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Abstract

Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members,
PAR;, PAR,, PAR;s and PAR,, playing critical functions in hemostasis, thrombosis, embryonic development, wound
healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving
receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of
amino-terminal “tethered ligand” domains that bind to and activate the cleaved receptors. After activation, the PAR
family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated
pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high
diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects.

In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and
their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of
receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like

\

receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we
discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease.

Proteinase-activated receptors (PARs)’ - a unique
family of G-protein coupled receptors

PARs comprise a class A G protein-coupled receptor
(GPCR) family with currently four members, PAR;,
PAR,, PAR; and PAR, [1,2] that mediate the cellular ef-
fects of proteinases (for reviews see: [3-7]). PAR;, PAR;
and PAR, are main targets for the coagulation enzyme
thrombin, but numerous other proteinases have been
shown to cleave and activate PAR; including factor Xa,
plasmin, kallikreins, activated protein C (APC), matrix
metalloproteinase-1 (MMP1), neutrophil elastase (NE),
and neutrophil proteinase-3 (PR3). As will be seen, this ac-
tivation can result from exposure of a variety of ‘tethered
ligands’ that, as summarized below, can drive a variety of
signalling pathways. PAR,, like PAR;, can also be activated
by many serine proteinases including trypsin, neutrophil
elastase, neutrophil proteinase 3, mast cell tryptase, tissue
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factor/factor Vlla/factor Xa, human kallikrein-related pep-
tidases (KLKs) and membrane-tethered serine proteinase-
1/matriptase 1 as well as by parasite cysteine proteinase,
but is insensitive to thrombin [6].

PARs exhibit an unusual activation mechanism

Although the PAR family members share basic structural
features of all GPCRs, including a central core domain
composed of seven transmembrane helices (TM-I
through TM-VII) connected by three intracellular (ill,
il2, and il3) and three extracellular loops (ell, el2, and
el3) [8], they exhibit a unique mechanism of proteolytic
activation. While most GPCRs are activated reversibly
by small hydrophilic molecules to elicit cellular re-
sponses [9], PAR activation by endogenous proteinases
involves the unmasking of an N-terminal ‘tethered
ligand’ (TL) that remains attached to the receptor and
cannot diffuse away [1-7]. Serine proteinases, such as
thrombin or trypsin, are able to cleave PARs 1, 2 and
4 at specific recognition sites in the extracellular
N-terminus (see Figure 1 for PAR; activation). The
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Figure 1 Model for activation of PAR;. The scheme illustrates activation of the intact receptor by distinct mechanisms involving either
proteolysis (left) or a synthetic PAR;-activating peptide (right): (A) proteolysis unmasks a tethered receptor-activating ligand (TL) sequence.

The classical ‘canonical’ PAR; TL sequence generated by thrombin is: SFLLRN—- [10]. Distinct ‘non-canonical’ receptor-activating TL sequences

are also generated by neutrophil proteinase-3 (PR3: TLDPR—-) [11], matrix metalloproteinase-1 (MMP1: PRSFLL—) [12,13], neutrophil elastase

(NE: RNPNDK—) [11], and activated protein-C (APC: NPNDK--) [14,15]. The different proteinase-revealed TLs can drive very distinct signal pathways
(distinct coloured arrows for PAR; response at the bottom). (B) synthetic peptides with sequences that mimic the tethered ligand (e.g. TFLLRN-NH,

for PAR;) can activate PAR signalling without the need for receptor proteolysis. Peptides derived from the different enzyme-revealed tethered ligand

sequences can stimulate ‘biased signaling’. (Illustration modified with permission from Hollenberg & Compton, Ref. [2]).

unmasked amino terminus, functioning as a tethered lig-
and (curved arrow, Figure 1A), then binds to the extra-
cellular receptor domains to trigger conformational
changes and signalling.

Comparable cleavage of the N-terminus of PAR; also
exposes a potential “tethered ligand”, but the ability of
the cleaved receptor to signal on its own is unclear. In-
stead, it appears that PARj acts as a cofactor for PAR,
activation by thrombin [16], although ‘autonomous’ sig-
nalling by PAR; has been reported in a select circum-
stance [17]. As an alternative, PARs can be activated via
proteinases by a ‘non-canonical’ mechanism involving
cleavage at a site distinct from the arginine target that
reveals a ‘canonical’ “tethered ligand” motif (Figure 1A).
For example, MMP1 [12,13] and activated protein C
(APC; [18]) can cleave the N-terminal domain of PAR;
to unmask a ‘non-canonical’ tethered activating se-
quence different from the one revealed by serine pro-
teinases (SFLLRNPNDK..., Figure 1A). As illustrated
explicitly in Figure 1A, PAR; can also be cleaved by the
neutrophil enzymes, proteinase-3 (PR3) and elastase
(NE) to reveal receptor-activating sequences that differ
not only from each other but also from those resulting
from the action of MMP1 and APC [11]. Of importance
these ‘non-canonical’ tethered ligands dock with the re-
ceptor to drive distinct biased signalling pathways (e.g.
via MAPK but not calcium). As a further unexpected ex-
ample, neutrophil elastase (NE) has recently been shown
to activate PAR, signalling in a ‘biased’ manner, by ex-
posing yet another ‘non-canonical’ PAR, tethered ligand
sequence that selectively stimulates a mitogen-activated
protein kinase (MAPK) pathway, without triggering an

elevation in intracellular calcium levels as is caused by a
‘canonical’ trypsin-exposed PAR, tethered ligand [14].
Finally, when the first ‘thrombin receptor’ was cloned
(now termed, PAR;/F2R: [10,19]), it was established,
that, in addition to proteinase-triggered PAR activation,
short synthetic peptides derived from the proteolytically-
exposed “tethered ligand” sequences are capable of
PAR activation without receptor proteolysis [10,20]
(Figure 1B). PAR3 appears to be the exception, where
synthetic peptides corresponding to its thrombin-
revealed sequence do not seem to cause PARj signalling
[16] and instead are able to activate PAR; and PAR,
[21,22]. These so-called PAR-activating peptides (PAR-
APs) have proved to be useful tools to study the function
of PARs especially in settings in which more than one
PAR subtype is expressed and stimulated by the same
proteolytic enzyme [4,23]. Moreover, synthetic peptides
derived from the ‘non-canonical’ cleavage of PAR; (e.g.
TLDPRSF-NH, for a PR3 tethered ligand derived-
activating peptide; or RNPNDKYEPF-NH, for a NE teth-
ered ligand-derived activating peptide) can serve as
‘biased’ agonists of PAR; to activate MAPK but not cal-
cium signalling [11]. These ‘biased signalling’ pathways
that are selective for either G-protein-coupled responses
or for beta-arrestin-mediated processes may lead to dis-
tinct receptor transactivation processes e.g. to release
EGF-receptor transactivating ligands or prostaglandins
that can in turn activate EP receptors (see below).

PARs activate complex intracellular signalling networks
At present, PAR signalling is known to activate several
major signal pathways. Firstly, the ‘classical pathway’ in
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which receptor activation causes signalling via heterotri-
meric guanyl nucleotide-binding proteins (G proteins)
and downstream targets; secondly, a beta-arrestin path-
way of signalling involving ligand-regulated scaffolds;
and thirdly, by the transactivation of a variety of
receptors and other signalling constituents. This third
possibility can include: (1) the rapid cellular release of
agonists like prostaglandins or EGF-receptor (EGFR)
ligands that can trigger non-PAR receptors by an auto-
crine or paracrine mechanism, (2) an intracellular kinase
pathway (e.g. Src-family tyrosine kinase) that targets and
activates a receptor like the one for EGF in an agonist-
independent way and (3) a direct or indirect impact of
the PARs on other signal mediators, either via GPCR-
dimer formation or via transactivation of cell signalling
constituents like ion channels or toll-like receptors
(TLRs) (see Figure 2 and below). Thus, the ‘transactiva-
tion” mechanisms in which the PARs participate can
involve not only ‘growth factor’ receptors and G protein-
coupled receptors, but also a diversity of other ‘signal
generators’ (Figure 2). Given the complexity of the intra-
cellular signalling networks, the ability of PARs to gener-
ate a ‘biased signal’ adds yet another layer of flexibility to
the ways in which PAR activation can regulate cell and
tissue behaviour.
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G protein-mediated signalling by PARs

Like other GPCRs, the PARs signal via a variety of G
proteins, including Gq, G; and Gy,/13 but not directly via
G, [24,25]. For G protein-mediated signalling, the recep-
tor acts as a ligand-triggered guanine nucleotide ex-
change factor, stimulating the exchange of GTP for GDP
in the G, subunit of the heterotrimeric G protein oligo-
mer. This exchange enables the ‘release’ of the G, sub-
unit from its tight binding to the Gg, dimer subunit.
Each of the G protein moities (G,-GTP and Gg,) are
then independently able to interact with downstream
signalling effectors like phospholipase C (Gq) or ion
channels (Gg,). This ‘dual effector’ signalling, resulting
in principle from the same PAR-activated G protein
heterotrimer (e.g. GqGg,), can converge for complex
downstream signalling, for instance leading to NF-kB ac-
tivation and intracellular adhesion molecule-1 (ICAM-1)
transcription by the engagement of parallel Gy/protein
kinase C (PKC)- and G;/phosphatidylinositol 3-kinase
(PI3K) pathways that converge [26,27]. Alternatively, as
already indicated, via a ‘biased signalling’ process, PARs
can be activated to affect selectively MAPK signalling via
a Gyyi3-triggered process, without causing a Gg-mediated
calcium signalling event [28]. This kind of selective sig-
nalling can depend not only on the agonist per se [e.g.
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Figure 2 PAR receptor crosstalk. Scheme illustrating the interaction of PARs and their crosstalk with other receptors [GPCRs: G protein-coupled
receptors (AT1: angiotensin receptor subtype 1, B2 receptor: bradykinin B2 receptor, EP: prostaglandin receptor, 5HT2 receptor: serotonin receptor
subtype 2; P2Y12: purinergic ADP receptor; SP1PR1: sphingosine-1-phosphate receptor 1); PAR: proteinase-activated receptor; RTKs: receptor tyrosine
kinases (EGFR: epidermal growth factor receptor; FGFR: fibroblast growth factor receptor; IGFR: insulin-like growth factor receptor; Met: hepatocyte
growth factor (HGF) receptor; PDGFR: platelet derived growth factor receptor; VEGFR: vascular endothelial growth factor receptor); RSTKs: receptor
serine/threonine kinases (ALK: activin-like kinase); TLRs: toll-like receptors (NLRs: NOD-like receptors, nucleotide oligomerization domain receptors);
NMDA receptor: N-methyl-D-aspartate receptor; P2X1 receptor: ATP-gated cation channel; TRPA1
TRPV: transient receptor potential vanilloid; p23, p24A: transmembrane proteins of the early secretory pathway. PARs can form homomeric interactions
(indicated by light red-light red coloured symbols) or heteromeric interactions with other PARs (light red-dark red coloured symbols).
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thrombin, neutrophil elastase, MMP1 or activated pro-
tein C (APC) for PAR;] but also upon the membrane
environment in which a PAR is localized. For instance,
triggering of PAR; localized in the caveolae by APC can
signal via set of downstream effectors that are distinct
from those regulated when thrombin activates PAR; in
a non-caveolar environment [24].

Beta-arrestin-mediated signalling scaffolds

During the past few years it has become clear, that
GPCRs, in addition to signalling via G proteins, are able
to use another strategy to regulate intracellular signalling
pathways. They direct the recruitment, activation, and
scaffolding of cytoplasmic signalling complexes via two
multifunctional adaptor and transducer molecules, beta-
arrestins 1 and 2 [29-31]. Within the PAR family, this
non-G protein mechanism involves the beta-arrestin-
mediated internalization of PAR-beta-arrestin signalling
scaffolds to regulate the activation of effector molecules
like MAPK and PI3K as described for PARs 1 and 2
[28,31-35].

The coupling of the PARs to either the G proteins or
beta-arrestins is driven by ligand-triggered changes of
receptor conformation that for other GPCRs is thought
to involve the putative transmembrane helices 3 and 6 of
the receptor [36,37]. Of importance, different agonists
are in principle capable of driving different conform-
ational changes in the receptor to result in selective in-
teractions with different downstream ‘effectors’. This
principle is in keeping with the ‘floating’ or ‘mobile’ re-
ceptor model developed in the mid-1970s [38,39]. More
recently, the paradigm has been ‘reinvented’ and ex-
panded to encompass the concept of ‘biased receptor
signalling’ or ‘functional selectivity’ as outlined in detail
elsewhere [40,41].

PAR-stimulated signalling cascades via receptor
‘transactivation’

The principle whereby an activated receptor can in turn,
rapidly release a ligand that immediately ‘transactivates’
a downstream ‘receptor cascade’ is best illustrated by the
agonist-driven release of nitric oxide, which immediately
regulates tissue function. Although the ‘receptor’ for NO
is an enzyme (guanylyl cyclase), its agonist-stimulated
production immediately ‘transactivates’ downstream
cellular signalling in a manner that reflects a receptor
process. In this way, activation of PARs 1 and 2 in
a blood vessel causes an immediate endothelium-
dependent, NO-mediated relaxation of the tissue. In a
similar way, PAR activation also causes the immediate
production of prostaglandins, that in turn act in an auto-
crine or paracrine way to stimulate the prostanoid re-
ceptor (EP) family of GPCRs (see Figure 3). This
prostaglandin-EP receptor transactivation rapidly affects
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vascular, airway and gastric smooth muscle relaxation.
In this kind of situation, it is often a challenge to dissect
the downstream signalling that is due either to the PAR
or its co-ordinately transactivated ‘partner’ GPCR. Thus,
for GPCRs, the term “transactivation” is taken to reflect
“the activation of one GPCR that leads rapidly and in
the absence of de novo protein synthesis to the activa-
tion and cytosolic generation of the immediate down-
stream signalling of a second cell surface receptor” [42].
This process is to be distinguished from a time-delayed
PAR-mediated transcriptional-translational process (e.g.
blocked by cycloheximide or actinomycin D), that over
time (e.g. tens of minutes to hours) results in the secre-
tion of agonists like cytokines.

Of importance, PARs seem also to be able to transacti-
vate the sphingosine-1-phosphate receptor 1 (SIPR1) by
a similar mechanism involving rapid release of its agon-
ist, sphingosine-1-phosphate (S1P). This PAR-GPCR
interplay was shown in endothelial cells [43,44] and in
neural progenitor cells (NPCs) where an APC analogue
stimulates neuronal function and differentiation via a
PAR;-PAR3-S1PR1-Akt pathway. This result suggests the
potential for APC-based clinical therapeutics for both
development and repair in the human central nervous
system [45].

Transactivation of receptor kinases via cell-released
agonists

In addition to the immediate cascade-release of auto-
crine-paracrine agonists for GPCRs, it is now known
that the activation of GPCRs, including the PARs, results
in the cellular release of agonists that stimulate growth
factor receptors like the one for EGF (see also Figure 3).
Thus, activation of a GPCR results in an immediate
matrix metalloproteinase (MMP)-catalysed release from
the cell surface of an EGF-family EGFR agonist [hep-
arin-binding EGF, or transforming growth factor-alpha
(TGF-a)], that in turn activates receptor tyrosine kinase
(RTK) signal pathways that are quite distinct from those
activated by the GPCRs on their own [46-48]. This feed-
forward signal cascade triggered by the receptor tyrosine
kinase expands the range of the cellular functions attrib-
utable to PAR-mediated signalling networks. Thus far,
this signalling paradigm has been described mainly for
the EGFR, with little attention yet paid to a potential
role for other RTKs like the receptors for hepatocyte
growth factor (Met) and platelet derived growth factor
(PDGFR). Nonetheless, since these initial findings, the
ability of numerous GPCRs to transactivate RTKs has been
found to involve not only the EGFR, but also the PDGEFR,
Met, the insulin-like growth factor receptor, (IGFR) and the
fibroblast growth factor receptor (FGFR). In addition to the
release of a cell-tethered EGFR ligand (e.g. heparin-bind-
ing-EGF; TGF-a) by matrix metalloproteinases (MMPs),
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Figure 3 Concepts and mechanisms of PAR receptor crosstalk with other receptors and signal transducers. PAR receptor crosstalk
involves (A) transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), (B) PAR-PAR receptor interactions,
and (C) PAR interplay with other non-PAR GPCRs and non-PAR signal transducers. (A) PARs can mediate transactivation of RTKs by an immediate
matrix metalloproteinase (MMP)-catalysed release of RTK agonists from the cell surface, e.g. heparin-binding EGF, or transforming growth factor
(TGF)-q, that in turn stimulates RTK signalling. PARs are also able to mediate transactivation of RSTKs by mechanisms including integrin-mediated
activation of latent TGF-f. In addition, PARs can induce RTK transactivation via intracellular mechanisms including activation of Src, generation of
reactive oxygen species (ROS), and inhibition of protein tyrosine phosphatases (PTPs). (B) PAR-PAR crosstalk involves PAR homo- and heterodimerization
and PAR-PAR trans-signalling. (C) PARs are able to mediate transactivation of other non-GPCRs via extracellular release of GPCR agonists
(e.g. the prostaglandin receptor by release of prostaglandins) and by intracellular mechanisms on the signalling (bradykinin B2 receptor,
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the ‘transactivation process’ can also be attributed to (1)
activation of Src-tyrosine kinase, (2) generation of react-
ive oxygen species (ROS) and (3) activation of protein
tyrosine phosphatases (PTPs). All of these mechanisms
are able to transfer signals indirectly from GPCRs
to RTKs [49]. Importantly, recent data also point to
the transactivation of receptor serine/threonine kinases
(RSTKs) [42,50].

Transactivation of receptors via an intracellular mechanism
As already mentioned, in addition to its ‘transactivation’
by a cell membrane-released receptor agonist, data
suggest that the EGFR can be activated in a ligand-
independent way via an intracellular enzyme cascade
involving Src-family kinase. Thus, in some circum-
stances, PAR-induced signalling cannot be blocked by a
matrix metalloproteinase inhibitor (e.g. batimastat), but
is diminished both by an EGFR-kinase-selective inhibitor
(AG 1478) and by a Src-family-selective inhibitor (PP1).
Therefore, it appears that a PAR-stimulated activation
of Src leads via an intracellular route to a ligand-
independent phosphorylation-dependent activation of
the EGFR. Collectively, these data suggest a role for both
kinds of ‘cascade’ receptor transactivation caused by

PARs in several diseases including inflammation, cardiac
injury, neurodegeneration and cancer (see Figure 3).

Selected examples of PAR-stimulated receptor
transactivation

Transactivation of other receptors by PAR activation,
as outlined above, is now known to be a common
phenomenon. In the following sections, we describe some
selected illustrative examples of PAR-stimulated receptor
transactivation to provide a perspective on the versatility
of this kind of signalling process. These illustrations are
indicative of many other examples to be found in the lit-
erature. Further, we deal with the potential impact of
PAR-triggered receptor transactivation in both normal
and pathophysiological settings. In that context, we dis-
cuss the potential involvement of the PARs and their
transactivation mechanisms in the pathophysiology of vas-
cular disease, inflammation and cancer.

A transactivation signalling network between PAR;, the
epidermal growth factor receptor (EGFR) and the vascular
endothelial growth factor receptor (VEGFR)

In a study on endothelial cells (ECs) Chandrasekharan
and colleagues provided an interesting example for a
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complex metalloproteinase-independent, but EGF-dependent
signalling interaction between PAR;, the EGFR and
the VEGER, resulting in transcriptional activation by
mitogen-activated protein kinase phosphatase 1 (MKP-1),
a key signalling mediator in thrombin and VEGF-
mediated activation of endothelial cells. This signalling
interplay network uses both p42/p44 MAPK-dependent
and p42/p44 MAPK-independent pathways, the latter of
which involve c-Jun N-terminal kinase (JNK) activity and
the VEGFR-2 [51]. This report is particularly important
since it demonstrates for the first time interactions be-
tween a GPCR, the EGFR, and the VEGER leading to gene
activation on a transcriptional level. Moreover, it under-
lines the significance of this complex receptor interplay in
the vascular microenvironment.

PAR-mediated transactivation of platelet-derived growth
factor receptor (PDGFR), Met and insulin-like growth
factor-1(IGF-1) receptor

In contrast with numerous studies providing evidence
for a crosstalk between PARs and the EGER, there is
only very limited information about PAR-mediated
transactivation of other receptor tyrosine kinases.

Siegbahn et al. demonstrated that the tissue factor-
factor VIla (TF/FVIla) complex is able to transactivate
PDGEFR-B [52]. Since TF/FVIla is known to be able to
activate PAR,, this ability of TF/FVIla to activate the
PDGFR- may be due initially to PAR, activation. Fur-
ther evidence for this PAR,-PDGFR crosstalk comes
from the observation that the PAR,-selective agonist pep-
tide, 2-furoyl-LIGRLO-NH,, induces phosphorylation and
activation of the PDGFR in liver carcinoma cells [53].
Since the PAR;-selective agonist peptide, TFLLRN-NH,,
and the PARg-selective agonist peptide, AYPGKV-NH,,
can also induce activation of the PDGEFR in Hep3B liver
carcinoma cells, a coordinated receptor tyrosine kinase
signalling of the PARs 1, 2 and 4 in liver carcinoma cells
may be suggested [53].

In addition to causing a transactivation of the PDGEFR,
PAR, stimulation leads to a transactivation of Met. In
liver carcinoma cells, this PAR,-triggered transactivation
of Met promotes cell migration and invasion [54,55].

Finally, PAR; has been reported to mediate transacti-
vation of the IGF-1 receptor by a mechanism that is in-
volved in the regulation of aortic smooth muscle cell
proliferation [56-58]. In sum, the above-cited examples
show that PAR activation can result in the transactiva-
tion of a variety of receptor tyrosine kinases in addition
to activating the EGF receptor.

PAR-mediated receptor-serine/threonine- kinase (RSTK)
transactivation

So far, the model of receptor transactivation by PARs
has dealt primarily with the receptor tyrosine kinases
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discussed in the previous sections. However, recent data
suggest that this signalling paradigm can be extended to
include receptors with intrinsic serine/threonine kinase
activities (RSTKs) [42,50,59] (see Figure 3). Specifically,
it is now evident that GPCR agonists can transactivate
the TGE-P/activin/BMP superfamily of growth factor re-
ceptors, all of which possess serine/threonine kinase ac-
tivity and signal through SMAD proteins (for review see
e.g. [60]). The extension of GPCR transactivation to in-
clude RSTKs provides for a new spectrum of cellular re-
sponses that PARs can stimulate, downstream of the
canonical SMAD signalling pathway. An interesting ex-
ample can be found in the ability of thrombin in mouse
lung epithelial cells [61] and vascular smooth muscle
cells [59], to cause a transient increase in C-terminally
phosphorylated SMAD?2 levels (pPSMAD2C). In the latter
cells, the pPSMAD2C phosphorylation can be blocked by
the PAR; antagonists JNJ5177094 and SCH79797, as
well as by SB431542, an inhibitor of the TGE-p type I re-
ceptor ALK5 [59]. Sensitivity to SB431542 confirms that
the SMAD2C phosphorylation arises directly from the
serine/threonine kinase activity of ALK5 and indicates
that agonist stimulation of PAR; can mediate transacti-
vation of ALKS5. Interestingly, in mouse lung epithelial
cells the transactivation mechanism involves an oVp6
integrin-Rho/rho kinase (ROCK) signalling link to RSTK
activation [50]. The mechanism of PAR; transactivation
of ALK5 matches the extracellular, ligand-dependent
type of transactivation, involving binding and activation
of released latent TGF-B. Ligation and activation of
PAR; causes aV[6 integrin activation via RhoA/ROCK
[62] and integrin binding to the Large Latent Complex
causes its conformational change resulting in exposure
of the TGF-B dimeric ligand [61]. The PAR;-mediated
enhancement of aVP6-dependent TGEF-f activation fi-
nally results in activation of the ALK5 kinase. Through
an overstimulation of this ligand-dependent mechanism,
PAR; is capable of promoting acute lung injury [61]. In
contrast, the generation of pSMAD2C in vascular
smooth muscle cells in response to thrombin treatment
is not due to the agonist-mediated release and autocrine
action of TGF-B since the generation of pSMAD2C
could not be blocked by a neutralising pan TGF-$
antibody [59]. Thus, this transactivation event is ligand-
independent and appears to be of the intracellular type
although the precise mechanism is not known at
present.

We speculate that ALK5 will not remain the only re-
ceptor from the TGEF-B/activin/BMP superfamily of
growth factor receptors that is a target of transactivation
by PARs. Given the high homology among the ALK5
subgroup of TGF-B type I receptors, encompassing
ALKS5, and the activin receptors ALK4 and ALK7 (which
is reflected in the fact that they share sensitivity to
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SB431542), it is likely that PAR ligands will also display
activin-like effects through transactivation of ALK4 and/
or ALK7 and thus participate in classical activin re-
sponses like stimulating the proper development of the
endocrine and exocrine pancreas [63]. If we take this
speculation further, transactivation by PARs of the BMP
receptors ALK1, ALK2, ALK3 (BMPR1A), and ALK6
(BMPR1B) might enable PARs to stimulate phosphoryl-
ation of SMADs 1, 5 and 8 and hence a plethora of
BMP-specific biological responses. A precedent for such
an interaction is the GPCR agonist serotonin, which in
pulmonary arterial smooth muscle cells stimulates an
increase in serine/threonine phosphorylation of ALKS3,
thereby leading to the phosphorylation of SMADs 1,
5 and 8 and their subsequent nuclear translocation [64].

Our own results (H. U., F. G., unpublished observa-
tions) have shown that in some tumor cell types, PAR,
expression is required for efficient TGF-B/ALK5-
mediated SMAD3C phosphorylation and for certain TGF-
B-stimulated responses, such as cell migration. We are
currently studying whether a ‘reverse’ transactivation
(from ALK5 to PAR,) can occur. That process would
enable TGF-B to signal via PLC, with the generation
of InsP; and diacylglycerol. In rat astrocytes, TGF-$
stimulation has indeed been shown to result in a GPCR-
mediated activation of PLC [65]. The rapid TGEF-B-
mediated release of a GPCR agonist like a prostaglandin,
as discussed in the next section, might be involved in this
kind of reciprocal TGF-f-GPCR transactivation process.
That possibility has yet to be explored in depth.

PAR transactivation of prostanoid receptors

Besides its ability to induce pro-inflammatory effects
[66], an anti-inflammatory role of PAR, in the airway
has also been described [67,68] in accordance with the
ability of PAR, activation to cause the secretion of
prostaglandin E2 (PGE2) from the airway epithelium
[67,69-72]. The released prostanoids can cause anti-
inflammatory effects mainly through the activation of
the prostanoid receptor (EP) subtypes EP2, EP3 and EP4
[70,73-77]. The PAR, interplay with PGE2/EP-signalling
in the airway system, defined as a PAR,-prostaglandin
E2-prostanoid EP receptor axis [78], involves a signalling
network triggering arachidonic acid release by the p42/
p44 MAPK/cytosolic phospholipase A2 (cPLA2)-pathway
downstream from PKC and non-Src tyrosine kinases,
upregulation of COX-2 via Src/EGFR/p38 MAPK, and
cyclooxygenase-2 (COX-2)-independent NF-«kB signal-
ling [69,79-81]. Using HEK 293 T cells, Komatsu et al.
provided a novel mechanistic aspect for a PAR,-PGE2/
xEP2 interplay which points to a PGE2-initiated inhib-
ition of PAR,-dependent signal transduction by inducing
PAR, internalization through a prostanoid receptor sub-
type EP2-mediated increase in intracellular cyclic AMP
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[82]. Interestingly, for PAR; which is also known to be
able to induce PGE2 secretion from human respiratory
epithelial cells [83] and peritoneal macrophages [84], a
very similar mechanism has been described in lung
fibroblasts [85].

PAR-triggered receptor transactivation:
pathophysiological implications

In addition to the above mentioned work by the Ullrich
group [46], further studies demonstrating the ability of
thrombin and its precursor enzyme, prothrombin, to in-
duce EGFR activation [46,86-88] points to the participa-
tion of PARs in this “RTK transactivation” pathway in
many physiological settings. Following are some selected
examples of this transactivation that has a potential
impact on several cellular processes. The examples are
not meant to be comprehensive, but rather illustrative
of several pathophysiological settings in which PAR-
receptor kinase transactivation can play a role.

PAR-mediated RTK transactivation and the cardiovascular
system

Over the past decade work has mainly been focused on
the ability of the PARs to transactivate the EGFR. In
2002, Sabri et al. showed that epidermal growth factor-
like EGFR transactivation is involved in PAR;-triggered
stimulation of p42/p44 MAPK that results in cardiac
fibroblast proliferation [89]. Interestingly, further re-
search in this field on mouse cardiomyocytes demon-
strated that PAR, is also able to transactivate the EGFR
and its related family member, ErbB-2, by a mechanism
involving Src tyrosine kinase and both p42/p44 MAPK
and p38 MAPK [90]. Thus, PAR; and PAR, signalling is
predicted to contribute to remodeling during cardiac
injury and/or inflammation via this transactivation
mechanism. Further, both PAR;- and PAR,-mediated
EGFR transactivation signals are thought to be involved
in the regulation of cardiac physiological and patho-
physiological functions.

In addition to the tissue kallikrein (TK)/kallikrein-
related peptidase (KLK) family, a distinct plasma kallikrein
(PK) family member has been shown to activate PAR; and
PAR; in primary rat aortic vascular smooth muscle cells
[91]. This activation sequentially leads to the metallopro-
teinase (ADAM17)-triggered release of the EGFR agonist,
amphiregulin and tumor necrosis factor-alpha (TNEF-a).
Amphiregulin and TNF-q, via their respective receptors
(EGFR, TNEFR), result in the activation of p42/p44 MAPK
[91]. These data indicate that two distinct ‘kallikrein’ fam-
ilies (KLKs and PKs) may contribute to the regulation of
vascular responses in pathophysiologic states.

Al-Ani and colleagues showed that endothelial PAR, me-
diates enhanced expression and release of soluble VEGF
receptor-1 (SVEGFR-1) in cultured human umbilical vein
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endothelial cells (HUVECs) from preeclamptic preg-
nancies. This mechanism involves PKC-driven transac-
tivation of the EGFR. This process might be relevant
for preeclampsia which is characterized by widespread
maternal endothelial damage and occurs as a conse-
quence of elevated sVEGFR-1 in the maternal circula-
tion [92].

PARs, epidermal growth factor receptor transactivation
and the skin

Recent studies have shown that members of the tissue
kallikrein (TK) or kallikrein-related peptidase (KLK)
gene family can play diverse roles in regulating periph-
eral tissue inflammation, repair and pain by activating
PAR;, PAR, and PAR, [93,94]. Based on findings that
the shedding of EGFR ligands is required for keratino-
cyte migration in cutaneous wound healing [95], Gao
et al. demonstrated a novel signalling pathway mediated
by tissue kallikrein-KLK1 via PAR; and EGFR activation
in the migration of cultured HaCaT keratinocytes; and
they provided evidence for the significance of this mech-
anism in vivo using a skin wound healing model in rats
[96]. This pathway includes PAR;-mediated PKC-Src sig-
nalling and EGFR transactivation, resulting from the
MMP-catalyzed release of the EGFR-activating ligands,
heparin-binding-EGF (HB-EGF) and amphiregulin.

PAR-mediated receptor tyrosine kinase transactivation in
arthritis, inflammation, and pain

Thrombin is known to be involved in the regulation of
fibrin deposition, angiogenesis, cell invasion and proin-
flammatory processes. Abnormalities in these inflamma-
tory events are primary features of both rheumatoid
arthritis and osteoarthritis. Recently, Huang and col-
leagues demonstrated the involvement of PAR;-mediated
Src-dependent EGFR transactivation in the thrombin-
induced expression of chemokine (C-C motif) ligand-2
(CCL2) in human osteoblasts [97]. Since CCL2 is well
known to be implicated in rheumatoid arthritis [98], a
role for a PAR;-EGFR transactivation interplay in this
inflammatory disease has been suggested. Further, both
PARs 2 and 4 have been implicated in arthritis pain as
well as inflammation [99-102]. In an adjuvant model of
arthritis, PAR, has been found to play a critical role
[103], but the precise mechanisms whereby PAR, pro-
motes joint inflammation, possibly involving RTK trans-
activation are not yet known.

PARs, receptor tyrosine kinase transactivation and the
respiratory system

In the respiratory system, PAR;, PAR, and PAR, are
expressed at different levels depending on the tissues
or the cell types (epithelium, endothelium, tracheal
smooth muscle and blood vessel), and contribute to the
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progression of various airway and lung disorders includ-
ing inflammation and fibrosis [23,104,105]. Activation of
PAR, in particular by allergen-derived proteinases is
believed to contribute to lung tissue eosinophil influx
[106,107]. However, the signal pathways that involve
both beta-arrestin-mediated and beta-arrestin-independent
mechanisms for allergen proteinase-induced lung inflam-
mation have yet to be determined. Whether EGFR transac-
tivation is involved has not been evaluated. Recently, Ando
et al. demonstrated that PARs-mediated EGFR signalling
plays a role in alveolar epithelial-mesenchymal transition
(EMT), an important mechanism in pulmonary lung fibro-
sis [108]. In addition, EGFR activation has been found to
be involved in PAR,-triggered signal transduction pathways
that contribute to a post-transcriptional process for the re-
lease of IL-8 in human lung epithelial cells [109]. Thus,
PAR activation with or without a transactivation of the
EGEFR is of importance in the pathophysiology of the lung.

PARs, receptor tyrosine kinase transactivation and cancer
It is now widely accepted that EGFR transactivation in
response to the stimulation of GPCRs occurs in a large
number of cancer cells, and it is believed that this mech-
anism is an important signalling principle contributing
to cancer development and progression [110]. For ex-
ample, there is a growing body of literature describing
the ability of PAR; and PAR, to transactivate the EGFR
in cells from several carcinomas including lung [69], kid-
ney [111], colon [112-115] and gastric cancer [116,117].
A substantial amount of data point to an important role
for PARs in colon cancer. In cells from this tumor entity,
PAR; and PAR, have been demonstrated to induce mi-
gratory and proliferative effects that involve both activa-
tion of p42/p44 MAPK and transactivation of the EGFR
[112-114]. In addition, PAR, has recently surfaced as a
new important player in the regulation of colon tumor-
derived cells. In colon carcinoma cells activation of
PAR, has been found to be involved in stimulating mito-
genesis. This stimulation is observed to occur in the set-
ting of PAR,s-induced increases in intracellular calcium
and activation of p42/p44 MAPK along with transactiva-
tion of ErbB-2, but not via crosstalk with the EGFR
[118]. In this setting, the localized selective induction of
KLK14 in the colon cancer cells, but not in adjacent un-
involved colon epithelium may play an important role by
cleaving and activating PARs [119,120].

In renal carcinoma cells, the matrix metalloproteinase
(MMP) inhibitor GM 6001 diminishes the tyrosine phos-
phorylation of the EGFR induced by PAR;, pointing to a
critical involvement of metalloproteinase activity in the
PAR;-mediated transactivation of the EGFR in renal car-
cinoma cells [111]. A similar mechanism, with the par-
ticipation of MMPs, has been shown in colon carcinoma
cells where PAR;-mediated enhanced cell proliferation is
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stimulated by an MMP-dependent transactivation of the
EGER [121]. As alluded to above, in a separate cell sys-
tem (cardiac fibroblasts), PAR; activation results in
EGFR trans-phosphorylation in an MMP-independent
Src family kinase-dependent process [89]. Those distinct
results imply that PAR;-mediated EGFR transactivation
signalling is contextual in nature, depending on the cell
type in which the EGFR and PAR; reside.

Arora et al. showed that proteolytic activation of PAR;
by thrombin induces persistent EGFR and ErbB-2 trans-
activation in invasive breast cancer cells. This result is
distinct from the transient EGFR and ErbB-2 transacti-
vation observed in normal mammary epithelial cells. In
addition, these authors demonstrated that PAR;-stimulated
EGFR and ErbB-2 transactivation sustains p42/p44
MAPK signalling and promotes breast carcinoma cell
invasion [122].

Besides a role for PARs in growth and metastasis
formation in carcinoma, there is growing evidence
that chronic inflammation, resulting in increased pro-
inflammatory mediators like prostaglandins produced by
up-regulated cyclooxygenase (COX) plays a role in
neoplastic transformation [123,124]. In this regard,
PAR, signalling is known to be critically involved in in-
flammatory processes in different organs including the
gastrointestinal system [125,126]. Thus, by increasing
prostaglandin production, crosstalk of PAR, with PGE2/
EP signalling may be involved in the progression from
chronic inflammation to cancer in the intestine. A
PAR,-triggered transactivation of the EGFR appears to
be involved in this PAR,-driven process. This possibility
is illustrated by a study in intestinal epithelial cell-6 cells
(IE6) and Caco-2 colon cancer cells in which PAR,-
driven prostaglandin E-2 (PGE2) production is a conse-
quence of increased COX-2 expression, that results from
a metalloproteinase-dependent transactivation of the
EGEFR. This process leading to COX-2 upregulation and
an increase in prostaglandin production results from the
activation of Src, Rho, and PI3K signalling [127].

Receptor-receptor interactions - a critical element
in PAR signal transduction

In addition to the ability of PARs to transactivate other
GPCRs, like the EP family, and receptor-kinases like the
EGEFR, it is now accepted that receptor-receptor GPCR
dimer formation plays an important role in both
physiological and pathophysiological settings. For the
PARs, these dimers include PAR-PAR homo- and
heterodimers, as well as PAR interactions with other
G-protein coupled receptors (bradykinin receptor, pros-
tanoid receptor, P2Y receptor, alpha adrenergic receptor,
serotonin receptor and angiotensin AT1 receptor). Dir-
ect or indirect PAR interactions with toll-like receptors
(TLRs) and NOD-like receptors (NLRs) to generate
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signal crosstalk are also of importance. Furthermore,
PAR signalling is now known to involve crosstalk be-
tween PARs and multi-subunit ion channel receptors
(NMDA receptor, P2X1 receptor), transient-receptor-
potential channels (TRPV1, TRPV4 and TRPA1)], and
cargo receptors (p23, p24A) (see Figures 2 and 3). These
mechanisms whereby PARs can ‘crosstalk’ via direct and
indirect interactions with other GPCRs and with other
signal-generating targets add substantial signalling com-
plexity over and above the ways in which PARs can
regulate cell function by transactivating receptor-kinases.
The following sections deal with these types of PAR-
PAR and PAR-non-PAR interactions.

PAR-PAR interactions - a role for receptor dimer
formation

Since the mid-1990s a growing body of pharmacological,
biochemical and biophysical data indicate that GPCRs
form functional homo- and heterodimeric complexes. It
is now widely accepted that dimerization is a universal
aspect of GPCR biology [128-131]. GPCR dimerization
involves the formation of functional physical ‘pairs’ of
receptor units (homo- or hetero-partners). This process
leads to an increase in the diversity of receptor function,
since the ‘dimers’ can interact with an expanded spectrum
of downstream signal transducer elements, as foreseen by
the floating or mobile receptor hypothesis outlined some
time ago and recently updated [38-41,132,133]. This
concept also includes the potential for GPCRs to inter-
act directly with several different non-GPCR signalling
proteins like the toll-like receptors (see below) to gener-
ate complex downstream signals and is emerging as
increasingly important in creating functional receptor
diversity [134].

In principle for the PARs, all of PARs 1, 2, 3 and 4 can
synergize for signalling and can potentially form PAR
homo- or heterodimers. During the past few years PAR-
PAR interactions have been studied and several models
of PAR trans- and coactivation have been proposed in
different cell types, suggesting a role for PAR-PAR phys-
ical association [16,135-142]. However, only limited data
exist about PAR homo- and heterodimer complex for-
mation and their signalling impact in these cells; and
most of the work has been done with expression systems
in which higher than normal receptor concentrations
may drive PAR-PAR dimer formation in a way that does
not operate in naturally occurring cells. For instance, the
platelet represents one of the few systems in which
PAR;-PAR, heterodimerization has been evaluated dir-
ectly in the setting of endogenous PAR expression [143].
Otherwise, as for GPCRs in general [144], the “dimer
field” has been dominated by techniques involving
recombinant cell lines expressing mutant receptors,
often involving the solubilization of the receptors. The
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techniques used for monitoring homo- and heterodimer
formation by GPCRs, including fluorescence resonance
energy transfer (FRET) or bioluminescence resonance
energy transfer (BRET) are a challenge for use in study-
ing the low abundance of receptors in many cells en-
dogenously expressing PARs, with the added complexity
of background fluorescence [145,146]. For that reason,
the PAR-PAR dimerization models obtained from cell
expression systems illustrate the oligomerization that is
indeed possible, but may not necessarily reflect a physio-
logical state for tissues inm vivo. These studies using
fluorescence/bioluminescence emission (FRET/BRET)
and biochemical approaches (immunoprecipitation-gel
electrophoresis-western blot) can be complemented by
methods using time-resolved fluorescent energy transfer
(TR-FRET) involving Snap-tag chemistry to allow for the
direct identification of wild-type GPCR dimerization
in vivo [147,148]. With the above caveat for interpreting
data obtained using receptor expression systems, the fol-
lowing sections summarize the potential PAR-PAR inter-
actions that may govern their signalling properties.

Evidence for PAR-PAR proximity and signalling ‘in-trans’ by

a proteinase-revealed tethered ligand

The first indication that PARs can interact synergistically
for signalling came from studies of the PAR; tethered
ligand signalling mechanism [136]. In that study, it was
found that PAR; lacking its ‘tethered ligand (TL) se-
quence’ could be activated by the action of thrombin to
reveal a ‘tethered ligand agonist’ on a ‘partner’ PAR; that
had an intact tethered ligand sequence, but was not able
to signal on its own [136]. This work was followed some
time later by studies showing that in cultured human
umbilical vein endothelial cells, the tethered ligand of
cleaved PAR; can ‘reach over’ to transactivate PAR,
[135]. These results were obtained at the time when it
was already known that PAR; can act to sensitize PAR,
for thrombin action, implying a proximity of PARs 3 and
4. However, direct PAR-PAR interactions determined by
physicochemical methods had not yet been documented.
The following sections deal with evidence for the forma-
tion of physical PAR-PAR dimers.

PAR;-PAR; dimerization

The work pointing to PAR-PAR interactions summarized
in the preceding paragraph was followed by more direct
measurements of PAR-PAR signalling crosstalk and in-
teractions. Signalling crosstalk between endothelial PAR;
and PAR, in vivo has been demonstrated in a sepsis
mouse model, where the protective effect of PAR; agon-
ist activity in endothelial barrier function and survival in
mice required the presence of PAR, [149]. On a signal
transduction level, PAR; was found to couple to Gi,/;3-
Rho pathways while PAR, coupled to a G;-Rac signalling
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route in human pulmonary artery endothelial cells
(HPAECs). Therefore, in terms of signalling, PAR, ap-
peared to dominate over PAR; and transactivation of
PAR, by PAR; promoted barrier-protective G;-Rac sig-
nalling. Since FRET studies detected PAR; and PAR; in
close molecular proximity in cytoplasmic vesicles and on
the plasma membrane in cells from the permanent endo-
thelial cell line EA.hy926 [149], it can be suggested that
PAR;-PAR, heterodimer formation is involved in the
transactivation of PAR, by PAR;, switching the physio-
logical response of the endothelial cells from barrier dis-
ruptive to barrier protective. Transactivation of PAR, by
thrombin-cleaved PAR;, that has also been demonstrated
on human umbilical vein endothelial cells (HUVECS)
[135], underlines the potential function of PAR; heterodi-
mer formation with PAR, in endothelial cells.

In addition, physical association and functional coup-
ling between PAR; and PAR; on vascular smooth muscle
cells (VSMCs) seems to be responsible for the ability of
PAR, to regulate the PAR; hyperplastic response to ar-
terial injury leading to stenosis [150]. Thus, in several
settings in the vasculature, PAR;-PAR, heterodimers
may be of relevance for signalling and the development
of PAR antagonists will need to take this aspect into
account.

In addition to the vascular system, cooperative signalling
between PAR; and PAR, has been observed on carcinoma
cells and therefore suggests a role of PAR;-PAR,
dimerization in carcinogenesis. For example, studies on
melanoma cells have indicated that stimulation of cell mo-
tility by thrombin requires not only the activation of PAR;
but also the simultaneous activation of PAR, [137]. In
breast carcinoma cells PAR;-PAR, receptor complexes
seem to reside in different membrane microdomains since
thrombin but not factor Xa activated the PAR;-PAR,
response in breast cancer cells [141]. This impact of PAR
location in the caveolar domain has been pointed out for
the endothelial activation of PAR; by activated protein C
(APC), to drive signalling in a direction very distinct from
that triggered by thrombin in platelets [151]. Whether
PAR;-PAR, dimer formation is an issue for APC signalling
remains to be determined. An intriguing impact of PAR;-
PAR; heterodimer formation on signalling has come from
work in the Trejo laboratory [152] indicating that PAR,;
and PAR, form a heterodimer that exhibits unique traf-
ficking and signalling behaviours compared with receptor
protomers. Strikingly, this study showed that thrombin-
activated PAR;/PAR, heterodimers signal via a beta-
arrestin-scaffold-mediated activation of MAPK in the
cytoplasm, whereas the activation of the PAR; monomer
by thrombin promotes its redistribution to the nucleus,
presumably for a signalling function. Thus, in targeting
the PARs for cancer therapy, PAR;/PAR, dimer formation
will also prove to be a factor.
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PAR;-PAR, dimerization

The cooperative PAR;/PAR, receptor system which has
been described [153-155], indicates that both receptors
cooperate to mediate human platelet signalling and
aggregation at both low and high thrombin concentra-
tions, respectively. However, those first studies did not
document a physical interaction between PARs 1 and 4,
although the data unequivocally pointed to such interac-
tions. Using different sophisticated western blotting and
co-immunoprecipitation approaches, Kuliopulos and co-
workers demonstrated that PAR; and PAR, associate as
a stable heterodimeric complex in human platelets. The
data obtained provide evidence for a mechanism by
which thrombin first docks to and cleaves PAR;, and
then reaches over and cleaves PAR, while still bound to
PAR; [143]. Therefore, it has been concluded that PAR;-
PAR, dimerization enables thrombin to function as a
bivalent agonist. This mechanism might contribute to
the biphasic kinetics of activation and signalling for
PAR; and PAR, by thrombin in human platelets
[156,157]. This PAR-PAR interaction concept was sup-
ported further by co-immunoprecipitation and FRET
studies demonstrating the ability of PAR; and PAR, to
form heterodimers in COS-7 fibroblasts transfected with
PAR; and PAR, [143].

There are also results suggesting the formation of
PAR;-PAR, heterodimers in other cell types including
those from epithelial cancers. For instance, a PAR;-PAR,
two-receptor system has been demonstrated to mediate a
closely related thrombin-induced signalling in both astro-
cytoma [138] and hepatocellular carcinoma [158] cells
where PAR; and PAR, clusters could be detected by a
high-resolution field emission scanning electron micros-
copy (FESEM) freeze-fracture replica immunolabeling
technique. Although not accepted in general as a method
to verify receptor dimerization, these data indicate struc-
tural proximity of PAR; and PAR, and therefore underline
the need to evaluate the PAR dimerization concept in
future studies of neoplastic cells.

PAR;-PAR;3 dimerization

In contrast with the situation found in human platelets,
murine platelets lack PAR; and instead express a high-
affinity thrombin-binding receptor, PAR3, in addition to
PAR,4 which binds thrombin with lower affinity [153]. As
already alluded to above, upon cleavage by thrombin,
PARj3, rather than itself mediating intracellular signal-
ling, functions as a cofactor facilitating thrombin-
induced activation of PAR, [16,159]. In contrast with the
characterization of PAR dimerization in human platelets,
there are as yet no conclusive data establishing a direct
physical association between PAR3; and PAR,. However,
receptor dimerization in platelets is likely since X-ray
crystallographic studies show that the synthetic peptides
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representing the thrombin-target tethered ligand se-
quences of PARs 3 and 4 can bind to thrombin in a way
that would enable a ‘crosslinking’ of both PARs 3 and 4
by interactions with thrombin’s exosite [159]. The conse-
quence of such a thrombin-linked ternary complex
where the receptors can interact in terms of signalling
remains to be determined [16,159].

All four members of the PAR family are expressed in
arterial and/or venous endothelial cells [160-164].
Therefore, these cells are potentially very interesting for
studies on receptor dimer formation. Using human pul-
monary artery endothelial cells (PAECs) and HEK 293 T
cells, McLaughlin et al. were able to detect heterodimer
complexes using BRET-2 [165]. They found that PAR;
directly dimerizes with PAR; to induce a specific PAR;/
Gi3-binding conformation that favors Gjs; activation.
From these results the authors propose a model of PAR;
activation involving the interaction of PAR; with PAR;,
which alters the selectivity of PAR; for G;3 coupling and
finally promotes endothelial barrier dysfunction. There-
fore, PAR; seems to function as an allosteric modulator
of PAR; signalling through dimerization with PAR; in
endothelial cells and to favor a distinct Gs-activated
downstream signalling pathway.

PAR,-PAR, dimerization

Very recently, PAR,-PAR, heterodimer formation was
detected in transfected keratinocyte NCT-2544 cells and
in human embryonal kidney HEK 293 T cells using
FRET and co-immunoprecipitation techniques. This
dimerization was shown to play a role in membrane
trafficking and signal transduction of PAR, in these cells
[166]. This study provides the first evidence for a
functional PAR-PAR interaction where PAR,-PAR,
hetereodimer formation is facilitated by the plasma
membrane delivery of PAR, through disruption of its
binding to the endoplasmic reticulum protein, COP1
B-subunit (B-COP1), and by the interactions of PAR,
with the chaperone protein 14-3-3(. Of note, the associ-
ation of PAR, with PAR, markedly enhanced PAR,-me-
diated *H inositol trisphosphate (InsP3) accumulation in
NCT-2544 cells [166].

PAR,-PAR, homodimerization

In addition to heterodimerization there are now data
demonstrating PAR-PAR homodimer complex forma-
tion. Using bimolecular fluorescence complementation
(BiFC) and BRET, de la Fuente and colleagues provided
evidence for PAR, homodimer complexes in HEK 293 T
cells transiently transfected with PAR, [167]. Using a
panel of chimeric proteins and PAR, point mutants the
authors were able to map the region on PAR, required
for homodimers to a hydrophobic interface within trans-
membrane helix 4. In addition, they showed that point-
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mutations that disrupt PAR, homodimers also impair
signalling as measured by calcium mobilization [167]. As
outlined above, PAR, may form heterodimer complexes
with PAR; [143,153-157] and PAR, [166], respectively.
In this context, it will be interesting to investigate the
impact of PAR, homodimerization in relation to the
physical association of PAR, with the other members of
the PAR family, namely, PAR; and PAR,. One aspect of
the PAR-PAR homo- or heterodimer function that has
yet to be evaluated relates to the ‘biased’ signalling prop-
erties of PARs which are activated at ‘non-canonical’
cleavage sites to generate diverse ‘tethered ligand’ ago-
nists. Since these different ‘tethered ligands’ will confer
distinct active receptor conformations, it is likely that
the function of any putative PAR-PAR dimeric species
will differ considerably, depending on the sequence of
the proteinase-revealed tethered ligand. This issue re-
lated to ‘biased signaling’ by unique tethered ligands or
by different PAR biased agonists/antagonists has not yet
been evaluated and merits further attention.

PAR crosstalk with other signal transducers including
non-PAR G protein-coupled receptors, toll-like receptors,
ion channel receptors, transient receptor potential ion
channels, NOD-like receptors and cargo receptors

As already discussed briefly above, two different mecha-
nisms are critically involved in PAR receptor crosstalk:
(1) receptor transactivation and (2) receptor dimeriza-
tion/oligomerization. However, PARs are also capable of
communicating with various types of non-PAR signal
‘transducers’, including other GPCRs (P2Y12 receptor,
bradykinin B2 receptor, 5HT?2 receptor, angiotensin AT1
receptor), TLRs, ion channel receptors, transient recep-
tor potential ion channels, NOD-like receptors and
cargo receptors. In the following sections, we will pro-
vide an overview dealing with the crosstalk between
PARs and those other non-PAR signal transducers. Since
for PARs no data have yet been published about physical
interactions with other signal transducers, including the
other GPCRs, the following sections are focused on the
interplay of PARs with different signalling elements via
their signal transduction pathways, including interac-
tions at the level of gene transcription.

Crosstalk on a receptor signalling pathway level

Other G protein-coupled receptors

Interaction of PAR;/PAR, with purinergic P2Y recep-
tor subtype, P2Y12 In human platelets, the purinergic
P2Y12 receptor promotes thrombin- and collagen-
induced procoagulant activity [168] and induces the gen-
eration of the lipid mediator, thromboxane A2 (TXA2)
[169]. This increase in TXA2, known to be mediated by
activation of PAR; and PAR, [170-172], serves to recruit
other platelets to the site of injury and reinforces the
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platelet plug. The coordinated action of PARs 1 and 4,
along with the purinergic P2Y12 receptor to cause TXA2
generation has been investigated in more detail. According
to a working model [169] activation of phospholipase C-
(PLCB), results in an inositol (1,4,5) trisphosphate-
stimulated release of calcium from intracellular stores and
an activation of protein kinase Cs (PKCs). PLCp activation
and elevated intracellular calcium are critical for the
downstream activation of Src kinase, which then induces
p42/p44 MAPK activation. Both elevated intracellular
calcium and activation of PKCs lead to the secretion of
adenosine diphosphate (ADP) from the platelet-dense
granules and an initiation the primary phase of thromb-
oxane A2 (TXA2) generation. In a secondary phase, the
secreted ADP activates the Gj-coupled P2Y12 receptor
leading to a potentiation of the PAR-mediated activation
of p42/p44 MAPK and TXA2 generation [169]. Further-
more, Li and colleagues demonstrated on human platelets
a direct interaction of the P2Y12 receptor with PAR,
which regulates arrestin recruitment of PAR, and is
thought to contribute to thrombus formation in vivo
[173]. Thus, it appears that PAR-P2Y12 interactions occur
for PAR, and may take place for other PARs.

Interaction of PAR, with the bradykinin B2 receptor
Recent evidence suggests that the pro-inflammatory effects
of PAR, activation reported frequently by several groups
[174-176] are dependent on signalling by the bradykinin
B2 receptor (B2 receptor), since oedema in a rat paw in-
flammation model induced by the PAR,-selective agonist
peptide AYPGKF-NHj, can be blocked by administration of
the B2 receptor antagonist, HOE 140 [176,177]. The mech-
anism for this ‘crosstalk’ has not yet been elucidated.

A further example of PAR, crosstalk with the bradykinin
B2 receptor was observed by Russell and colleagues in a
rat knee model of joint inflammation [102]. In this
model, it was found that (1) PAR, activation by its pep-
tide agonist, AYPGKF-NH,, induced sensitization of
joint primary afferent sensory nerves in response to
mechanical manipulation and that (2) the sensitization
could be abrogated by HOE 140. Thus, the data indicate
that the PAR,-mediated effect on the mechanosensitivity
of knee joint afferent fibers is associated with bradykinin
B2 receptor activation, pointing to a PAR,-B2 receptor
crosstalk mechanism. Very likely, this kind of crosstalk
between the bradykinin B2 receptor and PAR, will be
found in other situations. Whether the crosstalk involves
a direct interaction between PAR, and the bradykinin B2
receptor remains to be determined.

PAR;-inter-relationships with the serotonin 5HT2 re-
ceptor and the angiotensin AT1 receptor: impact on
PAR; transcription Following disruption of the endo-
thelium, sub-endothelial cell layers are exposed. This
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exposure promotes the activation of platelets and the
initiation of the coagulation cascade resulting in the for-
mation of thrombin and other members of the clotting
enzyme family. Thrombin is present in balloon-injured
vessels several weeks after injury [178] and, as a potent
mitogen in fibroblasts and vascular smooth muscle cells
(VSMCs) [179,180], thrombin has been implicated in the
development of atherosclerotic lesions and restenosis by
activation of its receptor, PAR;.

In normal arteries, PAR; expression is detected in
platelets, leukocytes, and endothelial cells, but it is low
in VSMCs [23]. Notwithstanding, PAR; activation in ves-
sels causes an endothelium-independent contractile re-
sponse, indicating that the low abundance smooth
muscle PAR; receptors are indeed functional. However,
after vascular injury such as balloon angioplasty, PAR;
transcription is up-regulated in VSMCs [160,181], and
this phenomenon is thought to be a key event in the de-
velopment of vascular lesions and intimal thickening in
response to thrombin [182]. The enhanced receptor ex-
pression is regulated by factors produced by the vascular
wall and by activated platelets in the vicinity of the le-
sion. Besides basic fibroblast growth factor (bFGF) and
platelet derived growth factor (PDGF)-AA [183], the
GPCR agonists serotonin [184] and angiotensin II (AII)
[185,186] have been shown to increase the expression of
PAR; mRNA in VSMCs. While the effect of serotonin
(5HT) is mediated by the 5HT2 receptor and includes a
pathway sensitive to tyrosine kinase inhibitors genistein
and erbstatin A as well as inhibitors of PKC [184], AIl
increases PAR; mRNA expression via the AT-1 receptor
by a signalling route negatively regulated by PKC [185].
In addition, AII significantly increases (1) the thrombin-
induced release of 6-keto-prostaglandin-1, and (2) the
thrombin-induced contraction of endothelium-denuded
aortic rings [186]. Thus, the upregulation of PAR;
expression by angiotensin II (AIl) and 5HT at sites of
vascular injury may potentiate the mitogenic and vaso-
constrictor actions of thrombin in the vascular wall. This
kind of PAR-GPCR inter-relationship does not require a
physical interaction between the receptors.

PAR interactions with toll-like receptors Toll-like re-
ceptors (TLRs) are pattern-recognition receptors (PRRs)
that detect microbial structures (so-called, pathogen-
associated molecular patterns, or ‘PAMPs’) and in turn
activate cells of the ‘innate immune system’. The PAMPs
are usually thought of as structural motifs shared
between microbes [e.g. lipopolysaccharides (LPS) and
lipopeptides]. However, as pointed out by Vogel and col-
leagues, by responding to pathogen- or tissue damage-
derived proteinases, the PARs can be considered to
represent ‘non-classical’ ‘Pattern-recognition receptors’
that also trigger the innate immune system [187-189].
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PAR,, which is the best studied PAR with respect to an
inflammatory response to microbial exposure, like the
TLRs, is expressed highly in the respiratory and gastro-
intestinal tracts on epithelial cells, endothelial cells, mac-
rophages, and dendritic cells. TLRs and PARs are
distributed ubiquitously in the body and both PAR, and
the TLRs share the job of responding to pathogens. It
was noted by Vogel and coworkers, that the inflamma-
tory response caused by Citrobacter rodentium in mice
is dependent both on TLRs and on PAR, [187]. Based
on that association, it was proposed that there is signal-
ling crosstalk between PAR, and TLR4 [187-189].
Indeed, PAR, activation has been shown to deliver intra-
cellular signals that crosstalk with TLR signalling path-
ways [187-189] at least in part via a direct PAR,-TLR4
interaction [187]. Specifically, PAR, activation and
lipopolysaccharide (LPS) activation of TLR4 synergistic-
ally enhance inflammatory signalling in airway epithelial
cells by raising the level of PAR expression and secretion
of interleukin (IL)-8. The PAR, activating peptide,
SLIGKV-NH,, was capable of inducing NF-«B and
NF-«B-dependent IL-1p mRNA expression was dimin-
ished in TLR4~'~ macrophages. In vivo, PAR, activating
peptide-induced footpad edema was significantly dimin-
ished in both TLR4™~ and MyD88~'~ mice, supporting
the concept of PAR,-TLR4 receptor cooperativity in
which optimal PAR, signalling leading to an inflamma-
tory response requires TLR4 and MyD88. Zhou and col-
leagues [190] also reported a mutual regulation of
TLR4-PAR, expression in that LPS/TLR4 stimulation in-
creases PAR, expression on human colon cancer SW620
cells and a PAR, agonist induces TLR4 mRNA. Moreover,
the PAR, activating peptide (SLIGKV-NH,) augmented
LPS-induced IL-8 secretion and promoted proliferation
and migration synergistically with TLR4 in SW620 cells
[191]. Thus, there is crosstalk between PAR, and TLR4
that involves both direct receptor interactions and indirect
signal pathway crosstalk that result in an innate defense
inflammatory response.

In addition to stimulating an inflammatory response,
PAR, activation is also known to cause ‘protective’ sig-
naling in certain settings [67]. In this regard, the inflam-
matory cytokine response of primary murine peritoneal
and bone marrow-derived macrophages to TLR4 was
found to be diminished by PAR, stimulation [190].
Treatment with LPS and the PAR,-activating peptides,
SLIGKV-NH, and 2-furoyl-LIGRLO-NH,, resulted in a
concentration-dependent down-regulation of TNF-«, IL-
6, and IL-12p40 mRNA, and an increase in IL-10. It was
also observed that PAR, activation of wild-type macro-
phages enhances LPS-induced expression of interleukins
IL-4, IL-10, and IL-13, while suppressing expression of
the proinflammatory cytokines TNF-a, IL-6, and IL-12.
In vitro and in vivo PAR, and TLR4 signalling pathways
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intersect such that PAR, promotes development of an anti-
inflammatory IL-10 response while dampening the helper
T cell 1 (Thl)-like pro-inflammatory response induced by
LPS. PAR; activating peptides (SLIGKV-NH, and 2-furoyl-
LIGRLO-NH,) synergistically enhance LPS-induced mRNA
expression of alternatively activated macrophage markers
arginase-1, mannose receptor, and Ym-1 [189]. However,
the mechanistic basis of these interactions remains to be
elucidated.

Apart from TLR4, cooperative signalling convergence
has also been observed between PAR, and both TLR2
and TLR3 [188]. For mRNA induction of NF-kB-
dependent IL-8, the cooperation between PAR, and
TLR3 (poly I:C activation) was highly synergistic. It was
also found that PAR,-TLR3 coactivation can lead to dif-
ferential signalling outcomes in TLR3-stimulated muco-
sal epithelial cells. Thus, although PAR, and TLR3
synergize to up-regulate NF-kB-responsive genes, in the
context of a response to viral infection in which TLR3
senses viral RNA, PAR, stimulation of cultured lung
A549 epithelial cells causes a reduced expression of
TLR3-, and interferon-response-factor-3 (IRF-3)-driven
genes, and a suppression of TLR3-inducible STAT1 acti-
vation [188]. Interestingly, these in vitro observations
showing a negative impact of PAR, activation on TLR3-
induced gene expression in A549 and SW620 cells were
supported by results obtained in vivo, demonstrating
that PAR;’~ mice were more susceptible to a pulmonary
inflammatory response following intranasal infection
with pseudomonas than wild type mice [191]. Thus,
PAR, activation can exert both positive and negative in-
teractions when interacting with TLR signaling, depend-
ing on the identity of the TLR with which it interacts. It
remains to be determined if the PAR,-TLR interactions
observed when PAR, is activated enzymatically will ac-
curately reflect the observations that have been made
with the use of the PAR,-activating peptides.

In addition to having an impact on bacterial and viral in-
fection, interactions between TLRs and PARs also contrib-
ute to signal diversity in response to fungal infections
caused by Candida albicans and Aspergillus fumigates
[192]. These fungi activate PARs and trigger distinct signal
transduction pathways involved in inflammation and im-
munity (1) by differentially regulating PAR expression
through stimulating TLR2 and TLR4, both in poly-
morphonuclear neutrophils (PMNs) in vitro and in the
stomach and lungs of infected mice, (2) by releasing PAR-
regulating proteases from PMNs in a TLR-dependent
manner and (3) by releasing fungal proteases that can
cleave PARs and alter their capacity to signal. The signal-
ing crosstalk between PARs 1 and 2 and the TLRs repre-
sents another instance of PAR-TLR interactions, but the
precise mechanisms that lead to this signaling crosstalk in
fungal infections have yet to be determined [192].
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To sum up, PAR-TLR interactions, as hypothesized by
Vogel and colleagues [187] have been documented both
via direct (i.e. PAR-TLR interactions) and indirect (i.e.
signal crosstalk) mechanisms in a number of settings
ranging from the actions of lipopolysaccharide and other
TLR-activating ligands in cell expression systems to the
response of cells and tissues to TLR-activating ligands
in vivo. These interactions can involve not only the cells
of the innate immune response system (e.g. macro-
phages), but also tissue epithelial and vascular endothe-
lial cells [193].

PAR interactions with NOD-like receptors In addition
to synergizing with the toll-like receptors, the PARs also
appear able to interact with signalling via the NOD-like
receptors (NLRs) which like the TLRs are also activated
by pathogen-associated molecular patterns [194]. The
mechanisms whereby the NLRs can synergize with PAR
signalling, as observed for oral pathogens [195], remain
to be determined.

PAR interactions with multi-subunit ion channel receptors
and TRP ion channels

PARs 1 and 2 and the N-methyl-D-aspartate (NMDA)
receptor The effects of astrocytic PAR; activation on
neuronal health are complex and include both neuropro-
tective and neurotoxic activities [196-201]. This compli-
cated situation is mainly due to the ability of PAR; to
trigger different signalling pathways in multiple cell
types in the brain. At present, some of the PAR;-mediated
neuronal effects are thought to depend on its ability to po-
tentiate the function of the synaptic N-methyl-D-aspartate
(NMDA) receptor [196,202]. The NMDA receptor is a
ligand-gated ion channel that requires coactivation by two
endogenous ligands, glutamate and either D-serine or
glycine. The NMDA receptor plays a critical role in
higher level brain processes and has been implicated
for decades in neurological diseases such as stroke, trau-
matic brain injury, dementia and schizophrenia (for re-
view see [203]). Specifically, several lines of evidence
indicate that plasmin and thrombin can regulate the
function of NMDA receptors through PAR; activation.
While tissue plasminogen activator (tPA)-activated plas-
min has been suggested to induce PAR;-mediated regu-
lation of NMDA receptor function in a manner relevant
for synaptic plasticity and behaviour [204,205], NMDA
receptor activity seems to be necessary for thrombin/
PAR;-induced neurodegenerative effects under patho-
logical conditions such as ischemia or hemorrhage
[206,207]. For example, in granule cells of the dentate
gyrus, a subset of neurons, Han et al. showed that PAR;
activation leads to cell depolarization and potentiation
of synaptically activated NMDA receptor function [208].
This result supports the concept that PAR; can enhance
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neuronal excitability, which may promote NMDA-
receptor mediated neuronal damage [207]. Whether this
enhancement is due to an effect of PAR; on the NMDA
receptor or via the ability of PAR; to regulate neuronal
TRPYV channels (see below) remains to be determined.
There is growing evidence that astrocytes, a subset of
glial cells, are capable of participating actively in neur-
onal function (for review see e.g.: [209]). In these cells
PAR; is able to trigger calcium signaling. Interestingly,
Shigetomi et al. showed that under conditions when
[Ca®'] is appropriately elevated, by activating PAR;,
glutamate-NMDA receptor-mediated slow inward cur-
rents (SICs) in pyramidal neurons can be observed
[210]. A further example for a PAR;-NMDA interplay in
astrocytes was provided by Boven et al. who found that
the NMDA receptor is involved in PAR; mediated ef-
fects on gene expression including induction of inflam-
matory mediators, IL-1 and iNOS. This mechanism is
thought to contribute to neuronal damage during hu-
man immunodeficiency virus (HIV)-encephalitis [211].
Of importance, PAR,, like PAR;, is widely expressed in
the central nervous system under physiological condi-
tions. PAR, activation leads to a depolarization of hippo-
campal neurons and a paradoxical reduction in the
occurrence of synaptically driven spontaneous action po-
tentials. Gan et al. showed that PAR, activation induces a
profound long-term depression of synaptic transmission
that is dependent on NMDA receptor activation and is
sensitive to disruption of astrocytic function [212].

The P2X1 ion channel receptor and PAR4-a;4-adren-
ergic receptor crosstalk Besides the crosstalk of PAR;
and PAR, to regulate human platelet function and to
affect signalling by other G protein-coupled receptors,
complex interactions with ion channel receptors are also
possible. This complexity is illustrated by the way PAR,
and aps-adrenergic receptors can cooperate to cause
aggregation of aspirin-treated human platelets [213].
This effect can reverse the otherwise beneficial thera-
peutic effects of aspirin, which irreversibly alkylates and
inactivates human platelet cyclooxygenase. In such
aspirin-treated platelets, cooperative signaling by PAR,
and the apa-adrenergic receptor (but not PAR;) leads to
the release of platelet dense-granule-stored adenosine
triphosphate (ATP), which in turn triggers the P2X1
ATP-gated calcium ion channel to cause aggregation. It
is this complex mechanism that can bypass the inhibi-
tory effect of aspirin on platelet aggregation. This
example is provided to indicate how complex and con-
voluted the interactions of PAR signalling can be and to
alert the reader to the very rapid events that can accom-
pany PAR signalling so as to affect multiple effector
pathways simultaneously, even at the level of ion chan-
nel regulation.
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PAR interaction with transient receptor potential
(TRP) ion channels Transient receptor potential (TRP)
ion channels comprise a large 29-member family that
regulate the transmembrane cellular influx of cations
(mainly Na*; Ca®*) (for reviews, see: [214,215]). TRP
channel activity can be modulated by receptor signaling
triggered by both growth factor receptors and G
protein-coupled receptors. In this regard, PARs are no
exception, and their activation can influence TRP chan-
nel activity by a number of mechanisms involving: (1)
stimulating the hydrolysis of phosphatidylinositol (4,5)
bisphosphate (PIP2) to dissociate PIP2 from the channel,
(2) release of the second messenger, diacylglycerol, that
in turn can trigger PKC phosphorylation of the channel,
(3) triggering tyrosine kinase-mediated channel phos-
phorylation and (4) generating inositol (1,4,5) trisphos-
phate (InsP3), the partner of diacylglycerol release
that in turn elevates intracellular calcium to drive
calmodulin-dependent changes in channel function. In
principle, all of PARs 1, 2 and 4 could affect TRP chan-
nels by these mechanisms. The following paragraphs
provide some examples, with a focus on PAR,-regulated
TRPV1 and TRPV4 function.

At present, there is clear evidence that PAR, is func-
tionally involved in peripheral mechanisms of inflamma-
tion and pain [216-218], partly via sensitisation of
the transient receptor potential vanilloid subfamily 1
(TRPV1) receptor [218-222]. TRPVI1 (also designated
capsaicin receptor or vanilloid receptor 1), a member of
the TRPV group of transient receptor potential family of
ion channels comprising 4 subtypes (TRPV1-TRPV4),
functions as a sensor for thermal and acidic nociception
and is known to be critically involved in the processing
of somatic and visceral inflammatory pain [223,224].
Since inhibitors of phospholipase CB (PLCP), protein
kinase A (PKA), or PKC can abolish PAR,-mediated
transient receptor potential sensitization in vitro and
in vivo [219,220,225], it is evident that PAR, induces re-
ceptor sensitization through a canonical PLC/Ca**/PKC-
signalling pathway. For instance, a trypsin-PAR,-TRPV1
axis has been shown to be linked to pain in pancreatitis
[226,227]. In the skin, PAR,-triggered hypersensitivity to
heat can be diminished by pharmacological inhibition of
TRPV1 with capsazepine and is not observed in TRPV1
knockout mice [219,220]. In a relatively recently pub-
lished report Suckow et al. provide evidence that PAR,-
TRPV1 crosstalk mediates an extrinsic motor reflex
pathway in the rat colon [228].

Activation of PAR, is known to play a protective role in
myocardial ischemia-reperfusion (I/R) injury [229-231]. In
2002, McLean et al. provided first evidence for an inter-
action between PAR, and TRPVI1 in this cardiovascular
condition [232]. They showed that PAR, activation causes
endothelium-dependent coronary vasodilation that is
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preserved after I/R injury. Using hearts from TRPV1
knockout mice or wild-type mice it was found that PAR,-
induced cardiac protection against I/R injury depends at
least in part on PAR, activation of TRPV1 via stimulation
of the PKA or PKCe pathways leading to the sensitization
of neuronal TRPV1 and a release of the inflammatory
mediators, calcitonin gene-related peptide (CGRP) and
substance P (SP) [233]. This PAR,-PKA/PKCe-TRPV1-
CGRP/SP signalling route may serve as a promising path-
way for the development of future multitarget therapies
for cardiac injury and inflammation.

In a similar vein, Vellani et al. showed that PAR; and
PARy, by activating PKCe, causes sensitization of TRPV1
and promotes the heat-dependent release of the pro-
inflammatory neuropeptide CGRP in a sub-population
of nociceptive neurons [234]. These data provide an ex-
planation for the inflammatory effects of higher levels of
thrombin and specific PAR;,, agonists. Thus, following
injury and rupture of blood vessels, the release of signifi-
cant amounts of thrombin could act on nociceptive
nerve terminals, sensitizing TRPV1 to heat stimuli and
promoting the release of pro-inflammatory neuropep-
tides such as CGRP.

An instructive example of PAR-TRPV channel interac-
tions has come from a study of the regulation of TRPV4
function by PAR,, which stimulates a sustained influx of
calcium via the channel [235]. This sustained calcium in-
flux results from a Src-mediated phosphorylation of a
target tyrosine on TRPV4. Thus, tyrosine kinase phos-
phorylation of TRPV channels as well as protein kinase
C-mediated regulation can lead to PAR-TRPV channel
interactions. No doubt, other GPCRs can also cause
comparable effects to regulate the TRPV channels.

In summary, activation of all of PARs 1, 2 and 4 can
lead to a modulation of TRPV channel function, involv-
ing TRPV1, TRPV4 and even TRPA1 [236]. To date, this
regulation has been found to result from the activation of
kinase signalling pathways by the PARs that in turn target
the TRPs, rather than via direct PAR-TRPV channel inter-
actions. Whether the PARs can interact directly with TRP
channels to regulate activity remains to be seen.

Crosstalk at the level of receptor trafficking

A role for PAR, in membrane trafficking of PAR, As
already outlined above, overexpressed PAR, and PAR,
are able to form heterodimer complexes in keratinocyte
NCT-2544 cells and in human embryonal kidney HEK
293 T cells [166]. The data from this study provide evi-
dence for a functional PAR-PAR interaction where
PAR,-PAR, heterodimer formation is facilitated by the
plasma membrane delivery of PAR, through disruption
of its binding to the endoplasmic reticulum protein,
COP1 B-subunit (B-COP1), and by the interactions of
PAR, with the chaperone protein 14-3-3(. Of note, the
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association of PAR, with PAR, markedly enhances
PAR,-mediated *H-InsP3 accumulation in NCT-2544
cells [166].

PAR association with cargo receptors (p23, p24A)
The underlying mechanistic basis for the internalization,
recycling and lysosomal sorting of PARs is just beginning
to emerge (for review see e.g.: [237]). P23 and p24A are
transmembrane proteins [238] that function as coat pro-
tein receptors as well as cargo receptors by cycling be-
tween the endoplasmic reticulum (ER) and the Golgi
apparatus. These proteins are involved in protein trans-
port and quality control in the early secretory pathway
[239]. Recently, Reiser and colleagues demonstrated that
p23 and p24A interact with PAR; and PAR, and func-
tion as cargo receptors in the post-Golgi trafficking of
PAR; and PAR, [240,241]. Since intracellular trafficking
of GPCRs regulates spatial and temporal receptor signal-
ling, this crosstalk may be important for the physio-
logical and pathophysiological functions of PAR; and
PAR,, respectively.

Proteinase-activated receptor signalling, receptor
dimerization and crosstalk: challenges for
therapeutic drug development

Receptor homo- and hetero-dimerization, PAR function
and PARs as therapeutic targets

As outlined in previous sections, PARs are able to func-
tion both as monomeric receptors and as partners in a
variety of PAR-PAR, PAR-GPCR and PAR-non-GPCR
effector complexes. A key issue to deal with is the thera-
peutic relevance of this ability of PARs to form multi-
meric signalling complexes. This ‘pairing’ of G protein-
coupled receptors has a substantial impact on the action
of both PAR agonists and antagonists because of the
‘biased signalling’ that can ensue for either homo- or
heterodimers [41]. This issue is relevant not only to the
PARs themselves, but also to the potential ‘partners’ with
which PARs may signal, since the non-PAR targets will
also have their own set of agonists and antagonists.

This dimerization process is of importance for recep-
tor maturation, internalization and downstream G
protein coupling, as summarized in depth elsewhere
[242-246]. The therapeutic relevance of this ‘dimeriza-
tion’ process is that hetero-oligomers can have func-
tional pharmacological characteristics that differ from
the homo-oligomers, so as to cause distinct signalling
and thus to alter a therapeutic impact [246]. The impact
on signalling can be due to two issues: (1) the ability of
only one of the two dimerized receptor subunits to gen-
erate a signal and (2) the triggering of unique ‘biased sig-
nalling’ [41,247] by individual agonists or antagonists
that regulate one or both members of a receptor dimer.
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Therapeutic implications of PAR homo- and heterodimeri-
zation and ‘biased signalling’

The ability of selected ligands to drive different receptor
conformations, so as to trigger distinct interactions with
downstream effectors has been termed ‘functional select-
ivity’ or ‘biased signalling’, as discussed above. In the case
of receptor homo- or heterodimers, this flexibility is even
more complex than in the case of a receptor signalling as
a ‘monomer’ [247]. In the case of documented signalling
by GPCR heterodimers (e.g. by angiotensin AT1 receptor-
beta-2-adrenoceptors (ADRB2) dimers [248]), it has been
possible to show that a validated antagonist for one recep-
tor can affect the actions of the ‘partner’ in the dimer. For
instance, the non-selective beta-adrenoceptor blocker,
propranolol, is able to affect the ability of both angiotensin
II and isoproterenol to attenuate agonist-stimulated
myocyte contractility that is activated by angiotensin
AT1-ADRB2 dimers [248]. Conversely, the angiotensin
AT1 antagonist Valsartan can inhibit coupling of the beta-
adrenoceptor to G;. These data, consistent with signalling
by a heterodimeric receptor (AT1/ADRB2), depend on the
well-established receptor antagonists, propranolol and
valsartan. Unfortunately, this strategy is seriously ham-
pered for evaluating the function of PAR homo- or
heterodimers, because only a handful of therapeutically
useful PAR antagonists are currently available [7], and be-
cause their mechanisms of PAR antagonism have been
largely unexplored, except for their ability to block platelet
aggregation (PAR; antagonists) and calcium signalling via
presumed Gg activation (PAR; and PAR, antagonists).
The very recent elucidation of the structure of PAR;
bound to its antagonist Vorapaxar [249] will provide a
scaffold to understand these mechanisms better and to
facilitate the development of novel and specific PAR
inhibitors. In addition, the crystallographic data seem to
be helpful in identifying potential loops that will confer
PAR receptor crosstalk via physical protein-protein
interactions. For PAR,, in contrast with PAR;, the antago-
nists that have been developed so far have not yet proved
of clinical utility in humans, although successful in dimin-
ishing inflammatory responses in rodent models of
inflammation in vivo [250-253]. The promising PAR,
antagonists, Pepducin-P2pal-18S [250] and GB88 [251]
have been found to be ‘biased antagonists’ that block
Gq-mediated calcium signalling, However, these antago-
nists do not affect either the agonist-stimulated inter-
action of PAR, with beta-arrestin or the ability of PAR,
agonists to trigger receptor internalization [254]. Further,
GB88 proves to be a ‘biased agonist’ that triggers both
MAPK activation and an interaction of PAR, with beta-
arrestin [254,255]. What has not yet been evaluated in
depth is the ability many of the available PAR; antagonists
to act as either full or biased antagonists for either
PAR; or PAR, activation. More importantly, the effects
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of these compounds on signalling by PAR;/PAR, heterodi-
mers that can generate thrombin-stimulated signalling
responses that are distinct from signalling activated by
receptor homo-dimers [152] have not been considered.
Thus, although of great therapeutic importance, the
potential for the available PAR antagonists to affect
signalling crosstalk between either (1) the PARs them-
selves (e.g. as independent crosstalk pathways or as
heterodimers) or (2) via transactivation of other
receptors, like the one for EGF (below), remains to be fully
explored.

PARs as therapeutic targets

The knowledge of the ability of PARs to cross-activate
other receptor kinases or to synergise and/or form het-
erodimers with other members of the PAR family in
driving specific pathophysiologic processes/diseases may
possibly be exploited for a therapeutic benefit. In the last
part of this review we would like to highlight those inter-
actions that may have some pathophysiologic relevance
and speculate as to whether one can target these signal-
ling crosstalk interactions pharmacologically to benefit
patients. In cases where both signalling partners have
been identified, a combined drug approach for multi-
target therapy seems promising. As already outlined
above, to date no PAR-targeting drug has yet found its
way into routine use in the clinic, although a number of
PAR; antagonists have been evaluated. Therefore, the
following sections deal in a speculative way with the
various settings in which targeting the PARs may prove
of therapeutic value. It is to be emphasized that the con-
siderations outlined in the previous paragraphs will bear
directly on the development of PAR-targeted therapeutic
agents for the clinical situations to be described.

Cardiovascular disease

A disease state, for which PAR-targeted intervention
seems likely is cardiac injury where PAR; and PAR, sig-
nalling via EGFR transactivation contributes to the regu-
lation of cardiac physiological and pathophysiological
functions and remodeling, while activation of PAR, plays
a protective role in myocardial ischaemia-reperfusion in-
jury [229-231] through an interaction between PAR, and
TRPV1 [232,233]. In addition, the PAR,-PKA/PKCe-
TRPV1-CGRP/SP pathway may serve as a promising tar-
get for the development of future multitarget therapies
for cardiac injury and inflammation [232,233].

In the regulation of vascular responses/atheroscler-
osis/stenosis, the combined use of specific PAR antago-
nists may be useful to block the functional coupling
between PAR; and PAR, on vascular smooth muscle
cells. This coupling appears to be responsible for the
ability of PAR, to regulate the PAR; hyperplastic re-
sponse to arterial injury leading to stenosis [150]. The
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prevention of stenosis may also be achievable with the
combined use of PAR; antagonists and the ATII receptor
antagonists, Losartan, Valsartan or Irbesartan, or sero-
tonin receptor blockers like the second-generation sero-
tonin 5HT3 receptor antagonist Palonosetron. The idea
behind this suggestion is to prevent upregulation of
PAR; expression/activity by AIl and 5HT at sites of vas-
cular injury. This upregulation may potentiate the mito-
genic and constrictor actions of thrombin.

Lung fibrosis

PAR activation with or without transactivation of EGFR
is also of importance in the pathophysiology of the lung,
particularly in lung fibrosis. The use of PAR,-, PAR,-,
and/or PAR;-specific antagonists along with EGFR blockers
may be considered here since (1) PARs-mediated EGFR
signalling promotes alveolar epithelial-mesenchymal tran-
sition, an important mechanism in pulmonary lung fibro-
sis [108], (2) PAR,-mediated EGFR activation promotes
the release of profibrotic IL-8 in human lung epithelial
cells [109], and (3) PAR;-mediated enhancement of
aVp6-dependent TGF-P activation results in activation
of the ALK5 kinase [50] and consequently profibrotic
TGE-B responses. Since an overstimulation of PAR;-
mediated enhancement of aVp6-dependent TGF-f acti-
vation promotes acute lung injury [61], a combined
therapy with PAR; antagonists and TGF-p signalling
inhibitors (see below) may be considered.

PAR; and EGFR activation have been shown to stimu-
late migration of cultured HaCaT keratinocytes [96].
Hence, in patients that suffer from wound healing prob-
lems, e.g. diabetic patients, combined treatment with
PAR; + EGEFR agonists could be envisaged. If overstimu-
lation of this process is involved in scarring then
treatment with PAR; + EGFR antagonists could be con-
sidered as an option.

Arthritis

Work with PAR,-null mice has identified PAR, as a poten-
tial therapeutic target for arthritis [103]. PAR; is also
thought to be involved. Since a role for PAR;-EGFR inter-
play in rheumatoid arthritis has been suggested [97] it
may be worthwhile to test in a clinical study a combin-
ation of PAR; and EGFR antagonists as outlined above.

Cancer

As mentioned in previous sections, EGFR transactivation
in response to the stimulation of PARs occurs in a large
number of cancers and is believed to contribute to
cancer development and progression. Hence, the thera-
peutic targeting of PAR-EGEFR interactions appears to be
an extremely promising strategy. With respect to the
progression of colon cancer, this mechanism includes
PAR,-mediated EGFR transactivation and a subsequent
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increase of COX-2 expression in colonic epithelial can-
cer cells [127]. Moreover, in colon cancer cells, PAR;
and PAR, induce migratory and proliferative effects that
involve transactivation of the EGFR and activation of
p42/p44 MAPK signalling pathways [112-114]. Likewise,
activation of PAR; by thrombin induces persistent EGFR
and ErbB-2 transactivation, sustained p42/p44 MAPK
signalling, and invasion in breast cancer cells [122]. The
EGER transactivation by PAR; or PAR, leading to COX-
2 expression [124], enhanced cell proliferation in colon
carcinoma cells [112,113] and cell migration in renal
carcinoma cells [111] is dependent on matrix metallo-
proteinase (MMP) activity. Hence, pharmacologic
targeting with PAR;/PAR, and EGFR antagonists may
be supplemented with MMP- and possibly COX-2
inhibitors.

In liver carcinoma cells, PAR, triggers transactivation
of the tyrosine kinase receptor, Met, to promote cell mi-
gration and invasion [54,55] and exhibits signalling
crosstalk with the PDGFR to induce phosphorylation
and activation of the PDGFR [53]. This result suggests
that the combined use of a PAR, antagonist together
with inhibitors for Met or the PDGFR will prove of value
in the anti-metastatic therapy of hepatocellular carcin-
oma. The combined use of PAR; and PAR, antagonists
my be beneficial in malignant melanoma since studies
on melanoma cells have indicated that stimulation of cell
motility by thrombin requires not only the activation of
PAR; but also the simultaneous activation of PAR,
[137]. As mentioned above, our own observations indi-
cate that PAR, expression is required for full-blown
TGEF-B/ALK5-induced migratory responses in vitro. Pre-
clinical studies have provided convincing evidence that
targeting the TGF-p pathway is able to inhibit tumor
growth and metastasis in vivo [256]. For instance, small
molecule inhibitors that target the kinase activity of
TGEF-BRI/ALK5 have been evaluated in preclinical
mouse models of cancer (SD-208, SX-007, LY2109761)
or are already being tested in clinical studies in cancer
patients [(LY573636, LY2157299), ([256] and references
therein)]. One hopes that a therapy combining PAR, an-
tagonists with (small molecule) kinase inhibitors may ex-
hibit synergistic effects in treating metastatic disease of
late-stage carcinomas.

In the intestine, PAR, participates in the progression
from chronic inflammation to colon cancer by crosstalk
with PGE2/EP signalling [127]. Disrupting this crosstalk
with PAR, and/or PGE/EP inhibitors could potentially
represent a powerful approach in preventing colon car-
cinoma at a very early step.

A PAR;/PAR, two-receptor system has been demon-
strated to mediate a closely related thrombin-induced
signalling and cell migration process in both astrocy-
toma [138] and hepatocellular carcinoma [158]. If this
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response can be shown to contribute to tumor progres-
sion/metastasis, it may be worth targeting the cancer
with agents that disrupt the PAR;-PAR, interactions. In
summary, in the oncology field a number of possible set-
tings can be envisaged for the use of agents that target
PAR-stimulated receptor transactivation processes.

Inflammation, pain and infection

PAR;, PAR,, and PAR, have all been implicated in in-
flammation and infection, mostly with pro-inflammatory
roles. The PAR; and PAR,-mediated sensitization of
TRPV1 resulting in the heat-dependent release of the
pro-inflammatory neuropeptide CGRP in a sub-popula-
tion of nociceptive neurons [234], may be targeted with
PAR;/PAR, and TRPV1 inhibitors, while the synergistic
PAR,/LPS enhancement of inflammatory signalling in
airway epithelial cells [188] may be blocked by combin-
ing a PAR, and a TLR4 inhibitor.

Pro-inflammatory effects of PAR, activation have been
reported to be dependent on an interaction of PAR, with
the bradykinin B2 receptor. Administration of peptide-
type B2 receptor antagonists (HOE-140 [176,177], NPC
567, or CP-0127) together with a PAR, receptor antag-
onist may be a promising approach to the treatment of
joint inflammation and joint primary afferent activity in
response to mechanical stimuli. In a sepsis mouse
model, PAR; agonists can have a protective effect on
endothelial barrier function and survival in mice [149].
In that study, the PAR; agonist promoted transactivation
of PAR, by PAR; and this transactivation switched the
physiological response of the endothelial cells from bar-
rier disruptive to barrier protective. That kind of re-
sponse reversal for PAR; signalling can also depend on
the setting of PAR; activation (caveolar vs not) and on the
activating enzyme (e.g. direct PAR; activation by thrombin
promotes endothelial barrier disruption, whereas receptor
activation by activated protein-C results in increased bar-
rier function) [15,18]. A barrier-protective outcome may
also result from the inhibition of the interaction of PAR;
with PARj, the latter of which alters the selectivity of
PAR; for G;3 coupling and promotes endothelial barrier
dysfunction.

Activation of PAR, has been implicated in pain in arth-
ritis [100,101,103], pancreatitis [226,227], PAR,-triggered
hypersensitivity to heat in the skin, and in neuropathic
pain induced by paclitaxel [236]. Since in some cases the
pain could be diminished by pharmacologic inhibition of
TRPV1 with capsazepine, a more effective suppression of
pain may be achieved with specific PAR, antagonists once
these have successfully passed clinical trials.

Neurodegeneration
NMDA receptor activity seems to be necessary for
thrombin/PAR;-induced neurodegenerative effects under
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certain pathological conditions [206,207]. Specific PAR;
antagonists, in addition to NMDA receptor blockers in
clinical use such as Ketamine would very likely be useful
in preventing PAR; from inducing NMDA receptor-
mediated neuronal damage resulting from ischemia or
haemorrhage.

Summing up

This review provides a broad overview of what is known
about the impact of PAR receptor-receptor interactions,
either via direct or indirect mechanisms, on the regula-
tion of cell and tissue function. From the variety of these
receptor interactions and their diverse physiological and
pathological roles it becomes clear that targeting this
PAR-receptor crosstalk represents a promising but so far
neglected strategy for modulating PAR signalling in dis-
ease. As outlined in a recent review on a related topic, a
better understanding of the mechanism(s) of transactiva-
tion will provide novel possibilities for blocking the ac-
tions of PAR agonists and, as a consequence, their
pathophysiological role in a range of diseases [257]. De-
pending on the nature of the interactions it may suffice
to target only the PAR to prevent subsequent transacti-
vation of the partner receptor. Alternatively, it may be
necessary to block both the PAR and its interaction part-
ner(s), or its/their downstream pathway(s), simultan-
eously in order to enhance the therapeutic efficacy.
Although most of the above therapeutic considerations
still remain speculative, evaluating them in (pre)clinical
studies would add another dimension to PAR-directed
drug therapy.
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