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Abstract

Nck is a ubiquitously expressed adapter protein that is almost exclusively built of one SH2 domain
and three SH3 domains. The two isoproteins of Nck are functionally redundant in many aspects and
differ in only few amino acids that are mostly located in the linker regions between the interaction
modules. Nck proteins connect receptor and non-receptor tyrosine kinases to the machinery of
actin reorganisation. Thereby, Nck regulates activation-dependent processes during cell
polarisation and migration and plays a crucial role in the signal transduction of a variety of
receptors including for instance PDGF-, HGF-, VEGF- and Ephrin receptors. In most cases, the SH2
domain mediates binding to the phosphorylated receptor or associated phosphoproteins, while
SH3 domain interactions lead to the formation of larger protein complexes. In T lymphocytes, Nck
plays a pivotal role in the T cell receptor (TCR)-induced reorganisation of the actin cytoskeleton
and the formation of the immunological synapse. However, in this context, two different
mechanisms and adapter complexes are discussed. In the first scenario, dependent on an activation-
induced conformational change in the CD3¢ subunits, a direct binding of Nck to components of the
TCR/CD3 complex was shown. In the second scenario, Nck is recruited to the TCR complex via
phosphorylated SIp76, another central constituent of the membrane proximal activation complex.
Over the past years, a large number of putative Nck interactors have been identified in different
cellular systems that point to diverse additional functions of the adapter protein, e.g. in the control
of gene expression and proliferation.

The Nck family of adapter proteins

Nck (non-catalytic region of tyrosine kinase) proteins are
adapter proteins of 47 kDa that are almost exclusively
built of one SH2 domain and three SH3 domains (Fig. 1)
[1]. In human cells, the Nck family comprises two
members (Nckl/Ncko and Nck2/NckP, also termed
Grb4). The human nckl gene has been localised to the
locus 3q21 of chromosome 3 and the nck2 gene to 2q12
of chromosome 2. Nck1 and Nck2 display 68% identity at
the amino acid level. Notably, the largest differences are
mainly located in the linker regions between the

interaction modules. Moreover, Nckl and Nck2 are to
some extent functionally redundant and neither Nck1 nor
Nck2 knock-out mice exhibit an apparent phenotype
whereas double knock-out mice die in utero [2]. Never-
theless, some studies provided evidence for non-over-
lapping functions of Nck1 and Nck2 in certain cell types,
including for example an exclusive regulation of actin
polymerization in response to platelet-derived growth
factor (PDGF) and epidermal growth factor (EGF)
treatment by Nck2 in fibroblasts and breast carcinoma
cells (MTLn3) [3, 4]. Moreover, the SH2 domain of Nck2
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Figure |

Modular composition of Nck adapter proteins. Nck
adapters are proteins of 47 kDa that are built of three SH3
domains and a C-terminal SH2 domain linked by small spacer
regions. Nckl| displays 68% amino acid identity to Nck2. As
indicated in the figure, the differences are mainly located in
the linker regions between the interaction modules, whereas
the individual SH2 and SH3 domains show a high degree of
homology. Modular domains of Nckl (NP_006140) and
Nck2 (AAHO07195) have been assigned using the simple
modular architecture research tool SMART http://smart.
embl-heidelberg.de. The sequence homology between the
interaction modules and the linker regions was determined
using the SIM alignment tool for protein sequences http://
www.expasy.ch/tools/sim-prot.html. Percent values indicate
the degree of identity of the respective regions.

but not of Nckl interacts with the docking protein
Disabled-1 [5]. In terms of more general functions, only
Nck2 has been implicated in the control of neuritogenesis
[6]. However, hardly any Nckl- or Nck2-specific down-
stream target has been identified so far. In fact, in many
instances the interactions have not been clearly attributed
to Nckl or Nck2. Mostly, interactions proposed for one
Nck variant have not been tested with the respective other
isoprotein. In essence, the published data are somewhat
inconsistent regarding the question as to whether Nck1
and Nck2 binding partners overlap or rather diverge.
Therefore, in the following, Nck1 and Nck2 are generally
termed Nck, but readers should keep in mind that the
described functions/interaction partners are not necessa-
rily attributed to both isoproteins. Systematic studies are
still needed to shed light on common or distinct binding
partners and functions of Nck1 and Nck2.

Nck interaction partners and functional
implications

Being a prototypic adapter protein, the modular archi-
tecture of Nck allows for numerous protein-protein
interactions. Over the past years, more than 60 interac-
tion partners have been described in different cellular
systems (listed in tables 1 and 2 and reviewed in [1, 7]).
This short review does not discuss all potential interac-
tions but rather highlights some selected examples to
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Table I: SH2 domain interaction partners of Nck

Protein Reference
A36R viral protein [131]
Ack [132]
Ber-Abl [109]
B-Dystroglycan [133]
BLNK [134]
Cas-L [135]
Caveolin-2 [136]
Disabled-1 [5]
Dokl [137]
Dok2 [138, 139]
EGFR [8]
EphBI (receptor for Ephrin Bl) [17]
Ephrin Bl (EphBI ligand) [27]
FAK [116]
Gitl [22]
Git2 [23]
HGFR [16]
IRS-1 [140]
IRS-3 [141]
Nephrin [24, 25]
P130Cas [142]
PDGFR [8]
RET [143]
SIp76 [26]
SOCS3 [144]
Tir (bacterial protein) [145]
TrkB [146]
VEGFRI [1]
VEGFR2 [10]

point to the diversity of processes that Nck adapters
are involved in.

SH2 domain

Src homology 2 (SH2) domains are modules that
comprise about 100 amino acids and interact with
phosphorylated tyrosine residues. Specificity is guided
by the amino acids surrounding the phosphotyrosine
(pY). Over the past years, Nck was shown to bind to
several tyrosine-phosphorylated proteins via its SH2
domain. Thus, Nck isoproteins associate with activated
receptor-tyrosine kinases such as the EGF receptor
(EGFR) [8, 9], vascular endothelial growth factor
receptor (VEGFR) [10-13], PDGF receptor (PDGFR) [3,
14, 15], hepatocyte growth factor receptor (HGFR) [16],
and with the Ephrin receptor EphB1 [17, 18]. Also via its
SH2 domain, Nck may associate with Dok (downstream
of kinase signaling) proteins which seem to play a
negative regulatory role in tyrosine kinase signaling
[19-21]. Moreover, Nck interacts with Gitl (G protein-
coupled receptor kinase interactor) [22] and Git2 [23],
two ADP ribosylation factor GTPase activating proteins
(Arf GAPs) that are functionally associated with cell
attachment, spreading and motility. Via binding to
phosphorylated nephrin, Nck coordinates cytoskeletal
dynamics to establish intercellular junctional
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Table 2: SH3 domain interaction partners of Nck

Protein Reference
Abl [107]
Ackl [108]
ADAMI5 [33]
Ber-Abl [109]
Casein kinase | (y2) [110]
Cbl [26, I11]
CD3e [34]
DCC [112]
DOCKI180 [113]
Dopamine D4 receptor [114]
Dynamin [1o1]
elF2 [105]
FAK [I15, 116]
FasL [90, 91]
GC-NAP [17]
hnRNPx [118]
HPKI [119]
IRS-1 [120]
NAPIBP [121]
NckAPI [122]
NIK [123]
N-WASP [47]
PAKI [73]
PAK3 [124]
PINCH [125]
PRK2 [126]
RalGPS [127]
R-Ras [102]
Samé68 [95]
SOCSs7 [93]
Sos [99]
Synaptojanin [118]
TBKI [128]
TNIK [129]
WASP [30]
WIP 31
YAP65 [130]

Only in a few studies, interactions have been mapped to individual SH3
domains. In fact, several studies do not attribute a given interaction to
an individual SH3 domain. Moreover, SH3 domains which do not
contribute to a direct interaction might well influence binding in a
cooperative manner. Thus, the reader is encouraged to consult the
cited literature for further information on the Nck interacting protein
of interest.

architecture in kidney podocytes [24, 25]. The SH2-
mediated interaction with Slp76 (SH2 domain-contain-
ing leukocyte protein of 76 kDa) [26] seems prerequisite
for the important adapter function of Nck in T cells (see
below).

It was suggested that the SH2 domains of Nck1 and Nck2
differ with respect to their binding properties, especially
since some non-overlapping functions have been
observed [3, 4, 6]. In case of the PDGFR, the phospho-
tyrosine residue pY751 was reported to be Nck1-specific
[14], whereas pY1009 was Nck2-specific [3]. Moreover,
only Nck2 associates with tyrosine-phosphorylated
Disabled-1, an important adapter protein involved in

http://www.biosignaling.com/content/7/1/1

brain cell positioning during development [5]. Likewise,
phosphorylated ephrin B1 (the ligand for EphB1) seems
to associate with the SH2 domain of Nck2 but not with
the Nckl SH2 domain [27]. However, recent reports
providing structural insight into the Nck1 and Nck2 SH2
domains indicate that both binding modules are more or
less indistinguishable with respect to their binding
specificities and both recognize the consensus motif
pYDxV(AYST)x(DEC) [22]. The few differences in ligand
binding described so far might therefore rely on other
parts of the Nck molecule. Similar intramolecular
interactions that modulate SH2-mediated target recogni-
tion have been found to alter the affinity between Gads/
SIp76 and LAT [28]. In addition, it was also speculated
that SH2 interactions may be modulated by adjacent
SH3 domains and/or by the variable linker loops that
connect the individual binding domains in a given
protein. However, such intramolecular effects would
probably only mildly affect the overall pattern of
binding partners of Nckl and Nck2, but rather modulate
the affinity of a given interaction.

SH3 domains

SH3 domains are globular modules of about 50-60
amino acids which mediate a rather constitutive binding
to proline-rich motifs in corresponding target proteins.
In many cases, interaction partners for individual SH3
domains have been identified, e.g. by pull down assays.
Also for the individual SH3 domains of Nck, several
associated proteins have been named (Table 2). Notably,
in such assays, the identified interaction partners exhibit
a clear preference for individual SH3 domains [1, 7].
Thus, the observation that several Nck ligands bind to
more than one SH3 domain of Nck suggests that a
cooperative interaction is necessary for tight complex
formation [29]. Nck utilizes the specificity of its
individual SH3 domains to facilitate multiple interac-
tions with different binding partners. Many of these
binding partners are functionally associated with the
regulation of the actin cytoskeleton including for
example the (neuronal) Wiskott-Aldrich Syndrome
protein ((N-)WASP) [30] and the WASP interacting
protein (WIP) [31]. It is well established that the
multidomain adapter protein WASP activates the Arp2/
3 (actin-related proteins 2/3) complex that finally
induces the formation of branched actin filament
networks [32]. Thus, Nck links receptor-induced activa-
tion signals to key regulators of the actin cytoskeleton.

Other interaction partners including for example the Son
of Sevenless homologue (Sos) and the Src-activated
during mitosis protein (Sam68) indicate distinct roles of
Nck in the control of cellular signaling, gene expression
and proliferation [1, 7]. Moreover, Nck binding to
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certain splice variants of the "a disintegrin and metallo-
protease" ADAM15 points to a role of Nck in malignancy
since these variants are selectively increased in breast
cancer cells [33]. The association of the SH3-1 domain
with a proline-rich stretch in the CD3g subunit of the
T cell receptor (TCR) once more points to an important
role of Nck in TCR signaling (see below) [34].

Recent studies of the structural properties of individual
SH3 domains provided more insight into the ligand
binding preferences and specificities of the Nckl1-1
(being the first and most N-terminal SH3 domain of
Nck1), Nck1-2, Nck2-2 and Nck2-3 SH3 domains [35,
36]. Although the two analyzed SH3 domains of Nckl
adopt the five-stranded B-barrel fold typical of SH3
domains, they differ with respect to the electrostatic
potentials of their surfaces. Whereas the Nck1-2 SH3
domain possesses a neutral and a highly negatively
charged region (and thus resembles the Nck2-3 SH3
domain in this respect), the Nck1-1 SH3 domain exhibits
a significantly weaker negative charge [35, 36]. The
structures of the Nck1-3 and the Nck2-1 (insoluble) SH3
domain have not been solved at high resolution yet.
However, the data obtained so far clearly underscore the
functional relatedness of the two isoproteins and the
individual properties of the single SH3 domains that
account for the observed differences in ligand binding.

Interestingly, only very recently it was described that Nck
might also associate with the inactive form of the
dsRNA-activated protein kinase PKR (see below). How-
ever, this novel type of interaction seems to be
independent of the Src homology domains and thus
offers a first indication for further potential protein-
protein interactions of Nck [37].

Nck and T cell effector function

Actin reorganisation in T cell activation

T cells play a central role in adaptive immunity by
enhancing or suppressing immune responses through
cytokine secretion or by eliminating virus-infected or
transformed cells. T cell activation and effector function
is tightly controlled and relies on fairly stable cell-cell
contacts especially during primary activation and com-
munication with antigen-presenting cells (APCs). Once a
T cell encounters its specific antigen on an APC in the
lymph nodes or spleen in an appropriate MHC context,
it rapidly reorients its cellular organelles to the contact
area in a process accompanied by complex structural and
cytoskeletal changes. The primary antigenic stimulation
ultimately results in cell cycle progression and clonal
expansion. The T cells leave the lymphoid tissue and
search the periphery for infected or transformed cells
carrying their cognate antigen. Upon recognition of a
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target cell, the T cell again reorients its cellular content to
the intercellular contact zone. In this case, the secondary
stimulation results in a polarized secretion of meanwhile
matured cytolytic granules and/or cytokines into the
organized intracellular cleft (reviewed in [38, 39]).
Despite the complex architecture of the established
cellular contacts, cell-mediated cytotoxicity is a highly
dynamic process. A single T cell can eliminate multiple
targets consecutively, rapidly rearrange established con-
tacts and even form stimulatory and lytic synapses
simultaneously [40, 41]. Obviously, several independent
but coordinated cellular processes contribute to T cell
activation and effector function. These include an
integrin-mediated adhesion and contact stabilisation,
the formation of an immunological synapse (IS) with
defined central and peripheral signaling platforms, and
the establishment of a threshold-dependent cell polarity
for the directed secretion of cytokines and lytic granules.
It is clear that all these processes are strictly dependent
on rapid dynamic changes of the lymphocyte cytoskele-
ton. Accordingly, engagement of the TCR activates
multiple actin-regulatory proteins that work in concert
to drive actin polymerization at the IS [39, 42].

At the molecular level, TCR ligation results in the
activation of the T cell-specific Src-type kinases Fyn and
Lck which phosphorylate the crucial immunoreceptor
tyrosine-based activation motifs (ITAMs) within the
TCR-associated CD3-chains to serve as docking-sites for
the two SH2 domains of the Syk-type kinase ZAP70 (zeta
chain-associated protein of 70 kDa). Activated ZAP70
phosphorylates an array of key regulators of the
membrane-proximal activation complex including the
linker for the activation of T cells (LAT). As a
transmembrane adapter protein, LAT couples upstream
signaling of Lck/ZAP70 to downstream signaling events
including calcium flux, phosphatidylinositol turnover
and Ras activation. The adapter protein Gads (Grb2-like
adapter downstream of Shc) binds phosphorylated LAT
and subsequently recruits the scaffold protein SIp76 to
the activation complex [43-45]. Upon phosphorylation
by ZAP70, Slp76 binds the crucial guanine nucleotide
exchange factor Vav and Vav in turn activates the Rho
family GTPases Cdc42 and Rac. Rho family GTPases
consist of Rac, Cdc42 and Rho, small G proteins
activated by GEFs such as Vav and localized to the cell
membrane by prenylation. In their activated form, Rho
GTPases facilitate the regulation of actin filament
formation through effector proteins such as actin-related
proteins 2/3 (Arp2/3) and WASP family members
(reviewed in [39, 42]). The WASP family includes five
proteins: WASP, N-WASP, WAVE1, WAVE2 and WAVE3.
The expression of WASP is restricted to hematopoietic
tissues whereas N-WASP and WAVE 2 are ubiquitously
expressed. WAVE1 and WAVE3 are enriched in the brain
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but are also expressed throughout the mammalian body.
The main function of the multidomain adapter protein
WASP is the activation of the Arp2/3 complex that finally
leads to the formation of branched actin filament
networks. WASP is controlled by autoinhibition and is
activated by binding to Cdc42 via its GTPase-binding
domain. Activity can be further enhanced by phosphoi-
nositides binding to a basic region of the WASP
molecule. Interactions with proteins like WIP, intersectin
or Grb2 and also phosphorylation by Src kinases have
also been reported to affect WASP activity. However, in
most cases, the precise molecular mechanisms are only
poorly understood [32, 46]. Since Nck not only passively
interacts with WASP and could thus recruit WASP to
molecular activation clusters [30], but also somehow
modulates WASP activity [47], it was believed that this
adapter protein also plays an essential role in the
regulated activation-dependent reorganization of TCR-
associated signaling complexes and platforms.

Nck and TCR signaling: SIp76 and/or CD3¢

Although Nck is unanimously regarded as a linker
between the TCR and the cytoskeleton, it is still a matter
of debate, how exactly Nck associates with activation
clusters around the TCR/CD3 complex. As mentioned,
Nck has been shown to bind phosphorylated Slp76 via
its SH2 domain and to recruit WASP via SH3-mediated
interactions. In this scenario, Slp76 functions as a
scaffold bringing Nck and WASP into proximity with
Vavl and Cdc42-GTP (Fig. 2) [26, 48, 49]. Of note, the
involved proteins do not necessarily need to be present
in a single complex. Instead separate tools may exist in
the cells, e.g. distinct molecules of Slp76 may associate
with either Vav or Nck.

Gil and coworkers, however, proposed that Nck directly
binds to a proline-rich sequence (PRS) within the CD3¢g
chain that only gets available due to a conformational
change upon TCR ligation. This association is mediated
by the SH3-1 domain and it precedes tyrosine phos-
phorylation. The stable overexpression of Nck SH3-1-
EGFP negatively modulated cell spreading, IL-2-release
and synapse formation/maturation in Jurkat cells, pre-
sumably by preventing the association of endogenous
Nck with CD3e. However, in this experimental setting,
the overexpressed SH3-1 domain may also block the
interaction of Nck with other binding partners besides
CD3¢. Moreover, transduction of peripheral blood
mononuclear cells with an antibody binding near the
CD3e-PRS (mAb APA1.1) decreased proliferation after
TCR ligation compared to control-transduced cells, at
least underscoring the role of the CD3¢-PRS. The authors
proposed that the recruitment of Nck and associated
regulatory proteins such as WASP, WIP or Pakl to CD3e
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actin D
polymerisation

Figure 2

TCR-induced actin-reorganization: Nck binding to
phosphorylated SIp76. T cell activation is initiated by
antigen-presenting cells (APCs) containing stimulatory MHC-
peptide complexes. Src family protein tyrosine kinases
mediate phosphorylation of TCR associated ITAMs thereby
creating docking sites for the Syk-type kinase ZAP70. After
activation by Src kinases, ZAP70 phosphorylates LAT. LAT
contains nine tyrosine residues which, when phosphorylated,
act as docking sites for adaptor proteins such as Grb2 and
Gads. SIp76 is recruited to the membrane-proximal
activation complex through its interaction with the SH3
domains of LAT-associated Gads. Phosphorylated Slp76
associates with the SH2 domain of Nck. Nck then recruits
the multidomain adapter protein WASP. The GEF Vav, which
is also recruited by SIp76, promotes the GTP-loading of the
small Rho-GTPase Cdc42 that is critically involved in WASP
activation. WASP then activates the Arp2/3 complex that
initiates the formation of branched actin filament networks.

displays an alternative means to link T cell activation to
the cytoskeleton independent of preceding tyrosine
phosphorylation [34]. However, the functional relevance
of this interaction was questioned when Barda-Saad and
colleagues showed that the TCR-induced tyrosine phos-
phorylation of LAT and Slp76 is indispensable for the
recruitment of Nck and WASP to induce actin polymer-
ization [48].

In addition, in a retrogenic approach, T cells expressing
CD3¢ with a mutated proline-rich sequence (PRS) on a
CD3e-null background developed normally. Although
the binding of Nck to CD3¢ was completely abrogated,
there was no apparent defect in positive or negative
selection. Furthermore, the proliferative response of
T cells to staphylococcal enterotoxin B and to anti-CD3
mAb was normal, indicating that the interaction of CD3¢g
with Nck (and/or other SH3 domain containing pro-
teins) might not be essential for T cell development and
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T cell responses to strong antigens [50]. However, it was
more recently shown that TCR crosslinking and the
conformational change in the CD3¢ subunit seem to be
required for full tyrosine phosphorylation of different
downstream effectors [51] and that the conformational
change is also transmitted to the cytoplasmic tails of the
other CD3 subunits that close up to form a compact
structure that allows for Nck binding [52].

In an earlier study, Risueno and colleagues could
demonstrate that the conformational change within
CD3¢ is also elicited in vivo in the lymph nodes of
mice after antigen exposure. Employing the mAb
APA1.1, that recognizes an epitope within the activa-
tion-dependently exposed region of CD3g, they further
showed that the conformational change depends on the
strength of the used agonist [53]. Moreover, using this
mAb, the conformational change could be clearly
observed in situ in double-positive thymocytes. These
were predominantly located in the cortex and the
corticomedullar junction in close contact with epithelial
and dendritic cells indicating a specific role of the CD3¢
cytoplasmic tail in thymocyte selection [54].

In another experimental setting using naive and differ-
entiated murine CD8" T cells, strong MHC (major
histocompatibility complex) agonists triggered cytokine
release in both cell types whereas weak agonists, only
affected differentiated cells. In this scenario, the respon-
siveness correlated with the ability of the agonist to elicit
a CD3g conformational change as measured by the
ability of CD3e to bind Nck. The mutation of the CD3¢
proline motif and the ITAM significantly impaired the
response to weak antigens in differentiated cells [55].
Interestingly, in this context, Nck binds to an uncom-
mon PxxDY motif that encompasses the ITAM of CD3¢
[56] and proline point mutations abrogate CD3g ITAM
phosphorylation [55]. This might indicate that the CD3¢
motif serves to amplify low-avidity TCR signals by
promoting ITAM phosphorylation and subsequently
protein kinase C ® (PKC®) recruitment and synapse
formation in at least certain clonotypes of differentiated
CD8" T cells. Thus, this mechanism could contribute to
the higher relative sensitivity of effector T cells.

Notably, Src kinase (Lck)-mediated phosphorylation of
the tyrosine residue (Y166), which is shared by the ITAM
and the PxxDY motif, seems to be required for the
recruitment of the tandem SH2 cassettes of ZAP70,
which in turn forms one of the most crucial early events
in T cell activation. Conversely, tyrosine phosphoryla-
tion of the PxxDY motif abolishes Nck binding,
indicating that Y166 might serve as a molecular switch
to determine whether CD3¢ is competent for SH3 or SH2
binding. This, however, would suggest that Nck binding
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to CD3¢ might rather be transient and lost before ZAP70
binding takes place [56]. Therefore, in a hypothetical
model, the binding of Nck to the exposed PxxDY via its
first SH3 domain allows the recruitment of other
signaling molecules containing proline-rich sequences
or phosphotyrosine residues via the second and/or third
SH3 or the SH2 domain, respectively. In turn, the
phosphorylation of CD3e¢ would at the same time
facilitate the binding of ZAP70 and the dissociation of
Nck [55].

In strong contrast, another report indicates that Nck
binding to PxxDY might rather inhibit a subsequent
phosphorylation of Y166 by Fyn and Lck [57]. However,
this was concluded from the structure of the Nck2 SH3-
1/CD3e complex and experimentally demonstrated by
the ability of the SH3-1 domain of Nck2 to block the
tyrosine phosphorylation of a CD3¢ peptide (aa 143-
183) by recombinant Fyn (and Lck) in an in vitro
phosphorylation assay. Moreover, in this study, Nck has
been implicated in negative modulation of TCR surface
expression [57]. Accordingly, the PxxDY motif encom-
passes a putative internalization motif (YxxI/L), albeit
this sequence has been described to behave only as a
weak internalization signal in the first report of CD3g
endocytosis [58]. Nevertheless, overexpression of Nck
led to a decrease in TCR surface expression while
overexpression of a Nck SH3-1 mutant affected TCR
surface expression to a lesser degree [57].

A recent study employing a highly sophisticated mouse
model clarified some of the conflicting results described
before [59]. The authors established a knock-in mouse
where the critical CD3¢ motif was replaced by another
sequence naturally occupying an analogous sequence in the
cytoplasmic tail of FceR1y to assure an unaltered distance of
the CD3¢ ITAM from the membrane and the neighbouring
CD3 subunits. Surprisingly, they observed a constitutive
association of the first Nck SH3 domain with CD3g in
freshly isolated thymocytes and mature T cells. This
association was, however, further enhanced upon stimula-
tion. Moreover, TCR surface expression in double-positive
thymocytes was increased due to a reduced SLAP- (Src-like
adapter protein-) dependent degradation of CD3(. In
double-positive thymocytes, activated Lck initiates a signal-
ing cascade that involves phosphorylation of the CD3(
subunit of the TCR complex and results in the recruitment of
SLAP. SLAP functions as an adapter to target the E3
ubiquitin ligase activity of c-Cbl to phosphorylated CD3(
chains present in the fully assembled TCR for degradation
[60-64]. As a consequence, fewer TCR complexes recycle
back to the surface and TCR expression on double-positive
thymocytes is thus significantly lower than on mature T cells
[65]. Thus, during preselection of double-positive cells, the
CD3e PRS might recruit Lck via Nck to control the
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phosphorylation of nearby CD3( subunits and SLAP-
dependent degradation of the TCR. However, a direct
interaction of Nck with Lck has not been demonstrated yet.
On the other hand, the CD3&*"®/APRS double-positive cells
showed a decreased responsiveness to weak self pMHC
agonists compared to wild-type double-positive cells,
indicating that the CD3g PRS enhances the signaling
capability, an effect also observed in previous studies [53,
55]. Also in this study, the CD3¢ PRS was dispensable for the
response to strong antigens. The authors suggest that by
associating with the CD3¢ PRS, Lck molecules would be pre-
coupled to the TCR complex and might thus confer higher
signaling competence to weak antigens whereas the PRS is
dispensable when stimulated with strong antigens. Such a
model would at least in part explain the observed ability of
double-positive cells to respond to weak antigens. Thus, the
CD3¢ PRS obviously negatively modulates the sensitivity of
double-positive cells by downregulating cell surface TCR
and at the same time enhances their sensitivity to weak
antigens. The authors suggest an appealing explanation for
this in the first view apparent discrepancy taking into
account the peculiar features of double-positive thymocytes
during T cell development (Fig. 3). CD4" CD8"double-
positive cells undergo TCRo. gene rearrangements and only a

TCR sampling

positive selection

Figure 3

Suggested model for the function of the CD3¢ PRS in
double-positive thymocytes. (A) Nck associates with
CD3¢ in the absence of pMHC and recruits Lck, which
phosphorylates TCRL. Subsequently, phosphorylated TCR{
recruits SLAP, and SLAP-associated c-Cbl ubiquitinates (Ub)
TCRCE. This leads to the degradation of TCR( and thus
increases the TCR sampling rate. (B) pMHC-mediated
ligation of the TCR results in more complete
phosphorylation of the CD3 ITAMS. In this context, the
interaction of CD3g-bound Nck with Lck may be necessary
to prime the system and allow CD4 coreceptor-dependent
Lck to initiate a full activation response with phosphorylation
of the CD3¢ ITAMS. This results in the recruitment of
ZAP70, the dissociation of Nck and SLAP and thus the
stabilization of TCR surface expression. (Figure accords with
models suggested in [59]).
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few double-positive cells that express an oy TCR capable of
low-affinity interactions with self peptides bound to MHC
molecules mature into single-positive cells during positive
selection. Double-positive cells that fail to recognize self
PMHC complexes undergo apoptosis as well as double- and
single-positive cells that bind self-antigens with high
affinity. Physiologically, the CD3¢ PRS and SLAP may act
together to decrease the pool of cycling TCRs present in
double-positive cells and thus increase the sampling rate of
new TCRa chains that are sequentially synthesized. How-
ever, to permit positive selection of some of the TCR
complexes that are present on the cell surface with low copy
number, the CD3¢ concurrently increases the signaling
output (Fig. 3A). Finally, positive selection and subsequent
ITAM phosphorylation might allow binding of ZAP70
thereby replacing Nck and SLAP and preventing further
SLAP/CD3¢ PRS-dependent degradation of TCR/CD3 com-
plexes (Fig. 3B). This would result in the rapid upregulation
of TCR surface expression associated with the transition of
double-positive cells to single-positive thymocytes. How-
ever, such a potentially elegant mechanism has not yet been
experimentally confirmed in detail.

Nck and p2I-activated kinases (PAKs)

Upon TCR ligation, two p21-activated kinases (PAK1
and PAK2) are activated [66-69]. In non-lymphoid cells,
PAK has been linked to various events associated with
cytoskeletal dynamics [70]. PAK activation contributes to
TCR-induced Erk activation, calcium flux and the NFAT
transcriptional response [67-69], although the precise
mechanism of PAK activation in T cells is still elusive.
Clearly, PAK requires Lck and ZAP70 for activation [67,
71]. Moreover, the interaction with the active forms of
the Rho GTPases Racl and Cdc42 also facilitates PAK
activation. Several lines of evidence suggest that Nck
recruits PAK to the plasma membrane in response to
growth factors including EGF and PDGEF. In this scenario,
Nck associates with autophosphorylated tyrosine kinase
receptors via its SH2 domain and binds to the first
proline-rich region at the N-terminus of PAK via its
second SH3 domain [72, 73]. In T cells, a pathway
involving LAT, SIp76, Nck and Vav was suggested to
mediate recruitment and activation of PAK [49]. How-
ever, there is also evidence for an alternative pathway,
since a PAK mutant (not able to interact with Nck) can
still be activated [71]. PAK also interacts with the
guanine nucleotide exchange factor Pix (Pak-interacting
exchange factor) and the Arf GAP Git in a trimolecular
complex [71]. Pix has been identified as a GEF for Racl
and Cdc42 [74, 75]. Pix itself interacts with the Git
family proteins Gitl and Git2 which in turn interact with
multiple other proteins including focal adhesion com-
plex proteins as FAK (focal adhesion kinase) and paxillin
[76, 77]. This PAK1/Pix/Gitl complex is rapidly recruited
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to the T cell/APC contact site independent of Slp76 and
Vavl. Moreover, this complex may be crucial for PAK
activation by recruiting it to the immunological synapse.
Altered membrane localization and thus an increase in
local concentration has been shown to be crucial for PAK
activation [78, 79]. In this scenario, the PAK/Pix/Git
complex is presumably recruited to the IS via integrins,
as Git interacts with paxillin, an important adapter
protein in integrin signaling [80]. Of note, since PAK
activation initially also requires Lck and ZAP70 but
within the PAK/Pix/Git complex seems to be indepen-
dent of Nck, Slp76 and LAT, this may represent a
very early event in TCR signaling. As the PAK/Pix/Git
complex translocates to the site of intercellular contact
within 1-3 minutes [81], PAK activation might thus be
involved in the early phase of initial contact and target
cell recognition. However, as recent data indicate that
Nck interacts with Gitl [22] and Git2 [23], Nck might be
also involved in the LAT, SLp76 and Vav-independent
activation of PAK.

Nck and SLAM-associated protein (SAP)

Costimulatory immunoreceptors of the SLAM (signaling
lymphocyte activation molecule) family are functionally
associated with TH2 cell priming, memory B cell
generation, antibody production, activation of natural
killer (NK) cells and NKT cell development. They
mediate their effects through interactions with members
of the SAP (Slam-associated protein) family (reviewed in
[82]). SAP mediates the recruitment of the Src kinase Fyn
to SLAM. SAP is a small cytosolic protein composed of a
single SH2 domain and a 28 aa C-terminal tail. Deletion
or mutation of SAP causes the X-linked lymphoproli-
ferative syndrome characterized by reduced NK and CTL
activity as well as decreased B cell function and impaired
NKT cell development. Interestingly, the SAP SH2
domain binds to the SH3 domain of Fyn and simulta-
neously to Y281 of SLAM in a phosphorylation-
independent manner. This not only recruits Fyn to
SLAM, but also activates its kinase activity enabling the
intense phosphorylation of SLAM, the recruitment of
further downstream proteins and thus propagates
signaling [82-86]. Recently, Nck has been shown to
interact with SAP via its second SH3 domain, but affinity
was greatly enhanced when the third SH3 domain was
also present. Interestingly, SAP depletion attenuated
Slp76 and Nckl phosphorylation whereas SAP over-
expression enhanced Slp76 phosphorylation. In accor-
dance with the well-established role of Nck in initiating
activation-induced actin reorganisation in T cells, the
depletion of SAP resulted in decreased actin polymeriza-
tion. Moreover, SAP depletion was also accompanied by
a decrease in LAT phosphorylation, Erk activation and
cell proliferation, highlighting the role of SAP in T cell

http://www.biosignaling.com/content/7/1/1

Nck overlay/light

Figure 4

Subcellular localization of Nck and the death factor
FasL in conjugates of Jurkat T cells and EBV-
transformed B-LCL. Upon target cell recognition the
death factor FasL is transported to the cytotoxic
immunological synapse where it colocalizes with Nck. Jurkat
T cells were transiently transfected with FasL, cocultured
with superantigen-pulsed B-LCL (*, B lymphoblastoid cell
line)), fixed, permeabilized and stained for FasL with anti-
FasL mAb NOK-I and respective AlexaFluor488-conjugated
secondary antibodies and for Nck with an anti-Nck pAb and
corresponding AlexaFluor546-conjugated secondary
reagents.

activation. Of note, the exact role of its interaction with
Nck1 in this context has to be elucidated. Similar to Nck,
also SAP interacts with Pix [87] and could thus also
regulate the formation of a PAK/Pix/Nck complex.

Nck and FasL

Nck has also been functionally associated with the death
factor Fas ligand (FasL). The FasL is a type-2-transmem-
brane protein belonging to the tumor necrosis factor
(TNF) family of death factors. In cytotoxic T and NK
cells, FasL is stored in association with so-called secretory
lysosomes to avoid unwanted damage. Only upon
recognition of a target cell, these vesicles are transported
to the site of intercellular contact, thus releasing
cytotoxic molecules into the synapse and exposing FasL
locally on the plasma membrane [88, 89]. Nck interacts
with an extended proline-rich stretch within the cyto-
plasmic part of the FasL via its second and third SH3
domain [90, 91] and is critically involved in the
recruitment of FasL and/or its storage granules to the
cytotoxic immunological synapse (Fig. 4) [90].

Other aspects of Nck biology: nuclear
localization of Nck, cell-cycle arrest and
inhibition of translation

Only very recently, Nck has been described to translocate
to the nucleus upon cellular stress [92]. In this scenario,
the Nck-interacting protein SOCS7 [93, 94| (that in
contrast to Nck contains a NLS/NES) regulates the
nucleocytoplasmic distribution of Nck. Septins in turn
bind to SOCS7 and this interaction retains both SOCS7
and Nck in the cytoplasm. Following DNA damage, both
proteins accumulate in the nucleus. This accumulation is

Page 8 of 13

(page number not for citation purposes)



Cell Communication and Signaling 2009, 7:1

essential for morphological changes (e.g. the disintegra-
tion of stress fibers and loss of cell-polarity) and for the
activation of downstream members of the DNA damage
cascade and cell-cycle arrest. Thus, Nck somehow links a
DNA damage checkpoint to the actin cytoskeleton [92].
In this scenario, the depletion of Nck from the cytosol
presumably accounts for the observed effects rather than
a specific action within the nucleus. Nevertheless, it has
been shown, that the array of nuclear binding partners
significantly differs from cytosolic interactions [95].
However, only few nuclear Nck-interacting proteins
have been described so far.

Regarding such nuclear binding partners, Nck apparently
interacts with Sam68 [95]. Sam68 (Src activated during
mitosis) belongs to the STAR (signal transducers and
activators of RNA) family of RNA binding proteins
(reviewed in [96]). Sam68 has been functionally
associated with several aspects of RNA metabolism
including (regulated) splicing, regulation of RNA stabi-
lity and RNA transport/localization [96]. It contains
several proline-rich stretches enabling interactions with
SH3 domains. Furthermore, the C-terminal domain
contains several tyrosines that are subject to phosphor-
ylation by a variety of tyrosine kinases and then serve as
docking sites for SH2 domains. Both, the association
with binding partners and the observed tyrosine phos-
phorylation might negatively modulate the RNA binding
capability of Sam68 [96]. Furthermore, Sam68 contains
two nuclear localization sequences in its C-terminal part
and the nuclear localization of Sam68 seems to be
regulated by arginine methylation. Whereas hypomethy-
lated Sam638 is located in the cytoplasm, the methylated
form is predominantly found in the nucleus [97, 98].
Thus, Sam68 is an appealing molecule for transducing
information from signaling pathways to the RNA
machinery.

Interactions of Nck with Grb2, Sos [99-101] and R-Ras
[102] implicate that Nck might also be involved in Ras
activation and thus in cell proliferation in general.
Moreover, Nck participates in the cellular responses to
ER stress such as the inhibition of translation. In this
context, Nck is integrated into signaling pathways
regulating elF2a. (eukaryotic initiation factor 20.) phos-
phorylation [103, 104], providing a common mechan-
ism to downregulate protein synthesis in stressed cells.
Upon overexpression, Nck increases protein translation
[105] and impairs elF2o. phosphorylation and thus
stress-induced attenuation of translation [37]. Mechan-
istically, Nck directly interacts with the -subunit of the
initiation factor elF2 via its first and third SH3 domains
[105] and participates in the assembly of a complex
containing the serine/threonine protein phosphatase 1c
(PP1c) and thus promotes elF2o. dephosphorylation

http://www.biosignaling.com/content/7/1/1

[103, 106]. Moreover, Nck complexes with the elF2a.
kinase PKR and thus interferes with PKR activity. Again,
the precise molecular mechanism of this inhibition is
not yet clear. Taken together, Nck adapters are not only
employed in various cell conditions but also by different
cellular compartments to generate or modulate specific
cellular responses.

Conclusion

Over the past years, many different interaction partners
of Nck adapter proteins have been described (as
summarized in Tables 1 and 2[107-146]). Accordingly,
Nck has been associated with a plethora of diverse
processes including for instance cellular activation,
motility, and effector function but also axon guidance
and neuritogenesis, glomerular filtration barrier in the
kidney, responses to DNA damage and cell stress and the
development of mesodermal structures during develop-
ment. Obviously, Nck plays an important role in the
T cell compartment, participating in different and
interdependent pathways of T cell activation and effector
function during different stages of T cell selection and
maturation. In agreement with its functional versatility,
the double knock-out of the Nck adapters Nckl and
Nck2 in mice results in early embryonic lethality,
whereas single knock-out mice have no apparent
phenotype. Although this indicates a functional redun-
dancy of the two isoproteins, some non-overlapping
functions have been described. Thus, systematic studies
are pending in order to clarify to which extent Nck
isoprotein interaction partners and functions overlap or
diverge in a given cellular system.

Abbreviations

ADAM: a disintegrin and metalloprotease; APC: antigen-
presenting cell; Arf: ADP ribosylation factor; Arp2/3:
actin-related proteins 2/3; Cbl: Casitas B-lineage lym-
phoma; CTL: cytotoxic T lymphocyte; Dok: downstream
of tyrosine kinase; EGF(R): epidermal growth factor
(receptor); elF: eukaryotic initiation factor; EphB1:
ephrin receptor B1; FasL: Fas ligand; FceR1y, Fc: (frag-
ment, crystalizable)-epsilon receptor 1 gamma chain;
GAP: GTPase-activating protein; GEF: GDP exchange
factor; Git: G protein-coupled receptor kinase interactor;
Grb2: growth factor receptor-bound protein 2; HGF(R):
hepatocyte growth factor (receptor); ITAM: immunor-
eceptor tyrosine-based activation motif; LAT: linker of
activated T cells; Lck: leukocyte-specific protein tyrosine
kinase; mAb: monoclonal antibody; (p)MHC: (peptide-
loaded) major histocompatibility complex; Nck: non-
catalytic region of tyrosine kinase; NES: nuclear export
signal; NFAT: nuclear factor of activated T cells; NK:
natural killer; NLS: nuclear localization signal; PAK: p21-
activated kinase; PDGF(R): platelet-derived growth
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factor (receptor); Pix: PAK-interacting exchange factor;
PKC: protein kinase C; PKR: protein kinase RNA-
activated; PRS: proline-rich sequence; Sam68: Src-acti-
vated during mitosis, 68 kDa; SAP: SLAM-associated
protein; SH: Src homology; SLAM: signaling lymphocyte
activation molecule; SLAP: Src-like adapter protein;
SIp76: SH2 domain-containing leukocyte protein of 76
kDa; SOCS: suppressor of cytokine signaling; Sos: son of
sevenless; TCR: T cell receptor; (N-)WASP: (neuronal)
Wiskott-Aldrich syndrome protein; WAVE: WASP family
verprolin homologous; WIP: WASP-interacting protein;
ZAP70: zeta chain-associated protein of 70 kDa.
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