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Abstract

The complexity of parasitic infections requires novel approaches to vaccine design. The versatility
of DNA vaccination provides new perspectives. This review discusses the use of prime-boost
immunizations, genetic adjuvants, multivalent vaccines and codon optimization for optimal DNA

vaccine design against parasites.

Introduction

DNA vaccination was introduced in 1990 by a study that
demonstrated the induction of protein expression upon
direct intramuscular injection of plasmid DNA in myo-
cytes [1]. DNA vaccines are new types of sub-unit vaccines
allowing protein expression in mammalian cells after
introduction of plasmid or recombinant viral vectors
encoding the selected protective antigen. Protective
immunity conferred by DNA vaccines has been shown in
many animal models of various diseases including HIV,
tuberculosis and cancer [2-4]. DNA vaccines induce strong
humoral and cellular immunity and have the potential to
increase immunogenicity through modifications of the
vector or incorporation of adjuvant-like cytokine genes.

Successful vaccines should be able to induce strong
immune responses which are long-lasting and in most
cases providing protection against different strains of the
same pathogen. Progress has been made towards develop-
ment of DNA vaccines against viral and bacterial patho-
gens showing protection and lasting immunity [5].
Application of this new vaccination technology with
regard to parasitic infection provides new hope for signif-
icant advances in anti-parasitic vaccine research. An
important consideration in developing vaccines against

parasites is the complexity of parasitic diseases. Parasite
infections, unlike most viral and bacterial infections, tend
to be chronic and associated with immunodepression or
inappropriate immune responses [6]. Parasites have com-
plex life cycles and host immunity to stage-specific anti-
gens may not overlap with other later stages or vector-
borne stages. Antigenic variation and other immune eva-
sion mechanisms also complicate the development of vac-
cines against parasites. However, with recombinant DNA
technology and the versatility of DNA vaccination, it is
now possible to take rational parasite specific strategies to
vaccine design and overcome the obstacles presented by
parasitic diseases. Improving DNA vaccine efficacy against
parasitic disease can be achieved by: prime-boost immu-
nizations, genetic adjuvants, multivalent vaccines or
codon optimization. This review describes the application
of these strategies, using specific parasites as examples, to
improve DNA vaccine efficacy (see Table 1[7-19]).

Prime-Boost Immunizations

Current sub-unit vaccines predominantly induce strong
antibody responses and weak cellular immunity. DNA
vaccines in animal models can induce both strong
humoral and cellular mediated responses, but although
safe in humans, DNA vaccines do not produce the same
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Table I: Summary of DNA vaccine optimization in parasites
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Optimization Method

Parasite

Specific Modifications and Improved Responses

Reference

Genetic Adjuvant

Multivalent vaccine

Malaria

Leishmania

Schistosoma

Malaria

Leishmania

Schistosoma

Co-immunization of merozoite surface protein-1 (MSP1) of P. yoelii with IL-12 in A/J mice
elicited strong Thl type responses characterized by high levels of IFN-y. Parasite specific
antibodies also protected against parasite infection.

Construction of DNA plasmid encoding C-terminal region of MSPI (P. falciparum) was
tested with plamids expressing GM-CSF or recombinant GM-CSF protein in monkeys.
Co-immunization with GM-CSF protein lead to higher Ab titers and higher response to
boosting with MSP1.

MuStDOS5 is a multivalent vaccine composed of 5 plasmids encoding P. falciparum
proteins and GM-CSF. When tested for safety in mice and rabbits via i.m/i.d. injections,
the vaccine was determined safe and well tolerated without development of
autoimmunity.

Vaccination with plasmids encoding L. amazonensis P4 nuclease, HSp70 or murine IL-12
was tested in the susceptible Balb/c mouse model. Co-immunization with P4 nuclease
and IL-12 protected mice against parasite challenge as determined by 4 log reduction in
parasite burden and increased levels of IFN-y and TNF-a.

Following p36/LACK prime-boost immunization with a combination of DNA vectors
expressing IL-12 and IL-18 in mice, highest protection was observed compared to
controls.

Co-administration of DNA plasmids encoding IL-18 and S. mansoni glutathione S-
transferase elicited 30 fold increase in antigen specific IFN-y secreting cells, 28%
reduction in egg laying and 23% reduction in worm burden in mice.

Prime boost regimen with vectors encoding functional domains of TRAP and CS antigens
of P. cynomogli was more effective at reducing peak parasitemia in rhesus monkeys.

A multistage P. knowlesi vaccine with plasmids encoding 2 pre-erythrocytic, 2 blood stage
antigens and GM-CSF was administered to rhesus monkeys followed by a boost with a
pox virus encoding all 4 antigens. Monkeys developped Abs against sporozoites, infected
erythrocytes and CPS protein.

Six pre-erythrocytic antigens linked together to produce a polyprotein in a DNA vaccine
and either MVA or FP9 were tested in mice against P. falciparum. Greater responses
were seen when a heterologous viral regimen was used, producing multispecific T cells.
L. major TSA and LmST | | antigens were expressed either as single genes or as digene
construct and tested in the susceptible Balb/c model. Administration of the genes in
either constructs lead to protection via polyspecific immune responses.

Three doses of 4 plasmids encoding S. japonicum antigens, Sj62, Sj28, Sj23 and Sjl4 3-3-,

[71

(8]

[9]

[10]

(]

[12]

[13]

[14]

[15]

[1é]

[17]

induced high levels of IFN-y and partial protection from challenge infection when

administered in mice.
Entamoeba

DNA plasmids encoding either Entamoeba histolytica cysteine protease |12 or adhesin

(18]

112 were co-administered to hamsters, leading to protection against liver abscess
formation. No protection was observed with either plasmid alone.

Codon optimization Malaria

P. falciparum erythrocyte binding protein and MSPI antigens were codon optimized for

[19]

expression in mammals. 10 to 100 fold less optimized plasmid DNA was required to

induce high Ab titers in mice.

magnitude of cellular immunity [20]. In cases where the
pathogen is intracellular, an antibody response is not suf-
ficient for protection and cell-mediated immunity is
required. This is the case with malaria, where the parasite
infects hepatocytes and erythrocytes, and cytotoxic T cells
play an important role in protection. Therefore, it is
important to devise vaccination strategies that enhance T
cell immunogenicity and confer a protective cellular
immune response to intracellular pathogens. A novel
approach to increase T cell responses to vaccination is the
heterologous prime-boost immunization strategy [21].
This method consists of priming and boosting with differ-
ent vectors encoding the same antigen. The principle of
the strategy is to first prime some T cells to be antigen-spe-

cific and then boost to induce rapid T cell expansion upon
repeated exposure to the specific antigen. DNA plasmids
are good priming agents since they are internalized by
antigen presenting cells and can induce antigen presenta-
tion via MHC class I or class II. DNA plasmid backbones
are immunogenic due to the presence of stimulatory
unmethylated CpG motifs that readily induce Th1l
cytokine expression, leading to cellular mediated immu-
nity. Recombinant viral vectors, which are non-replicating
and safe, are excellent for boosting. Viral vectors induce
high protein expression and presentation via MHC class I
which leads to greater antigen specific T cell expansion
[22]. Common boosting vectors in vaccine trials include
modified Vaccinia virus Ankara (MVA), recombinant Vac-
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Table 2: Prime-boost immunization trials against parasites
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Parasite Antigen Priming agent  Boosting agent Response Reference
Malaria Circumsporozoite Attenuated MVA Potent CD8+ T cell responses were elicited in [7]
protein of P. berghei fowlpox virus or mice with FPV/MVA vaccination. Novel regimen
DNA was more protective against challenge than
DNA-MVA immunizations.
P. falciparum surface DNA Recombinant Intramuscular injections in rhesus monkeys [8]
protein (Pfs25) protein showed significant increase in transmission
blocking antibodies.
Circumsporozoite DNA Pox virus Immunized neonatal mice showed 93% [9]
protein of P. yoelii protection which was CD8+ T cell dependent.
P. falciparum DNA Recombinant Higher antibody titers and the ability to reduce [10]
erythrocyte binding protein parasitemia without drug intervention in Aotus
protein monkeys.
Circumsporozoite DNA RTS, SSASOZA  Malaria volunteers develop P. falciparum specific [
protein of P. falciparum Abs and Thl specific CD4+ and CD8+ T cells
upon vaccination.
Leishmania  Leishmania infantum DNA Recombinant 60% protection, associated with cell mediated [12]
LACK vaccinia virus responses, was observed in dogs after challenge
compared to controls.
p36/LACK DNA Recombinant Vaccination in mice resulted in 70% reduction [13]
vaccinia virus in lesion size and 1000-fold reduction in
parasite loads.
L. infantum acidic DNA Recombinant Boosting elicited stronger IgG2a titers but [14]
ribosomal protein PO protein could not protect against challenge compared
(LiPO) to DNA alone.
Schistosome Cu/Zn cytosolic DNA MVA DNA vaccines were tested against S. masoni [15]

superoxide dismutase
(SOD), signal peptide
SOD and glutathione
peroxidase (GP)

challenge in mice. Boosting with MVA for the
same genes had no increased effect expect for
mutated GP antigen were boosting lead to 85 %
protection.

cinia virus (rVv), attenuated adenoviruses, and attenuated
pox viruses like fowl pox (FP9). These viruses are highly
attenuated and non-replicating but still able to produce
proteins. The MVA vector, for example, was developed by
over 500 serial passages in chicken embryo fibroblasts
and has acquired a replication defect in late stage virion
assembly. This vector was used for smallpox vaccinations
in 1970 and is known to be safe as well as highly immu-
nogenic. Viral vectors induce strong production of proin-
flammatory cytokines, which generate greater levels of
cell-mediated immunity. Overall the immunogenicity of
viruses is greater than that of plasmid DNA, however
when administered alone the immune response is gener-
ally targeted to vector components. For this reason heter-
ologous vaccination, priming and boosting with different
vectors, promotes antigen-specific responses rather than
vector-specific responses. The resulting effect when using
the heterologous prime-boost technique is the generation
of memory T cells to the antigen by priming then amplifi-
cation of these cells by boosting. This approach has been
used extensively to create effective immunizations against
malaria, and in a variety of parasites [23-32] (see Table 2).

To further improve the efficacy of a Plasmodium yoelii DNA
vaccine, mice were primed intramuscularly with DNA vac-

cine and granulocyte/macrophage colony stimulating fac-
tor (GM-CSF) plasmid and boosted with rVv encoding the
same circumsporozoite protein (CSP) [33]. This com-
bined strategy of genetic adjuvant and prime-boost
immunization elicited improved responses and protec-
tion while also reducing the dose of initial DNA vaccine
required. In chimpanzees, a DNA-prime and MVA-boost
regimen encoding thrombosin-related adhesion protein
(TRAP) with GM-CSF protein as adjuvant induced specific
T cell and antibody response that was long lasting against
P. falciparum [34]. Complete protection against P. berghei
challenge characterized by strong CD8+ T cell responses
was observed in mice after intradermal adenovirus-prime-
MVA-boost encoding CSP [35]. These studies led to the
assessment of prime-boost immunizations in humans in
both naive volunteers and field trials in endemic areas.
DNA-prime-MVA-boost vaccines encoding a polyepitope
string fused to P. falciparum pre-erythrocytic TRAP antigen
were administered via gene-gun to healthy volunteers
with no adverse effects [36]. The polyepitope in the vac-
cine encodes a single polypeptide, which constitutes of a
string of T and B cell epitopes from different sources,
including tetanus toxin and BCG. In fact, this heterolo-
gous prime-boost immunization elicited interferon-y
(IEN-y) secreting, antigen-specific T cells in humans,
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which were significantly higher than responses observed
with either vector alone [37]. Furthermore, this study
demonstrated partial protection, measured by delayed
parasitemia, after challenge with a different strain of P. fal-
ciparum. Another group demonstrated that priming with
DNA vaccine for P. falciparum CSP and boosting with a
recombinant protein vaccine in adjuvant (RTS, S/AS02A)
induced the production of significant antibody and T cell
responses in healthy volunteers [38]. Phase I clinical trials
in The Gambia in semi-immune adults have demon-
strated that heterologous DNA-prime-MVA-boost regi-
men encoding P. falciparum TRAP antigen is safe, well
tolerated and induces responses greater than those
observed in naive volunteers [39]. Boosting with the MVA
vaccine 12 months after the initial prime-boost immuni-
zation in this clinical trial was successful in re-expanding
the T cell population and demonstrated the safe use of
MVA to boost at different periods to maintain T cell
immunity.

Genetic Adjuvants

Adjuvants are used to strengthen the immune response to
a vaccine and have been critical in modern vaccine
development. Genetic adjuvants are expression vectors
encoding biologically active molecules such as cytokines,
chemokines and co-stimulatory molecules. These adju-
vants can be encoded on the same vector as the antigen or
expressed on a separate vector and co-injected with the
vaccine. This method provides adjuvant activity at the site
of antigen production, with lasting effect from transfected
cells. Cytokines are chosen as genetic adjuvants because
they regulate cells involved in host defense and can be
used to modulate immune responses. Co-delivery of
cytokines in DNA vaccine formulation has been used
extensively for a wide range of infectious and parasitic dis-
eases (see Table 2) to enhance the T cell subset responses
known to be protective. Vaccine development against
schistosomiasis has been hindered by a lack of consensus
on the type of immune response that would be protective.
However, it is generally believed that the best strategy for
an anti-pathology vaccine is immune deviation. Pathol-
ogy in schistosomiasis is associated with egg-induced
granuloma formation for which there is evidence for a
role for Th2 cytokines. The strategy here is to use genetic
adjuvants of the Th1 cytokine subset, like interleukin-12
(IL-12), to skew the immune response and provide pro-
tection [40]. Therefore immune deviation is attained with
the use of selected genetic adjuvants.

Siddiqui et al. [41] generated DNA vaccines encoding
Schistosoma mansoni large subunit of calpain (Sm-p80)
and either mouse GM-CSF or IL-4 to determine their adju-
vant effect in mice. GM-CSF may work as adjuvant
through its activating effect on dendritic cells and macro-
phages. Intramuscular vaccination with Sm-p80 alone

http://www.gvt-journal.com/content/2/1/17

provided 39% protection and this protection was signifi-
cantly increased to 44% with GM-CSF co-administration
and 42% with IL-4. The addition of GM-CSF led to an
increase in total IgG and IgG1 while Th1 type IgG2a anti-
body titers remained high in protected animals [42]. Since
protection was associated with Th1 type antibodies, the
Sm-p80 DNA vaccine was further enhanced with co-deliv-
ery of plasmids encoding mouse IL-2 or IL-12 [43].
Greater protection was observed with IL-2 and modest but
significantly higher protection was provided by IL-12 co-
delivery. Both IL-2 and IL-12 are key cytokines in Th1 cell
differentiation. The co-delivery of these cytokines
increased IgG2a antibody levels and decreased IgG1 lev-
els, indicating that these genetic adjuvants were successful
as Th1 enhancers. Other studies reported no enhance-
ment of protection or immune responses when IL-12 was
co-injected, but these differences may be attributed to the
nature of the vaccine antigen [44].

Multivalent Vaccines

Another advantage of DNA vaccines is the possibility to
integrate several antigens into the plasmid or to adminis-
ter a mixture of plasmid vectors. The development of mul-
tivalent vaccines consisting of several antigens is a novel
approach to create broad range protection against differ-
ent parasite strains and parasite life cycle stages (see Table
2). Parasites are complex organisms with multiple life
cycle stages and antigenic variation mechanisms to evade
immune system recognition. Furthermore, not all individ-
uals respond to the same antigens in natural infections.
Multivalent vaccines have a greater amount of protective
epitopes and could be effective in a greater proportion of
the population. However, in multivalent vaccines, the
optimal association or combination of antigens must be
assessed to obtain synergistic effects.

Vaccination studies against leishmaniasis in mice have
identified various parasite antigens with varying degrees
of protection as protein vaccines. When combined into
multivalent DNA vaccines these antigens have the ability
to confer complete or enhanced protection. In fact, a DNA
vaccine including a mixture of plasmids encoding three
antigens, Leishmania major-activated C kinase (LACK),
thio-specific antioxidant (TSA), and L. major stress-induc-
ible protein (LmST11) was able to induce complete and
long lasting protection after parasite challenge in mice
compared to killed Leishmania parasites and rIL-12 [45].
This protection was characterized by reduced parasite load
and the recruitment of CD8+ and CD4+ T cells to the site
of infection. The same group tested the combination of
these antigens and the route of administration to opti-
mize the results of the previous study [46]. It was deter-
mined that a cocktail vaccine composed of all three
antigens was more effective than LACK alone or LmSt11
and TSA combined. Furthermore, intradermal injection of
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the plasmid mixture was more effective than intramuscu-
lar or subcutaneous injections, reducing the dose of vac-
cine required five-fold. Another study also demonstrated
that prime-boost co-injection of plasmids encoding two
different L. major cysteine proteinase genes (Cpa/Cpb)
was protective and characterized by IFN-y production by
spleen cells, while separate injections were not protective
[47]. The cysteine proteinases are expressed at different
levels during parasite development and are thought to be
involved in modulation of the host response for parasite
survival. In this study the cysteine proteinases, only when
combined, had the capacity to induce long lasting immu-
nity of the Th1 type. Comparative evaluations of potential
protective antigens is necessary to determine optimal
DNA vaccine design [48] as the nature of antigens can
have important effects on vaccine efficacy.

Codon Optimization

Interspecies differences in codon usage are a major obsta-
cle in DNA vaccine development. This is due to the fact
that DNA vaccines use host cells for transcription and
translation of proteins. Every species has a codon bias for
which most genes are encoded and this use of selected
codons is related to gene expression efficiency. Closely
related species use similar codons. However, in cases
where there is a great difference in codon usage between
the pathogen and mammals, codon optimization may be
required. This strategy involves the modification of codon
usage for the genes encoded in a DNA vaccine to a suitable
codon bias for increased expression in mammals. This
method has proved effective in many systems [19,49,50],
increasing protein expression in vitro and antigen specific
responses in vaccinated animals. In our laboratory, we
have developed a codon-optimized DNA vaccine encod-
ing a portion of the Entamoeba histolytica Gal-lectin [51]. E.
histolytica genes are rich in A:T codons, whereas mamma-
lian codons are more G:C rich. Protein expression of the
E. histolytica Gal-lectin protein using the wild type
sequence was difficult and stable clones were difficult to
obtain in mammalian cells. Codon optimization was per-
formed to ultimately increase protein expression in ger-
bils, a model for experimental amoebiasis; therefore
gerbil codon usage was used to re-write the Gal-lectin Hg1l
gene. Transfection of Cos-7 cells with the optimized vac-
cine construct produced a protein which was immunore-
active with a Gal-lectin specific monoclonal antibody
(3F4), demonstrating successful expression of this amoe-
bic protein. Upon vaccination with this codon optimized
DNA plasmid, mice developed antigen specific antibodies
of the Th1 isotype and Gal-lectin specific cellular immune
responses.

Conclusions
In this review, strategies for increased DNA vaccine effi-
cacy against parasitic diseases to date, i.e. prime-boost

http://www.gvt-journal.com/content/2/1/17

immunizations, genetic adjuvants, multivalent vaccines
and codon optimization, have been discussed. DNA vac-
cine technology provides the versatility required to sepa-
rate protective components of immunity from counter-
protective responses. As seen with genetic adjuvants, DNA
vaccines can focus on the protective cytokines involved
and include antigens that stimulate the production of spe-
cific cytokines. This allows designing vaccination strate-
gies that are tailored to a particular infection or even a
specific stage of infection. Parasitic diseases are complex,
involving changes in immunological responses during the
course of infection and changes in immunity to stage spe-
cific antigens. The advent of optimization strategies with
DNA vaccines presents researchers with the tools to design
effective vaccines with specific purposes. It is possible to
enhance DNA vaccine efficacy, thus increasing immune
responses and protection, through the use of these meth-
odologies. However, it is important to note that these
strategies need to be adjusted to the parasite system in
order to provide the greatest benefit upon vaccination. For
example, Sedegah et al. [52] reported reduced immuno-
genicity of multistage P. falciparum DNA vaccines when
administered as a mixture of plasmids compared to single
plasmid injections. Another study, however, demon-
strated that a mixture of three plasmids encoding P. falci-
parum blood-stage antigens had no reduction in
immunogenecity when co-injected [53]. Therefore many
aspects of a DNA vaccine can contribute to its efficacy, and
each must be evaluate to understand the interactions
between vaccine components. In fact, it is clear that other
factors are important in vaccine design, such as the nature
of the antigen, the presence of immunostimulatory CpG
motifs in the plasmid backbone, the vaccine delivery sys-
tem or the site of injection [8,9,16,24,32,54].

The method of vaccine delivery is an important variable in
vaccination design. DNA vaccination has been successful
through a variety of injection routes, including intrader-
mal, intramuscular, and intranasal. Although intramuscu-
lar injections are most common and give consistent
responses, alternative routes of delivery may be desired
depending on the disease model. Mucosal DNA vaccine
immunizations, against intestinal parasites for example,
are effective to generate mucosal immune responses at the
site of infection. For leishmaniasis, where the disease
manifests itself as cutaneous lesions, an intradermal injec-
tion targeting Langerhans' cells may be optimal [46]. The
gene-gun is a unique method of DNA vaccine delivery,
which has been used successfully against a variety of par-
asites. The gene-gun accelerates plasmid-coated gold par-
ticles to supersonic speed with helium gas and delivers
them to the outer layers of the skin. In reality this vaccine
delivery system is being tested alongside intramuscular
injections in The Gambia field trials for malaria vaccines
in humans. The Powderject® XR1 is a needle-free powder
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injection system that delivers fine gold particles coated
with the vaccine vectors directly into epidermal cells, spe-
cifically dendritic cells. This vaccination method is advan-
tageous since it eliminates the cold chain requirement and
reduces the chances of needle-borne contamination.
Moreover, the gene-gun method is safe and seems as
immunogenic as intramuscular injections in these trials
[36].

The greatest challenge in designing DNA vaccines against
parasites is making the vaccine suitable for humans while
providing strong, long lasting immune responses. Many
studies in laboratory animals are successful but the results
cannot be replicated in humans. The prime-boost strategy
has shown the most success as a delivery technique in
larger animals or humans. Field trials with prime-boost
malaria vaccines are ongoing and will provide experts
with insight with regards to the safety and the immune
responses required for protection in humans. Meanwhile,
other groups are reporting improved responses in mice or
larger mammals with other vaccines, suggesting that this
vaccination strategy may be applicable to many other par-
asitic diseases [3,29]. A variety of combinations of other
enhancement strategies with prime-boost immunization
have been explored, including the use of genetic adjuvants
or multivalent plasmids [11,14,15]. Prime-boost immu-
nizations against Leishmania parasites in mice have
improved cellular immune responses when plasmids
expressing 1L-12 and IL-18 are co-injected [11]. A DNA
prime-protein boost vaccine in monkeys encoding two P.
cynomolgi antigens (CSP/TRAP) resulted in lower peak
parasitemia and higher antibody and cellular responses
than controls [13]. Taken together, the techniques
described above will allow parasitologists to develop
effective DNA vaccines that are designed to target a spe-
cific immune response during parasitic infection. The
optimized approach provided by DNA vaccine technol-
ogy will produce vaccines ready for clinical and practical
applications, as well as providing a greater understanding
of the underlying complexity of immunity in parasitic
infections.
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