
COMMENTARY Open Access

Macroscopic law of conservation revealed in the
population dynamics of Toll-like receptor
signaling
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Abstract

Stimulating the receptors of a single cell generates stochastic intracellular signaling. The fluctuating response has
been attributed to the low abundance of signaling molecules and the spatio-temporal effects of diffusion and
crowding. At population level, however, cells are able to execute well-defined deterministic biological processes
such as growth, division, differentiation and immune response. These data reflect biology as a system possessing
microscopic and macroscopic dynamics. This commentary discusses the average population response of the Toll-
like receptor (TLR) 3 and 4 signaling. Without requiring detailed experimental data, linear response equations
together with the fundamental law of information conservation have been used to decipher novel network
features such as unknown intermediates, processes and cross-talk mechanisms. For single cell response, however,
such simplicity seems far from reality. Thus, as observed in any other complex systems, biology can be considered
to possess order and disorder, inheriting a mixture of predictable population level and unpredictable single cell
outcomes.
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Maintext
The innate immune cell, e.g. macrophage, upon recogni-
tion of external stimuli, such as a pathogen, invokes a
sequence of molecular events, from receptor activation
to gene expressions in the nucleus. This results in the
induction of various proinflammatory cytokines that
subsequently eliminate the intruders, usually through
the adaptive immunity [1]. The well-orchestrated, self-
organized and stable immune response, over a wide
range and variety of perturbation, is observed at popula-
tion level. However, recent reports at single cell resolu-
tion highlight the issue of cellular heterogeneity and
stochasticity, switching attention to the variability and
complexity of biological behaviors [2-4].
A cell, within a population, possesses varying amounts

of individual molecular constituents [4,5], in a highly
inhomogeneous intracellular environment with spatio-
temporal effects of molecular crowding and diffusion

[6-9]. The low-abundance of numerous molecules pro-
duce stochastic cellular response or noise, such as in the
dynamics of gene transcription and decay [2,10].
Together, the effect of space, crowding, stochasticity and
heterogeneity of molecular constituents make single cell
response variable, noisy and highly unpredictable (Figure
1A, B). On the other hand, cell populations display
stable deterministic biological processes such as the syn-
chronized collective dynamics of neuronal signaling.
Hence, there is a need to distinguish the differences at
the microscopic and macroscopic scales, so as to eluci-
date the causes for ordered response emerging from dis-
ordered response [11,12].
Over the past few years, our research has focused on the

population level, well-characterized and co-ordinated
dynamic signaling response of macrophages to invading
pathogens based on the TLRs 3 and 4. Briefly, in TLR4 sig-
naling, upon bacterial component lipopolysaccharide (LPS)
recognition, MyD88 and TRAM molecules bind to TLR4
and trigger their respective pathways (Figure 2A) [1]. Nota-
bly, the experimental activation dynamics of immune-
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related proteins such as the NF-�B, JNK and p38, display
response consisting of formation and depletion waves
(Figure 2B, C). Instead of trying to measure each reaction’s
detailed kinetics, which faces huge technical challenges
[8,13], we undertook a macroscopic view of developing a
computational model based on perturbation-response
approach and the law of information conservation.
The perturbation-response approach involves giving a

small perturbation to the concentration of one or more
reactant species in a network and analyzes the response
profiles of other species within the network [14-16]. To
briefly examine, consider a linear-chain of reactions (X1

® X2 ® X3 ® ···) at steady-state condition. If the con-
centration of X1 is pulse perturbed, the concentrations
of X2, X3, etc., will increase, go through a maximum,
and then decrease back to its steady-state value in
sequential order (Figure 3A). The experiments, based on
the law of information conservation, connect the species

between input and output fluxes through a linear super-
position of propagation response waves (first-order
response) [14-16]. Despite the simplicity of the
approach, linear response is visually apparent in the
dynamic phosphoproteomics data of several intracellular
molecules activated by the perturbation of epidermal
growth factor (EGF) receptors [17] (Figure 3B).
To illustrate further, a fixed perturbation of the input

specie (e.g. LPS) generates downstream response waves
of output species (e.g. p38 and JNK) that is conserved in
terms of information propagation. The changes to an
output specie’s activations or concentrations, from
steady-state or baseline levels, can be represented by the
sum of formation and depletion terms:

∂Xi

∂t
=

p∑

j=1

FjXj −
q∑

k=1

FkXi (1)

 

A

B

Figure 1 Stochastic single cell behavior. A) Illuminating green fluorescent protein (paGFP) with blue light on a single photoactivatable cell
(upper panel) results in paGFP diffusing away from source in a stochastic manner, as shown by the intensity plots (lower panels). Intensity was
measured in arbitrary units (AUs). B) Fluorescence levels for four individual cells show stochastic response. Blue circles represent the tumour
suppressor protein p53 dynamics and the yellow circles represent the dynamics of ubiquitin E3 ligase MDM2. A, B adopted from [8] and [10],
respectively.
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Figure 2 Toll-like receptor signaling shows deterministic formation and depletion waves. A) Schematic of TLR4 signaling. The dotted line
between TLR4 and TRAM and the black lines indicate the prediction of novel intermediates [19] and crosstalk mechanisms [20], respectively. B)
The western-blot activation profiles of IRF-3, JNK, p38 and NF-�B (degradation of I�Ba) for LPS stimulation, and C) NF-�B, JNK and p38 profiles in
wildtype or WT (black), TRAF6 KO (green), TRADD KO (orange) for poly (I:C) stimulation, show activation and deactivation following formation
and depletion waves. A, B adopted from [18], and C from [21].

Selvarajoo Cell Communication and Signaling 2011, 9:9
http://www.biosignaling.com/content/9/1/9

Page 3 of 7



 

 

 

A 

B 

C 

D 

Figure 3 Deterministic information conserved response of average cell signaling. A) Temporal concentration response profiles of linear-
chain reaction network for pulse perturbation of specie X1 (see maintext and [14]). The units are arbitrary, scaled by rate coefficients. u1
represents reaction profile for X1, u2 for X2 and so on. B) Temporal activation profiles of various EGFR signaling effectors: key proteins involved in
receptor internalization and endosomal trafficking (upper panel) and proteins from the Ras-MAP kinase pathways (lower panel). C) The concept
of signaling flux redistribution or SFR. Simulation profiles of proinflammatory molecules in wildtype (blue), MyD88 KO (red) and MyD88
overexpression (green). D) Experimental enhancement of TRAM-dependent molecules Cxcl10 and Ifit2 in MyD88 KO through SFR. Blue lines
indicate WT and red dotted lines indicate MyD88 KO. A adopted from [14], B from [17] and C, D from [18].
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where FjXj and FkXi represent each formation (activa-
tion) and depletion (deactivation) term for the ith mole-
cule, respectively, and they can be any linear or non-
linear function. Note that the number of formation and
depletion terms, p and q for each ith molecule, are vari-
ables obtained from the network topology of interest.
Given small perturbation to the generalized Eq.1,

higher-order terms become negligible [15,16]. Hence,
the partial differentiation in Eq. 1 can be changed into

ordinary differentiation, i.e.
∂δX
∂t

∼= dδX
dt

where X = (X1,

X2,..., Xn). Our previous works have used the approxima-
tion and have shown that a linear superposition of pro-
pagation response waves, or first-order mass-action
response equations, can sufficiently be used to model
the reaction chains of the TLR signaling [18-21]. This is
valid especially for average cell response investigated for
time points with a restricted range, usually before 120
min, where post-translational regulations (e.g. feedback
or feedforward mechanisms) are insignificant [18,22].
Unlike typical kinetic models, which often use similar

equations or sometimes with non-linear expressions to
model the dynamics of biological networks, our pertur-
bation-response approach considers the network as a
sequence of events rather than molecules. As signaling
networks are largely not fully understood, this difference
is crucial as it prevents rigidly fixing the network topol-
ogies, and allows it to be modified according to experi-
mental data so as to prevent overfitting problems and to
identify novel features of signaling networks. In addition,
as signaling process involves large number (thousands)
of intracellular molecular activations, it is currently not
plausible to model the dynamics of all possible reactions
with the generally limited data. To overcome such diffi-
culties, our approach permits the lumping of several
molecules into a signaling specie in the model network.
In this way, although the model does not become a
comprehensive representation of an entire signaling pro-
cess, however, it still allows the identification of overtly
missing key features.
To successfully identify novel features of signaling net-

works, we set a target that the computational model
should be able to simulate not just one experimental
condition (like most models do), but in as many condi-
tions as available. For the TLR4 signaling, we developed
a wildtype model and compared the simulations with
MyD88 and TRAF6 knock-outs (KOs), a total of three
conditions. The initial wildtype model’s parameter
values for formation and depletion terms were deter-
mined directly by fitting simulations with quantified
time-course activation experimental profiles of proin-
flammatory molecules (NF-�B, JNK, p38, Tnf, Il6, Ifit1
and Cxcl10) for LPS-stimulated murine macrophages
[18,19].

Like any other modeling approach, there are certain
limitations that require mentioning. Firstly, the pertur-
bation-response approach discussed does not compre-
hensively represent the details of each signaling
reaction’s kinetics. Secondly, the small perturbation
assumption leading to the first-order mass-action equa-
tions represents an average cell response and this cannot
be used to study single cell stochastic behavior. Thirdly,
the model predictions will show relative, and not abso-
lute, activation levels. However, the approach is not
restricted to the TLR pathways and can be applied to
model any pathways that experimentally display forma-
tion and depletion waves, e.g. the EGF receptor signaling
[17]. For information conservation to be observed, we
need enough number of key output species to be moni-
tored temporally.
In spite of the limitations, we predicted i) the presence

of novel signaling intermediates along the TRAM-
dependent pathways [19], ii) crosstalk mechanisms
between the MyD88- and TRAM-dependent pathways
[20], and iii) the concept of signaling flux redistribution
or SFR [18]. The prediction of novel terms were later
confirmed experimentally to be the phosphorylation of
TRAM by PKCε and the sequential events of TLR4
endocytosis leading to TRAM activation [23,24]. The
concept of SFR is based on the law of conservation
where the removal of MyD88 resulted in the increased
activation of the entire alternative TRAM-dependent
pathway (Figure 3C, D). That is, the total signaling flux
(information) propagation through the network from
receptor activation through downstream gene activation
is conserved. We experimentally validated SFR in two
mutant conditions (MyD88 and TRAF6 KOs), where we
observed increased activation of several alternative path-
way molecules [18].
Similarly to the TLR4 signaling, we also investigated

the TLR3 innate immune response against viral attacks
by polyinosinic-polycytidylic acid (poly (I:C)). This leads
to the activation of MAP kinases and NF-�B, which
results in the induction of type I interferons and proin-
flammatory cytokines to combat the viral infection.
Here, again analyzing the activation dynamics of the
NF-�B, p38 and JNK in wildtype, TRAF6 KO and
TRADD KO using a linear response model obeying the
law of information conservation, we inferred i) the exis-
tence of missing intermediary steps between extracellu-
lar poly (I:C) stimulation and intracellular TLR3
binding, and ii) the presence of a novel pathway which
is essential for JNK and p38, but not NF-�B, activation
[21].

Conclusions
Here I present, with examples from TLR 3 & 4 signaling
in wildtype and several mutants, that the law of
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conservation and first order response equations are suf-
ficient and important to reveal novel features of the
complex immune process. This result is surprising as
there is a general consensus that we need to fully under-
stand all molecular interactions in the signaling network
in order to make useful predictions [8,13]. Furthermore,
the results from recent single cell experiments showing
stochastic responses ask for spatial-temporal details to
understand cellular signaling correctly [3,25].
So, instead of losing interest in the population level

dynamics and move towards more single cell analyses, I
propose biology is a system that possesses both micro-
scopic and macroscopic dynamics, as observed in other
physical sciences. For example, in the study of fluid
dynamics, at microscopic level we observe the motion of
each individual particle to be highly random and unpre-
dictable and at macroscopic level, the velocity of airflow
follows the fundamental law of fluid mechanics (the law
of conservation of mass, energy and momentum). Thus,
it is necessary to treat the two dynamics distinct.
It is also interesting to ponder the origins of averaging

effect from stochastic response of a single cell when
ensembles of them form a population. I believe that the
emergence of average cell deterministic response from
single cell stochastic response complement each other.
For example, the stochastic fluctuations produced by a
single cell are necessary to induce probabilistic differen-
tiation from genetically identical cells [26-28]. This
allows multi-cellular organisms to switch fates and states
to yield diversity, such as for development or stress,
which, otherwise, may be impossible from a purely
deterministic system.
On the other hand, the well-coordinated response of

cell populations, such as differentiation or growth,
demonstrates that the single cell noise could cancel
out when ensembles of cells are formed to generate a
stable and robust response. Thus, the search for gov-
erning laws arising from single cell dynamics will
enable us to better understand the coordinated
response of cell populations. Most importantly, finding
the connection between microscopic and macroscopic
dynamics and the unifying laws are crucial for under-
standing the origins of evolutionary and developmental
robustness of living systems to diverse environmental
attacks.
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