
adrenal medulla into the putamen, supported by a
23 day ICV infusion of mNGF. During the 13 months
follow up the patient had a rapid decrease in rigidity and
hyperkinesias that was similar to what observed in previ-
ous studies on autologous graft of chromaffin tissue in
PD patients. The specific effect of mNGF support to the
graft was identified in a slower improvement of motor
functions that was extended for 11 months after the
graft procedure. Thus NGF treatment could prolong the
effect of adrenal chromaffin grafts in human PD [121].
As for the clinical studies performed on children with

traumatic brain injury (TBI), the rationale for NGF
utilization comes from animal studies, showing that
NGF can reduce neurological deficits following brain in-
jury in animals [131], and from the observation that
NGF levels in the cerebro-spinal fluid (CSF) of TBI
patients have a positive correlation with neurological
outcomes [124]. Two studies were attempted with an
ICV infusion of mNGF in children with TBI. In the first
study [123] two infants aged 8 and 9 months were trea-
ted with mNGF infused into the right cerebral ventricle
for 10 days starting 30 days after the hypoxic-ischemic
brain injury. Very preliminary observations detected an
improvement in the comatose status, increased alpha/
theta ratio in the EEG, reduction of malacic areas and
improvement, in one child only, of the regional cerebral
perfusion in right temporal and occipital cortices, as
measured by SPECT. A second study [122] in 2 infants
aged 8 and 13 months and affected by hypoxic-ischemic
brain damage, showed the results of mNGF ICV
infusion, starting 4 months after TBI. Again, an im-
provement in EEG and SPECT parameters was scored
with a concomitant increase of doublecortin, a protein
expressed by newly formed neurons, in the CSF. These
studies, tough limited by a small number of patients,
indicated a possible effect of NGF in the treatment of
TBI secondary to hypoxic-ischemic brain insult, but did
not investigate potential side effects linked to the ICV
infusion.

Skin ulcers
Beside its action as a neurotrophic factor for nerve cells,
NGF has been characterized as a regulatory factor for
many non-neuronal cell types, expressing NGF receptors
[2]. The role of NGF on skin biology is particularly rele-
vant from a clinical perspective. Production and
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utilization of NGF has been demonstrated in skin cells,
as keratinocytes [132-134], and in immune cells that are
resident or recruited in epidermal tissue following
trauma or inflammation [135-137]. NGF deregulation
has been described in diseased skin [137-143]. The
effects of NGF on the healthy and diseased skin could
be directly exerted via NGF receptors expressed on epi-
dermal and dermal cells, or by NGF influence on PNS
skin innervation that is known to regulate skin homeo-
stasis by neuropeptides and neurotransmitter release
[144-152]. The possible role of NGF as a therapeutic in
skin trauma and/or diseases was investigated in animal
models of wound healing [62,140,152,153]. Later on,
topical application of NGF has been pursued in several
forms of epithelial derangements and skin disease (sum-
marized in Table 3).
Topical mNGF has been applied in three diabetic

patients affected by on foot ulcers [154]. The treatment
induced a local progressive restoration of nerve function
and an almost complete relapse of ulcers within 5–
14 weeks since the beginning of treatment.
Another clinical study was performed in patients

affected by chronic vasculitic ulcers secondary to
rheumatoid arthritis (RA) or systemic sclerosis (SSc)
[155]. The leg ulcers of the patients with rheumatoid
arthritis (n=4) showed a rapid reduction in volume
which led, in all cases, to heal within 5–8 weeks. De-
scriptive variables such as pain, presence of granulation,
absence of inflammation also improved in the same
period. SSc patients (n=4) were treated on both the hand
and leg ulcers. Despite little improvement in inflamma-
tory states and ulcer size, none of the ulcers reached
healing after 8 weeks. The authors speculated over the
different effects in RA and SSc ulcers as attributable to
disease features diversity, especially in the microvascular
fibrosis that characterizes SSc and could reduce NGF ac-
cess to damaged cells [155].
Table 3 Summary of clinical trials with NGF on skin ulcers

Disease Study type NGF type and
dosage

Delivery
route

Ou

Diabetic
foot ulcers

Three patients case
report.

Mouse NGF. 25 μg/day
for 4 weeks.

Topical (skin). Pr
rel
be

Vasculitic
ulcers

Eight patients case
report.

Mouse NGF. 50 μg/day
for 4 weeks.

Topical (skin). Ul
art
sy

Pressure
ulcers

Single patient case
study.

Mouse NGF. Topical (skin). Ul

Randomized,
double-blind,
placebo-controlled
trial.

Mouse NGF. Topical (skin). Re

Lower
limb crush
syndrome

Single patient case
study.

Mouse NGF. 10 μg
every eight hours for
seven days.

Subcutaneous. Re
th
Pressure ulcers have been also treated with topical
mNGF and results reported in two separate studies from
the same group [156,157]. The first study described a
single patient affected by pressure ulcers bilaterally
located on the elbows [156]. The right elbow was treated
with mNGF and the ulcer was reduced by 1/3 while the
left elbow ulcer was substantially unchanged. In the sec-
ond report, a randomized, double-blind, placebo-
controlled trial was described, aimed at investigating the
effects of topical treatment with mNGF in patients with
severe, non-infected pressure ulcers of the foot [157].
Topical mNGF was applied to 18 patients, while another
18 patients received vehicle treatment only. The average
reduction in pressure ulcer area after 6-week follow-up
period was statistically significantly greater in the treat-
ment group than in the control group.
Another interesting case report investigated the effect

of topical NGF treatment in ischemic skin revasculariza-
tion [158]. In this case the described effects of NGF as a
promoter of vascular-endothelial growth factor (VEGF)
and neo-vascularization [159] gave the rationale back-
ground for treatment of a child with a severe crush syn-
drome of the lower left limb with subcutaneous mNGF.
The gradual improvement of the ischemic treated area
was observed throughout the treatment period, with a
significant reduction in size of the overall ischemia and a
final outcome identified in a reduction of the area that
finally underwent calcaneal escharotomy [158]. It is
worth noticing that the pro-angiogenic activity of NGF
could be of therapeutic relevance in various types of
cancer, where positive correlations between cancer
stage/prognosis and tissue NGF levels have been
described [160-162]. Thus, targeting the NGF/VEGF
interaction system should be also regarded as a potential
new strategy for anti-angiogenic therapy against cancer
as well as for other angiogenesis-dependent diseases,
such as diabetes, and arthritis [162,163].
tcome Side
effects

References

ogressive restoration of nerve function and
apse of ulcers within 5–14 weeks since the
ginning of treatment.

Not
reported.

[154]

cers healing within 8 weeks in rheumatoid
hritis patients (n=4). Failure of ulcers healing in
stemic sclerosis patients (n=4).

Not
reported.

[155]

cer size reduced by 1/3 after 15 days treatment. Not
reported.

[156]

duction of ulcer area in the 6 weeks follow-up. Not
reported.

[157]

duction of overall ischemic area. Reduction of
e area undergoing calcaneal escharotomy.

Not
reported.

[158]
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Ophthalmology
The use of NGF as a therapeutic in ophthalmology is
perhaps the best characterized and developed, among
the other possible or yet pursued clinical use (refer to
Table 4 for a summary of clinical trials of NGF in oph-
thalmology). One of the first evidence suggesting a pos-
sible role of NGF in the visual system was reported in
1979 by Turner [164] who showed that the retinal cells
of goldfish are receptive to the action of NGF. It has
been reported that NGF induces modification of pre-
synaptic elements in adult visual system [165,166], pre-
vents the shift in ocular dominance distribution of visual
cortical neurons and promotes functional recovery of
retinal ganglion cells (RGC) after ischemia [167], delays
retinal degeneration in rodents with inherited retinop-
athy [168,169], reduces retinal damages in rabbits with
ocular hypertension [170], while injection of antibody
against NGF exacerbate the damaging effect on RGC
[170]. The first attempt to translate preclinical studies
into clinic was based on the described presence of NGF
and NGF receptors on corneal cells and structure [171-
175], suggesting a possible trophic influence of the neu-
rotrophin on the ocular surface.
In the first published study about the application of

NGF-eyedrops [172], severe corneal ulcers associated
with anesthesia (corneal neurotrophic keratitis) were
treated with purified mNGF. The results reported a
Table 4 Summary of clinical trials with NGF in ophthalmology

Disease Study type NGF type and dosage Delivery
route

Neurotrophic
keratitis

Twelve patients
case report.

Mouse NGF. Several daily
applications of a 200 μg/ml
solution for 6 weeks.

Topical
(eye).

Prospective,
noncomparative,
interventional
case series; 43
patients.

Mouse NGF. Several daily
applications of a 200 μg/ml
solution until ulcer healing.

Topical
(eye).

Observational
study on 11
patients.

Mouse NGF. Several daily
applications of a 200 μg/ml
solution until ulcer healing.

Topical
(eye).

Glaucoma Three patients
case report.

Mouse NGF. Four daily
applications of a 200 μg/ml
solution for 3 months.

Topical
(eye).

Bilateral age-
related
macular
degeneration
(retinopathy)

Single case
study.

Mouse NGF. Three times daily
applications of 200 μg/ml
solution for 2 separate
periods of 1 year and 5 years
in the right eye.

Topical
(eye).
rapid healing of all of the ulcers, improved corneal sensi-
tivity and integrity and improved visual acuity. Very
similar results were reported in a following study, on
neurotrophic keratitis non-responsive to conventional
treatments [176]. The follow-up lasted for a period ran-
ging between 3 and 32 months after initiation of treat-
ment and the study shows that all patients achieved
complete healing of the corneal defect within a period
between 12 days and 6 weeks after initiation of treat-
ment. The study also showed that the occurrence of side
effects, described as hyperemia and moderate pain in the
eye and periocular area, were well tolerated and limited
to the time necessary for the remission of corneal
keratitis.
A study published in 2007 evaluated the effect of top-

ical treatment with mNGF on eyes from 11 patients with
neurotrophic keratopathy [177], considering in particular
the possible occurrence of unpleasant side effects and
the development of systemic anti-NGF as a result of the
treatment protocol. All patients had healing of corneal
ulcers between 9 and 43 days after initiation of treat-
ment. The study revealed that the ocular discomfort
lasted less than an hour after the instillation of eye drops
and that any painful sensation disappeared, even when
NGF treatments were continued after the healing of cor-
neal ulcers. None of the patients developed systemic
symptoms during treatment or during follow-up. The
Outcome Side effects References

Healing of all of the ulcers,
improved corneal sensitivity and
integrity and improved visual
acuity.

Not reported. [172]

Complete resolution of the
epithelial defect between 12 days
and 6 weeks of treatment.
Improvement of corneal sensitivity
and visual acuity.

Hyperemia and
ocular and periocular
pain.

[176]

Ulcer healing between 9 and
43 days after initiation of
treatment. No development of
systemic anti-NGF antibodies in a
follow-up time of 72 months.

Mild and transient
conjunctival
hyperemia and
photophobia.

[177]

Progressive improvement in the
functionality of the inner retinal
layer and in the parameters of the
post-retinal neural conduction and
visual acuity, maintained for
3 months after discontinuation of
treatment.

Local burning during
the first week of
treatment in a single
patient.

[178]

Improvement in visual acuity and
in the amplitude of the ERG.

Slight burning at the
time of application of
eye drops during the
first month of
treatment.

[179]
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presence of antibodies against the mNGF in the blood
was negative for all of the treated patients during the
therapy and for a period of follow-up up to 72 months.
After the first approach on ocular surface pathologies,

mNGF was used in clinical studies addressing the pos-
terior segment of the eye. In a study published in 2009,
the application of topical mNGF, was evaluated in three
patients with advanced glaucoma, with imminent risk of
loss of visual function [178]. The reported results were:
progressive improvement in the functionality of the
inner retinal layer and in the parameters of the post-
retinal neural conduction, evident during the treatment
period and maintained even 3 months after discontinu-
ation of treatment; visual acuity improved significantly
in all patients where it remained unchanged for the 3-
month follow-up. The study also showed the substantial
absence of side effects, except for the development of
local burning during the first week of treatment in a sin-
gle patient.
Another case report was about the use of topical

mNGF to treat a patient suffering from bilateral macular
degeneration (AMD) [179]. The treatment was contin-
ued for 6 years virtually uninterrupted. Checks were
made on a quarterly basis and showed a clinical (im-
provement of visual acuity) and electrofunctional (in-
creasing the amplitude of the ERG) improvements in the
right eye, correlated with treatment. The only side effect
noted was a sensation of slight burning at the time of
application of eye drops during the first month of
treatment.
It is worth noticing that in none of the cited studies

systemic side effects attributable to the biological action
of NGF itself were reported. In particular, the ocular
NGF seems not to give rise to systemic effects on the
perception of pain (myalgias, hyperalgesia) reported in
clinical trials with systemic [87] or intra-cerebroventricular
[120] administration.

Novel delivery routes
Though applied to a wide spectrum of neurological and
non-neurological diseases, clinical utilization of NGF, es-
pecially when systemically administered, remains ham-
pered by important adverse events, such as those
derived from the effects of NGF on pain system. More-
over, the achievement of pharmacological concentrations
in therapeutic relevant targets without affecting non-
target areas represents a further delivery challenge.
A potential approach to overcome such limitations is

represented by gene therapy. Preclinical data obtained in
rodents and primates indicated that ex vivo gene therapy
targeted at BFC neurons were effective in improving ex-
perimentally induced cholinergic deficits [180,181]. A
phase I clinical trial has been performed on 8 AD’s
patients, in which autologous fibroblasts were engi-
neered to produce and secrete human NGF (hNGF) and
implanted into the BFC (Table 2) [182]. Positive out-
comes in behavioral scales were scored in two out of six
patients that survived cell implant neurosurgery in a
period ranging from six to eighteen months after im-
plant, associated with improvement in PET scans. A sec-
ond phase I trial based on in vivo NGF gene delivery, by
adeno-associated virus vector (CERE-110) [183] has
been set-up in 2004 (Table 2) [184]. The phase I study
was a dose-escalating study to assess the safety and tol-
erability of CERE-110 in subjects with mild to moderate
AD’s. CERE-110 has passed phase I clinical testing and a
multicenter phase II clinical trial has commenced [185].
In addition to the CERE-110 trial, a new, cell-based
in vivo delivery system has been developed and a Phase I
trial has been registered by Karolinska Institute in
Sweden on AD’s patients (Table 2) [186]. This delivery
system is based on human retinal pigment epithelial cell
line, engineered to secrete hNGF and encapsulated
within a polymer membrane that is part of an implanta-
ble catheter-like device [187], and has been demon-
strated to effectively prevent the loss of cholinergic
neurons after fimbria transection in rats [188,189]. The
results of the first safety and tolerability study based on
such system have been recently published [187,190],
demonstrating that surgical implantation and removal of
devices containing NGF-secreting cells in the basal fore-
brain of AD patients are feasible, well tolerated and rela-
tively safe, and that they do not generate NGF-related
adverse events [190]. Though the system remains to be
optimized in terms of long-term function of implanted
cells and in the achievement of positive neurological
outcomes (actually limited to 2 out of 6 patients), it
seems to present advantages over other gene delivery
approaches [182], since it allows the safe removal of
engineered cells as well as their immune isolation from
host tissues, thus protecting the allogeneic transplanted
cells from host immune system rejection.
The olfactory pathway is a promising, non-invasive

route for drug delivery to the brain, which has po-
tential for the treatment of neurodegenerative dis-
eases [191-193]. The BBB represents one of the major
obstacles in drug development for brain diseases and
many studies have focused on the possibility of circum-
venting the BBB for the direct central delivery of macro-
molecules to the central nervous system by utilizing the
potential direct transport pathway from nose to brain via
the olfactory region [194-196]. The intranasal delivery of
NGF to the brain could indeed represent a non-invasive
and safe route to achieve relevant therapeutic concentra-
tion of NGF in selected brain areas, without eliciting un-
desired and adverse side effects. The characterization of
pharmacokinetic for intranasal delivery of NGF [197,198]
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revealed that intranasal NGF rapidly spread through brain
tissue without significant increasing NGF concentrations
in the CSF and in the blood. Studies on animal models of
AD, revealed that intranasal NGF, while exerting specific
therapeutic actions on the affected cholinergic system, did
not provide trophic support to sympathetic ganglia, nor
did it induced the over expression of nociception neuro-
modulators, such as sensory neuropeptides, known to be
under NGF control [197-199]. Recent studies published by
the same group, characterized a form of hNGF mutated at
residue R100, testing it both in vitro and in vivo, by intra-
nasal delivery, in an animal model of AD [199,200]. Such a
mutated hNGF retains the neurotrophic potential of the
native NGF, without eliciting pain-related response. It
would be of interest whether such a “painless” NGF vari-
ant can be validated in preclinical and hopefully future
clinical trials for neurodegenerative diseases [199].
Another actually investigated route that seems to be

able to deliver NGF to the brain in a safe and effective
manner is the topical administration of NGF on ocular
surface [201]. Animal studies have demonstrated that
NGF applied on the ocular surface can reach central
cholinergic neurons, which are affected in AD [201].
Moreover, ocular NGF is able to activate c-fos in several
areas of the limbic system in a time-dependent manner
[202] and to enhance the distribution of Ki67positive
cells also expressing p75NTR in the proliferating layer of
the sub-ventricular zone, indicating that ocular NGF can
activate the machinery regulating the proliferation and
maturation of neuronal precursor in the brain [203].
Compared to intranasal delivery, the intraocular one
appears to be less characterized, in terms of mechanisms
and anatomical route for brain delivery [204]. The avail-
able data indicate that the ocular delivered NGF does
not induce systemic side effects related to the systemic
NGF administration, even when this is repeated for ra-
ther long time periods [172,176,177,179], being able to
target selected brain areas [201-203]. In a recent study
on a mouse model of AD the intranasal and ocular deliv-
ery routes for hNGF administration were compared for
their relative diffusion in the systemic compartment in
concentration that could elicit a pain response [205].
The authors reported that intra-nasally applied hNGF
was safer when compared to intra-ocular one. It should
however be taken into consideration and tested whether
there is a possible different biological activity of mNGF
used in the majority of the ophthalmology clinical trials
[172,176,177,179] versus the rhNGF used in the cited
comparative study [205].
To date two reports, both from the same group, inves-

tigated the clinical effects of topical ocular NGF on brain
structures lying behind the retina (Table 2) [206,207]. In
one study [206] five pediatric patients with optic gliomas
(OGs) and advanced optic nerve atrophy were assessed
before and after a single 10 day course of 1 mg (total)
mNGF topical administration by clinical evaluation, vis-
ual evoked potentials (VEPs), and brain magnetic reson-
ance imaging (MRI). While not affecting tumor size, the
topical mNGF improved VEPs suggesting a visual rescu-
ing mechanism exerted by mNGF on the residual viable
optic pathways. In a further study [207] a single adult
patient with OG and long-standing optic nerve atrophy
was treated with mNGF and the follow-up was per-
formed by clinical, neuroradiologic, and electrophysio-
logical tests (electroretinogram and VEPs) at the end of
each treatment and 30 and 60 days later. Repeated sub-
jective and objective improvement of visual function
was recorded after mNGF treatment, which tended to
deteriorate toward baseline values 60 days from the
end of each mNGF treatment. Interestingly, no ocular or
systemic side effects were observed throughout treat-
ment [207].

Conclusions
Soon after its discovery, in the middle of the twentieth
century, it became clear that NGF had great pharmaco-
logical potentialities, for the treatment of major central
neurodegenerative diseases and of peripheral neuropa-
thies. After preclinical characterization and clinical trials
have been performed by treating AD, Parkinson’s, and
diabetic patients (Figure 2, Tables 1 and 2), severe limita-
tions in the clinical use of NGF emerged, coming from
its physiological action on the sensory and autonomic
systems and from the high pharmacological doses
needed to obtain disease improvements. Despite the dis-
couraging results coming from trials mainly performed
across the 1990’s, the translational research on NGF was
not stopped, widening the spectrum of diseases that
could benefit from NGF-based therapy and investigating
new delivery strategies, aimed at maximizing positive
outcomes and limiting or fully circumventing the dele-
terious side effects described in earlier clinical trials.
Today we know that epithelial derangements based on
poor neurotrophism could be safely treated with topical
NGF, while a wide spectrum of CNS and PNS diseases
will probably benefit from NGF therapy, once intranasal
or gene delivery systems will be finally set-up and fully
translated into clinical practice. A further challenge, in
conclusion, is represented by the increasing knowledge
on the role of NGF in immune system regulation, open-
ing a promising field for development of innovative
NGF-based therapies in the care of, in example, chronic
inflammatory or autoimmune diseases, and a novel and
challenging aspect in the NGF saga.
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