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Abstract
Background: Cellular signal transduction is initiated by the binding of extracellular ligands to
membrane receptors. Receptors are often expressed in excess, and cells are activated when a small
number of receptors bind ligands. Intracellular signal proteins are activated at a high level soon after
ligand binding, and the activation level decreases in a negative feedback manner without ligand
clearance. Why are excess receptors required? What is the physiological significance of the
negative feedback regulation?

Results: To answer these questions, we developed a Monte Carlo simulation program to
kinetically analyze signal pathways using the model in which ligands are bound to receptors and then
membrane complexes with other membrane proteins are formed. Our simulation results showed
that excess receptors are not required for cell activation when the dissociation constant (Kd) of
the ligand-receptor complex is 10-10 M or less. However, such low Kd values cause delayed signal
shutdown after ligand clearance from the extracellular space. In contrast, when the Kd was 10-8 M
and the ligand level was less than 1 μM, excess receptors were required for prompt signal
propagation and rapid signal cessation after ligand clearance. An initial increase in active cytosolic
signal proteins to a high level is required for rapid activation of cellular signal pathways, and a low
level of active signal proteins is essential for the rapid shutdown of signal pathways after ligand
clearance.

Conclusion: The present kinetic analysis revealed that excess receptors and negative feedback
regulation promote activation and cessation of signal transduction with a low amount of
extracellular ligand.

Background
Cellular signal transduction is mediated by a complex sys-
tem involving many proteins. Experimental studies have
unraveled several transduction pathways and the roles of

many proteins, but many questions remain unanswered.
It has been shown that successful cellular activation only
requires ligand binding by a small fraction of the available
receptors. For example, HeLa cells have been shown to
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express approximately 50,000 EGF receptors per cell, but
binding of only 300 EGF molecules to the cell surface is
sufficient to activate 50% of cells [1]. Why do cells express
an excess number of receptors?

It is generally accepted that the binding of extracellular lig-
ands to membrane receptors initiates the phosphoryla-
tion of signal proteins in a stepwise manner. Many studies
have suggested that the majority of signal proteins are
phosphorylated immediately after the binding of a ligand
to its receptor, after which the level of signal protein
decreases [2-7]. To explain this change, it has been
hypothesized that the inactivation of signal proteins is
regulated in a negative feedback manner by the active
form of the signal protein of a late reaction step, thereby
decreasing the levels of active proteins [8-10]. However, it
remains unclear why this kind of negative feedback regu-
lation is required.

Kinetic analysis is a useful way to analyze these questions.
Simple reactions that are mediated by a single enzyme
have been analyzed using classical enzyme kinetics, but
this method is hard to apply to the kinetic analysis of sig-
nal pathways because of their complexity. Recently, an
elegant way to facilitate quantification has been devel-
oped with the aid of computers. Two types of computer
simulation techniques are now available for theoretical
studies of biological phenomena: numerical integration
of differential equations and Monte Carlo simulation. The
former method can be used to evaluate average behavior
involving a large number of molecules and stochastic var-
iation. In contrast, the latter can simulate both population
behavior and single molecule dynamics. Monte Carlo
simulation can also address time-dependent fluctuations
involving noise as well as cell-to-cell population heteroge-
neity.

Receptor-ligand complex formation has been simulated
using Monte Carlo techniques [11-13], but these previous
analyses have not answered the above questions. Our
group developed Monte Carlo simulation programs using
a conventional personal computer with Windows XP or
2000 operating systems to examine the kinetic signifi-
cance of the clustering of membrane receptors and their
associate proteins and found that the pre-clustering of
such proteins promotes cellular signaling [14]. In the
present study, our previous technique was applied to clar-
ify why cells have an excess amount of receptors and why
negative feedback regulation is required. We used the fol-
lowing model in the present simulation. Extracellular lig-
ands are bound to receptors and then membrane
complexes with other membrane proteins are formed. In
this model, pre-clustering of membrane proteins is
required for efficient cell activation as shown previously

[14]. The complex activates the first cytosolic signal pro-
tein and other signal proteins are activated step by step.

Methods
In the present study, we assumed a simplified model in
which the cell surface is represented as a 2-dimensional
plane between 3-dimensional extracellular and cytosolic
spaces (Figure 1-I). The cell surface and the extracellular
space were divided into subspaces. Real-type pseudo uni-
form random numbers (N) with the range 0 ≤ N < 1 were
generated as reported previously [15]. Each molecule was
assumed to undergo random motion with a diffusion rate
(υ) that has a pseudo-normal probability distribution
from 0 to 100. υ was generated as described in Table 1,
and the resulting distribution is shown in Figure 1-II. Each
molecule has υ and its direction of movement (positive or
negative direction on each axis), and molecules move into
their neighboring subspace when τ < υ, where τ is a

Cell model for simulation, molecular diffusion rates, and receptor movementFigure 1
Cell model for simulation, molecular diffusion rates, 
and receptor movement. (A) The cell model used for 
simulation. See text for details. (B) Distribution of diffusion 
rates (υ). For details, see text. (C,D) Movement of R was 
plotted for 1 × 104 steps at intervals of 10 steps. The diffu-
sion rates of R used were υ(C) and 0.1υ(D). The numbers of 
subspaces were 600 × 600 × 1 (C) and 300 × 300 × 1 (D).
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pseudo uniform random number (0 ≤ τ < 100) obtained
as described in Table 1. υ was defined as the diffusion rate
of the extracellular ligand and cytosolic proteins, and 0.1υ
was used for the rate of membrane proteins and their
complexes with the ligand. When υ = 0, the molecules
remained in the same subspace. The diffusion rates and
directions were updated for 1% of all molecules at each
step, and this sample population was selected randomly.
The trajectories of the receptors are shown in Figure 1-III
and 1-IV. We assumed periodic boundary conditions; i.e.,
a molecule moved to the opposite side when it reached
the boundary of its simulation box, except that when it
reached the cell surface or its opposite boundary, it was
reflected in the mirror direction.

Nine clustering areas were assumed for membrane com-
ponents, as illustrated in Figure 1-I, and each area con-
sisted of 3 × 3 subspaces with energy barriers at each
boundary. The energy required to escape from the cluster-
ing area was defined as 23.7 kilojoules·mole-1. This
means that the probability of escaping from the clustering
area beyond its boundary was 0.01% at a temperature of
310 K. To avoid bias, the candidate for each trial was
selected randomly. The molecules that were not selected
were reflected in the mirror-direction at the boundaries of
the clustering areas. Under these conditions, 99.2% of
membrane components were clustered in the 9 clustering
areas. When the escaping possibility was set to 0.1%, 92%
of membrane components were clustered.

All molecules were initially distributed into randomly
selected subspaces of their own compartments with equal
probability, and 99.2% of the membrane proteins clus-
tered within 1.2 × 106 steps under standard conditions.

The LR and LRA complexes were assumed to form in the
membranes by the following reactions:

L + R ↔ LR, LR + A ↔ LRA

where L, R, and A are an extracellular ligand, a membrane
receptor, and a membrane protein such as an adaptor or a
linker, respectively. LR and LRA are binary and ternary
complexes, respectively. Two molecules of different spe-

cies may bind to each other when they occupy the same
subspace. The binding probability and the dissociation
probability of the complexes were defined as described
previously [14].

LR was rapidly converted to LRA, since R and A clustered
before L was added. Therefore, the rate constant of LRA
formation (k) was calculated as follows:

d[LRA]/dt = k[L][R]

A cytosolic signal pathway was postulated as follows. The
first cytosolic signal protein (B) is activated by the follow-
ing reaction:

LRA + B → LRA·B → LRA·B* → LRA + B*,

where B* is the activated form of B. B* is inactivated by

IB* + B* → IB*·B* → IB*·B → IB* + B,

where IB* is the active form of enzyme IB, which inacti-
vates B*.

The second signal protein (C) is activated by the following
reaction:

B* + C → B*·C → B*·C* → B* + C*,

where C* is the activated C, and C* is inactivated by

IC* + C* → IC*·C* → IC*·C → IC* + C,

where IC* is the activated form of the enzyme that inacti-
vates C*. We considered a signal pathway consisting of 5
signal proteins, B to F, all of which were subjected to the
same reaction as described above. The probability of each
reaction was defined based on its activation energy as
described previously [14].

The source code of our simulation program was imple-
mented with Visual Studio C++.net (Microsoft Co.), and
the program was run on a personal computer with Win-
dows XP or 2000 (Microsoft Co.).

Table 1: A list of integral random numbers

Used for Range Equations

Diffusion rate (υ) 0–99
Absolute value of (S/6-200), where (1)

Selection of moving step (τ) 0–99 N × 100(2)

A pseudo uniform random number (N) from 0 to (1 - 1 × 10-15) was generated as described in the Methods.
(1)S is the integer of the obtained value, and S values of 100 or less were used.
(2)The integer of the obtained value was used.

S Ni
i

= ×
=
∑( )200

1

12
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Results
Validation of our simulation methods
In the previous simulation [14], the volume of a single
subspace was defined as 1.728 (1.203) nm3, but this vol-
ume is smaller than the size of a large number of protein
complexes. Therefore, in this study we defined that a sin-
gle subspace was a cubic box with a volume of 166.1
(5.4973) nm3, as described previously [16]. In this model,
one molecule per subspace corresponds to a concentra-
tion of 10 mM. Each calculation step was assumed to take
0.02 milliseconds.

To validate our simulation procedure, the dissociation
constant (Kd) of the following reaction in the cytosolic
space was evaluated.

A + B ↔ AB

In the equilibrium state, the following equation holds:

P1 × NA × NB/NS = P2 × NAB,

where NA, NB, and NAB are the numbers of molecules A, B,
and AB, respectively. P1 and P2 are the binding and disso-
ciation probabilities and are defined as exp(-ΔE1/RT) and
exp(-ΔE2/RT), respectively. Where E, R, and T are the acti-
vation energy, gas constant, and absolute temperature,
respectively. NS is the number of subspaces in the
cytosolic space. Since one molecule per subspace corre-
sponds to a concentration of 10 mM as described above,
the molarities of A (MA), B (MB), and AB (MAB) are given
by NA/(100 × NS), NB/(100 × NS), and NAB/(100 × NS),
respectively. By defining the dissociation constant (Kd) as
(MA × MB)/MAB, we get Kd = P2/(P1 × 100).

The numbers of A and B were both set to 600, and the
cytosolic space contained 300 × 300 × 100 subspaces. P1
was set to 0.670. As shown in Table 2, the simulated Kd
values are in agreement with those estimated by P2/(P1 ×
100).

To save calculation time, the definition of υ was changed
from the previous definition [14]. Under the present defi-
nition, random movements were simulated (Figure 1-III
and 1-IV). The diffusion coefficient (D) was calculated as
follows:

D = [average value of {x(0)-x(t)}2+{y(0)-y(t)}2]/4t

for the receptor, and

D = [average value of {x(0)-x(t)}2+{y(0)-y(t)}2+ {z(0)-
z(t)}2]/6t

for cytosolic proteins, where x(0), y(0), z(0), x(t), y(t),
and z(t) are their positions in the x, y, and z directions at
0 and t seconds. The mean value for 1000 molecules was
calculated. The cytosolic space and the cell surface con-
tained 1200 × 1200 × 1200 and 1200 × 1200 × 1 sub-
spaces, respectively. The average values were obtained
from 4 sets of calculations, which took between 0.03 and
0.06 seconds. The diffusion coefficients of the cytosolic
protein and the receptor were 10.8 ± 0.3 and 0.163 ±
0.008 (μm)2·second-1, respectively. These values reflect
experimental data for membrane and cytosolic proteins
previously reported in prokaryotes [17] and eukaryotes
[18,19]. These data suggested that our simulation proce-
dure is adequate to achieve our purpose. We assumed that
the diffusion rate of the ligand is close to that of cytosolic
molecules because the extracellular space and cytosol
both contain a large number of molecules including pro-
teins.

Ligand-receptor membrane complex formation
It is generally accepted that receptors and associated mem-
brane proteins such as adaptors and linkers are clustered
in the micro-domains of the cell surface and that this clus-
tering plays a role in intracellular signaling. Lipid rafts
consisting of glycosphingolipids, cholesterol, and mem-
brane proteins have been observed on the cell surface
[20]. Other interactions of membrane proteins have been
reported to involve the F-actin skeleton [21]. Previous

Table 2: Kd at equilibrium

Dissociation constant (Kd)
P2

Theoretical [P2/(P1 × 100)] Simulated(1) Ratio(2)

3.35 × 10-4 5.00 × 10-6 4.94 × 10-6 ± 0.33 × 10-6 0.99
6.71 × 10-5 1.00 × 10-6 1.05 × 10-6 ± 0.06 × 10-6 1.05
3.36 × 10-5 5.02 × 10-7 5.12 × 10-7 ± 0.36 × 10-7 1.02

6.72 × 10-6 1.00 × 10-7 1.05 × 10-7 ± 0.06 × 10-7 1.05

Mean 1.03

(1)mean value and standard deviation of (MA·MB)/MAB calculated from 5 simulations.
(2)simulated value/theoretical value.
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simulations by our group suggested that the clustering of
membrane proteins such as receptors and adapters before
ligand binding to receptors stimulated cell activation [14],
in agreement with previous experimental data showing
that receptors are associated with other membrane pro-
teins in non-stimulated cells [22-25]. Therefore, we postu-
lated that the membrane proteins associated with signal
pathways cluster before ligand binding.

In the first simulation (model 1), the extracellular space
and the cell surface consisted of 300 × 300 × 100 and 300
× 300 × 1 subspaces, respectively. The numbers of L, R,
and A at zero time were set as described in Figure 2. The
setting of L to 180 corresponds to 200 nM. The setting of
R and A to 86 corresponds to approximately 10,000 mol-
ecules per cell, since the surface area of a spherical cell
with a diameter of 10 μm is 314 μm2. More than 99% of
R and A were clustered within 1.2 × 106 steps, and hence
L was added immediately before the 1.2 × 106th step. The
concentration of extracellular ligands may not decrease
with their binding to membrane receptors in situ because
of the continuous supply of ligands from producing cells.
To maintain a constant concentration of L, one molecule
of L was set at the opposite side when L was bound to R
on the cell surface. When LR dissociated, L was deleted
from the opposite boundary until extracellular L
decreased to its original level. After the 1.5 × 107th step (t
= 3 × 102 seconds), L was allowed to pass through the bor-
ders of the simulation box, except for the cell surface and
was deleted from the borders.

When dissociation constants of LR (Kd1) and LRA (Kd2)
were equally set to 1 × 10-7 M or 1 × 10-6 M, respectively, L
was bound to 80% of the receptors (8,000 receptors per
cell, Figure 2A and 2B). Even when the ligand concentra-
tion decreased to 20 or 5 nM, L was bound to 8,000 and
4,000 receptors, respectively, although the rate of LRA for-
mation was slow (Figure 2I to 2L). In contrast to complex
formation, dissociation of the complex was very slow with
these dissociation constants. When both Kd1 and Kd2 were
10-5 M, L was bound to approximately 6,000 receptors in
the presence of 200 nM L, and fast dissociation was shown
(Figure 2C). Five thousand and 2,000 complexes were
formed when the concentration of L was 20 and 5 nM,
respectively (Figure 2M and 2N). When both Kd1 and Kd2
were 10-4 M, the complex level was 1,000 and 4,000 per
cell in the presence of 200 and 2000 nM L, respectively
(Figure 2D and 2E). However, experimental studies
showed that a ligand concentration of less than 100 nM
activated cells. When the cells contained a 5 fold excess of
R and A (50,000 per cell), L was bound to approximately
4,000 receptors even when the concentration of L was 20
nM, and very rapid dissociation was demonstrated (Figure
2P).

These results suggest that the excess amount of receptors
and its associate membrane proteins are not required for
cell activation when the Kd is low or the concentration of
L is high. However, it was shown that the prompt activa-
tion of the intracellular signal in the presence of a low
amount of ligands and its rapid cessation after ligand
clearance require an excess amount of receptors and mem-
brane proteins. Cell activation with a low amount of lig-
ands is favorable in situ.

When Kd1 and Kd2 were set to10-6 M and 10-4 M, respec-
tively (Figure 2F), the simulation results were similar to
that of Figure 2C. The product of the dissociation constant
(Kd1 × Kd2) was 10-10 M in both cases. The same result was
again obtained when Kd1 and Kd2 were set to10-4 M and
10-6 M, respectively (Figure 2G).

The rate constants of LRA formation shown in Figure 2C
(Kd1 × Kd2 = 10-10 M), M (Kd1 × Kd2 = 10-10 M), and H (Kd1
× Kd2 = 10-8 M) were calculated to be 2.7 × 105, 3.2 × 105,
and 1.4 × 105 M-1·s-1, respectively. These values are higher
than those reported by Andrews, et al. [26], similar to
rates observed in PMA (4 beta-Phorbol 12-myristate 13-
acetate) treated cells [27], and lower than values reported
in other studies [28,29].

Negative feedback regulation of cytosolic signal pathways
In the simulation of cytosolic signal transduction, the sig-
nal pathway was assumed to be as described in the Meth-
ods section. When Kd1 and Kd2 were set at 10-5 M and 10-

4 M, respectively, ligands were bound to 40% of receptors
in the presence of 200 nM L, and rapid formation and dis-
sociation of LRA were demonstrated (Figure 2H). There-
fore, we used these conditions for the signal transduction
simulation. The concentrations of proteins and kinetic
parameters were set as described in Additional file 1 and
2. All signal proteins (B to F) were activated rapidly after
the ligand addition under conditions in which all signal
proteins were activated at a high level (Figure 3-I, model
2A). However, inactivation of F was shown to be very slow
under these conditions, even if the dissociation of the LRA
complex was rapid (Figure 3-I, model 2A). As shown in
Figure 3-I, when the levels of active B to D were low (Fig-
ure 3-I, model 2B), the activation rate of F (1.62 × 10-9 ±
0.08 M s-1, n = 3) was slower than the rate in model 2A
(1.89 × 10-9 ± 0.03 M s-1, n = 3), but the inactivation of F
was fast in model 2B.

Next, we postulated the following negative feedback regu-
latory mechanism (Figure 3-II) in which the amount of
enzyme IB*, which inactivates B*, increased with the
increase in E* as follows:

E* + I → E*·I → E*·IB* → E* + IB*,
Page 5 of 11
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Simulation of LRA formationFigure 2
Simulation of LRA formation. The number of subspaces for L and the number of molecules were set as shown in the 
upper Table. The dissociation constants of LR (Kd1) and LRA (Kd2) are indicated in the Figure. The probabilities of LR and LRA 
formations were set to 0.67. L was added immediately before the 1.2 × 106th step (down arrow, 24 seconds). After the 1.5 × 
107th step (upper arrow, 300 seconds), L was allowed to pass through the borders of the simulation box for L, except for the 
cell surface, and L was deleted in the outside area. Three simulation results are represented.
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Negative feedback regulation of the signal pathwaysFigure 3
Negative feedback regulation of the signal pathways. I. The protein amounts and reaction probabilities were set as 
described in Additional file 1 and 2, respectively. L was added immediately before the 1.2 × 106th step (down arrow, 24 sec-
onds) and removed after the 1.2 × 107th step (upper allow, 240 seconds), as described in the legend of Figure 2. Three simula-
tion results are represented. II. Models for negative feedback regulation used in this study.
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where I is the precursor of IB*. Under this negative feed-
back regulation, the rapid activation of F (3.57 × 10-9 ±
0.13 M s-1, n = 3) and prompt shutdown of active F were
demonstrated (Figure 3-I, model 3). These simulation
results led us to conclude that high levels of active inter-
mediate signal proteins promote the activation of the final
step of the signal pathway, and low levels of the active
proteins are required for prompt signal shutdown.

The mechanism in which the first signal protein is 
regulated in a negative feedback manner is more effective
Various models of negative feedback regulation were
examined (Figure 3-II). When the level of B* was regu-
lated by E*, the rapid activation of F and inactivation of
F* were simulated (Figure 3-I, model 3), as compared
with regulatory systems in which the level of C* (Figure 4,
model 4) or D* (Figure 4, model 5) was regulated by E*,
namely IC* and ID* increased with increases in E*. IC* and
ID* were produced from I, as described above. Rapid shut-
down was obtained when the level of B* was regulated by
D* (Figure 4, model 6) or C* (Figure 4, model 8), as com-
pared with model 7 (the level of C* was regulated by D*).
These results suggest that negative feedback regulation of
the B* level is the most effective for the prompt activation
and cessation of signal pathways, but the regulation of B*
by different molecules (C* to E*) had a similar effect on
signal transduction.

It was shown that the membrane receptor complex was
inactivated by the cytosolic signal protein in a negative
feedback manner [30]. The final simulation was carried
out under conditions in which LRA was inactivated by an
increase in the level of E* (model 9) as follows:

where LRA# is unable to activate B. P11, P12, P13, P14,
and P15 were set to 0.0200, 2.00 × 10-6, 1.99 × 10-4, 3.35
× 10-7, and 0.670, respectively. The results showed that the
shutdown speed in model 9 was close to the speed in
model 3.

Discussion
The present simulation provided a kinetic explanation for
why cells have a higher amount of receptors than is
required to initiate signal transduction. When the dissoci-
ation constant is low, excess receptors are not required for
cell activation, but signal shutdown is delayed after clear-
ance of the ligand from the extracellular space. Even when
the dissociation constant (Kd1 × Kd2) was 10-8 M, the
excess receptor was not required in the presence of 2 μM
extracellular ligand, but such a high concentration of lig-
and may not represent physiological conditions. There-

fore, an excess amount of receptors is useful for the rapid
activation and inactivation of intracellular signal trans-
duction when ligand concentrations are at a physiological
level.

Our simulation results can be applicable to other models.
For example, when ligand-receptor complexes without
other membrane proteins initiate cellular signaling, the
dissociation constant of LR more than 10-9 M was essen-
tial for rapid signal cessation and an excess amount of
receptors was required for activation at a ligand level
below 1 μM (data not shown). If receptors are crosslinked
by multivalent ligands, the following reactions are used

L + R ↔ LR and LR + R ↔ LRR instead of L + R ↔ LR and 
LR + A ↔ LRA.

Therefore, similar results could be obtained because both
have kinetic similarity. The signal transduction that is
deactivated by the binding of other membrane compo-
nents to ligand-receptor complexes shows similar kinetics
to the model 9 using the component instead of E* with-
out P15.

Previous examinations of signal transfer pathways with
the aid of computer simulations theoretically supported
the negative feedback control of signal transfer observed
experimentally [8-10], but its physiological meaning
remained unclear. The present results clearly demonstrate
that negative feedback regulation is required to promote
the termination of a signal transfer system. The present
simulation also suggests that negative feedback regulation
of the first cytosolic signal protein is the most effective
pathway. Experimental results have shown that the early
steps of signal pathways are regulated in a negative feed-
back manner in many cases [31-36]. Other experimental
studies revealed that the activation levels of signal pro-
teins at the steady-state stage are very low [2-7], leading us
to debate the physiological significance of such a low level
of activation. The present simulation results have shown
that a low activation level of signal proteins at the steady-
state stage is of physiological importance for cellular sign-
aling.

It has been proposed that negative feedback regulation
represses fluctuations in signal transduction [10]. How-
ever, our present data revealed that the activation of signal
proteins was not significantly stabilized by negative feed-
back regulation under our conditions (Figure 3 and 4).

Most computer simulations of biological phenomena
have been performed with supercomputers using Unix
based operating systems. This may be the reason why
Monte Carlo techniques are still largely unavailable to
most researchers. In contrast, our simulations were carried
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Simulations of various types of negative feedback regulationFigure 4
Simulations of various types of negative feedback regulation. The simulations were carried out as described in the leg-
end of Figure 3. For detailed models, see the text. Three simulation results are represented.
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out on a conventional personal computer using the Win-
dows XP or 2000 operating systems. The simulated values
of diffusion coefficients and kinetic parameters were con-
sistent with experimental data from literatures, demon-
strating that our Monte Carlo simulation procedure is
useful for kinetic analysis of cellular signal transduction.
Furthermore, our simulation program can be used by
other investigators for kinetic analysis of other biological
phenomena with minor modifications, and neither spe-
cial computing hardware nor special training is required.

Conclusion
The present kinetic analysis revealed that excess receptors
and negative feedback regulation promote activation and
cessation of signal transduction when ligand concentra-
tions are at a low physiological level.
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