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Abstract

Though a widely utilized term and clinical concept, ovarian reserve (OR) has been only inadequately defined. Based
on Medline and PubMed searches we here define OR in its various components, review genetic control of OR,
with special emphasis on the FMRT gene, and discuss whether diminished OR (DOR) is treatable. What is generally
referred to as OR reflects only a small portion of total OR (TOR), a pool of growing (recruited) follicles (GFs) at
different stages of maturation. Functional OR (FOR) depends on size of the follicle pool at menarche and the
follicle recruitment rate. Both vary between individuals and, at least partially, are under genetic control. The FMRI
gene plays a role in defining FOR at all ages. Infertility treatments have in the past almost exclusively only centered
on the last two weeks of folliculogenesis, the gonadotropin-sensitive phase. Expansions of treatments into earlier
stages of maturation will offer opportunity to significantly improve ovarian stimulation protocols, especially in
women with DOR. Dehydroepiandrosterone (DHEA) may represent a first such intervention. Data generated in
DHEA-supplemented women, indeed, suggest a new ovarian aging concept, based on aging of ovarian
environments and not, as currently is believed, aging oocytes.

Background
Though by some suggested to be renewable [1], current
dogma still holds that women are born with their com-
plete oocyte pool for life [2]. It is mostly made up of pri-
mordial follicles, containing oocytes arrested in meiotic
prophase I, and remaining quiescent until recruited into
follicle maturation. How primordial follicles are activated
to enter maturation is not well understood yet but
reflects complex processes of bi-directional signaling
between oocytes and surrounding somatic cells [3]. In
the mouse an important recent paper by Reddy et al sug-
gested that oocyte-specific deletion of Pten (phosphatase
and tensin homologe deleted on chromosome 10) results
in premature activation of the primordial follicle pool,
leading to premature ovarian failure (POF)/primary ovar-
ian insufficiency (POI) [4]. Whether human activation
may follow a similar pathway remains to be seen
Recruitment is a steady process. Cohorts of resting
primordial, also called non-growing follicles (NGFs), are
consistently recruited though, ultimately, only one single
oocyte usually reaches ovulation [5]. Over more than
four months of follicle maturation randomly recruited
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follicles are progressively aligned into generational
cohorts of maturing follicles. At random recruitment is,
thus, converted into episodic maturation, ultimately
leading into regular menstrual cycle patterns. Even
when ovulation fails, as often the case in polycystic
ovaries, by time of maturation arrest, follicle cohorts
appear already mostly aligned in size and maturation
stages.

Normal young ovaries usually manage conversion
from anarchical recruitment to episodic cyclic matura-
tion well. Older and more dysfunctional ovaries, how-
ever, no longer do. Increasing dysfunction in alignment
will, therefore, cause increasingly inhomogeneous follicle
cohorts, entering the gonadotropin-sensitive stage of fol-
liculogenesis. Older women, therefore, demonstrate
wider oocyte maturation ranges than normal function-
ing, younger ovaries [6].

The importance of this follicle alignment process has
not been well appreciated. Historically, fertility treat-
ments, almost exclusively, depended on the gonadotro-
pin-sensitive last two weeks of follicle maturation before
ovulation. Practically all clinical and pharmacologic
research has been directed at these two weeks, when
alignment is already completed.
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This manuscript proposes that improvements in cur-
rent ovarian stimulation protocols, and fertility treat-
ments in general, require a redefinition of what
constitutes a complete “treatment cycle.” Such reconsi-
deration begins with the acknowledgment that follicle
cohorts, entering their gonadotropin-sensitive phase, are
products of already months-long maturation, taking
place within distinct, age-specific ovarian environments,
which are subject to dramatic changes as women age.
Only treatments directed at these earlier stages of folli-
culogenesis will further improve ovarian stimulation.

What is ovarian reserve (OR)?

Ovarian reserve (OR) is a widely used term that has lar-
gely remained undefined, and, to some degree, even
misused. What is generally referred to as OR, really
represents only small components of total ovarian
reserve (TOR). A woman’s cumulative hypothetical
pregnancy chance is mathematically reflected in her
complete follicle pool, her TOR. Since TOR declines
with age [2], “ovarian age” is another frequently heard
term to describe a woman’s remaining reproductive
capacity.

TOR mostly consists of NGFs (largely primordial folli-
cles) and to a lesser degree of maturing growing follicles
(GFs) after recruitment. But only the latter reflect the
so-called functional OR (FOR), referred to in the litera-
ture, when the acronym OR is used. Concomitantly,
when the acronym DOR is used, the meaning is to refer
to diminished FOR.

Over time follicle recruitment diminishes TOR. In
aging women, FOR, in parallel, declines reasonably pre-
dictably, and in age-specific boundaries [7,8]. Normal
physiologic ovarian aging (NOA) is, thus, defined by
age-specific declines of FOR within expected ranges.

Approximately 10% of women deviate from age-specific
standards [9] and, before reaching menopause, are
assumed to suffer from premature ovarian aging (POA)
[8], also called occult primary ovarian insufficiency
(OPOI) [10]. NOA and POA/OPOI share many charac-
teristics but differ in others (Table 1): The size of a
woman’s initial follicle pool between birth and menarche
is of great importance because it reflects the symbolic
starting point of follicle depletion (though considerable
depletion, of course, occurs already in-utero.) Published
OR models demonstrate that, due to genetic preprogram-
ming, pools vary greatly in size [11,12]. Wallace and Kel-
sey, suggest between 35,000 and 2.5 million follicles
(average 295,000) per ovary at birth, and significantly
smaller numbers by time of menarche [12].

Recruitment rates also appear to vary: The same
model suggests a wide range of 100 to 7,500 follicles per
month entering maturation and growth, with peak num-
bers reached at approximately age of 14. Thereafter,
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Table 1 Characteristics of ovarian aging
Characteristics of ovarian aging References
Varying initial oocyte numbers between individuals at [11,12]
birth/menarche
Varying pace of follicular recruitment between individuals [12]
Decreasing pace of follicular recruitment with advancing age [12]
Decreasing numbers of follicles in folliculogenesis with
advancing age
Increasingly poor egg quality with advancing age [13-15]

Due to decreasing follicles in folliculogenesis and poorer egg
quality:

Decreasing embryo quality with advancing age
Decreasing spontaneous fecundity with advancing age
Decreasing oocyte numbers in [VF with advancing age
Decreasing embryo numbers in IVF with advancing age

Decreasing pregnancy rates with IVF [7.8,15-18]
Decreasing pregnancy rates with infertility treatments in [19]
general
Increasing aneuploidy with advancing age* [20] - [22]

*Women with POA/OCPOI, though demonstrating all other characteristics of
NOA, at prematurely young ages still demonstrate normal, age-appropriate
aneuploidy rates [26]. While clinically in all other characteristics exhibiting
characteristics of “older” ovaries, embryo quality will still be relatively good,
allowing for excellent pregnancy chances with IVF

recruited follicle numbers persistently decrease, irrespec-
tive of original follicle numbers [12]. Combined, starting
follicle numbers at menarche and follicle recruitment
rates thereafter, therefore, determine remaining TOR
and number of recruited follicles at all ages. Once
recruited into maturation, follicles become GFs.

Why all of this matters

Recruitment after menarche inversely correlates with
remaining TOR [3]. Like starting follicle numbers,
recruitment rates are also genetically preprogrammed.
Genetics at all ages, thus, play a dominant role in deter-
mining TOR (for further detail, see FMRI discussion
below).

Fecundity (spontaneous conception chance) and ferti-
lity treatment success depend on TOR, and especially
FOR: The lower FOR, the poorer are overall chances of
conception [2,5]. As TOR and FOR decline with advan-
cing age, pregnancy chances, therefore, decline in
parallel.

Table 1 summarizes what defines normal ovarian aging
(NOA): As recruited follicle cohort sizes decline, fewer
follicles enter maturation, producing fewer preovulatory
oocytes [12]. In parallel, oocyte quality declines [13-15],
leading to smaller oocyte yields and poorer oocyte quality
with in vitro fertilization (IVF) [7,8,15-18], poorer IVF
pregnancy rates [16,18] and lower pregnancy rates after
infertility treatments, in general [19]. In addition, embryo
aneuploidy [20-22] and miscarriage rates [23,24] increase,
ultimately resulting in poorer delivery rates after
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spontaneous pregnancies, and pregnancies following
treatment [25].

Except for age-specific aneuploidy rates [26], all of
these NOA characteristics are also shared by POA/
OPOIL. This one difference represents, however, a princi-
pal reason why pregnancy rates in POA/OPOI patients
are usually higher, even if objectively measured FORs
are similar [27].

The clinical relevance of defining OR correctly

Since most GFs are on the way towards degeneration
and apoptosis, only still unrecruited primordial (NGFs)
really represent the true remaining TOR [11,12]. A clini-
cal tool to assess NGFs does not exist. GFs, which are
routinely assessed in clinical practice, and often erro-
neously referred to as OR, really reflect only a relatively
tiny fraction of all follicles. It is only that small fraction
of follicles that is clinically assessed by follicle stimulat-
ing hormone (FSH), anti-Miillerian hormone (AMH)
and antral follicle counts (AFCs). We, therefore, in clini-
cal practice only assess FOR, and a very short time
sequence in a woman'’s follicle maturation.

Currently available ovarian assessment tools, therefore,
only assess GFs or FOR. Likely still present unrecruited
primordial follicles, if recruited, could offer significant
additional pregnancy chance. They, however, remain
unmeasured. Potential therapeutic opportunities for
women with diminished FOR, therefore, appear obvious!

Clinical utility of OR assessments

FSH, AMH and AFCs offer information on somewhat
varying follicle populations within GFs. For example,
post-primordial pre-antral, small follicles are, likely, best
reflected in AFCs and by AMH, while larger gonadotro-
pin-sensitive follicles are best represented by FSH
[28-31]. Grynberg et al, however, recently reported that,
in combination, large follicles show much poorer corre-
lation to FSH and inhibin B than smaller antral follicles
<7 mm size [32].

Potential differences in specificity are clinically impor-
tant: For example, AMH appears more specific than
FSH in predicting oocyte yields [33-35] and pregnancy
chances [33-37]. This should not surprise since smaller
pre-antral and antral follicles, which strongly associate
with serum AMH concentrations, represent a majority
of GFs. Antral follicles to a degree, however, also affect
FSH [32]. Large differences in specificity between these
two OR assays can, therefore, not be expected, reflected
in relatively good overall clinical correlations between
FSH and AMH assessments [38].

Which assays are utilized assumes more importance at
their limits of sensitivity. For example, the AMH ELISA,
in service at our center, defines undectable as <0.1 ng/
mL [39]. Like abnormally high FSH (>15.0-20.0 mIU/
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mL), most fertility centers currently consider very low
AMH (<0.8 ng/mL) diagnostic of severe DOR and,
therefore, a contraindication to infertility treatments
with use of autologous oocytes [40]. In such situations
patients are, thus, denied treatment based on only GF
assessments, and irrespective of TOR.

Assessments are currently at their best in young to
middle aged women with normal age-specific OR,
where, clinically, they are needed the least. Figure 1
demonstrates the 95% confidence intervals (CIs) of FSH
and AMH at different ages. Both demonstrate narrowest
ranges at approximately 32 to 33 years and the widest
ClIs at youngest and oldest ages [7]. Similar observations
of decreasing specificity for FSH and AMH at extreme
ages were also made when discrepancies between FSH
and AMH were investigated in age-specific fashion [41].
While FSH and AMH, thus, in principle correlate well
[38], differences between these two OR assays can be
observed in individual patients, which then do have clin-
ical significance [41].

We previously noted that recruitment rates inversely
relate to TOR [3]. Elevated FSH and abnormally low
AMH, therefore, do not preclude continuous potential
availability of even substantial unrecruited NGFs. Poor
GF numbers, reflecting poor FOR, therefore, do not sug-
gest absence of all follicles.

Even POF/PO], and in physiologic menopause ovaries
still contain substantial numbers of NGFs. A form of
POEF/PO]I, characterized by steroidogenic cell autoimmu-
nity, demonstrates almost uniformly preserved follicle
pools on ultrasound [28]. Indeed, in the past considered
a rare finding, follicles can be seen on ultrasound in
over a third of POF/POI cases [42]. Women with phy-
siologic, age-appropriate menopause also almost uni-
formly still demonstrate follicles in their ovaries
[11,12,43]

To contribute functionally, NGFs, however, also must
be recruitable. Medications with ability to regulate folli-
cular recruitment, therefore, have the potential of revo-
lutionizing fertility treatments. Here is one, potentially
already available, small example: If FSH, indeed, as
reported recently, is also able to affect recruitment of
primordial follicles [44,45], long-term, uninterrupted
FSH exposure may, cumulatively, result in superior
ovarian stimulation results to intermittent one-cycle sti-
mulations, which have been clinical “dogma” for dec-
ades. In women with severely diminished ovarian
reserve we, indeed, have preliminary evidence that this
may be the case (Gleicher N and Barad DH, unpub-
lished data). Specific medications with abilities to either
down-regulate recruitment (for example with polycystic
ovaries) or up-regulate recruitment (with low FOR)
could then be the next development stage in fertility
medications.
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Figure 1 Age-specific FSH and AMH levels: (Modified from Barad et al., 2010, with permission). The Figure presents on exponential scale
age-specific AMH (ng/mL) and FSH (mIU/ML) in a center-specific patient population of oocytes donors and infertility patients. Modified with

Controlling OR

Wallace and Kelsey recently reaffirmed that ovarian
aging varies between individuals [12]. Using age at
menopause as end points, they determined that speed of
follicle recruitment and follicle numbers vary signifi-
cantly at different stages of life. We have come to simi-
lar conclusions, recently describing effects of the FMRI
gene on the ovary [46].

Evaluations of the FMRI gene have become increas-
ingly popular because of the gene’s neuro/psychiatric
effects [47]. It, however, also, independently, demon-
strates specific ovarian effects [46]. Increased risk for
POF/POI in women with premutation-range (ca.

55-200) CGG triple nucleotide repeats has been
known for decades [47] but that even lower CGG
repeat numbers may also denote risk towards prema-
ture ovarian senescence, at times representing milder
forms of so-called POA/OPOI, is a more recent dis-
covery [48-51].

The genotypes relating to ovarian function are dis-
tinctly different from the genotypes historically reported
to define the gene’s neuro/psychiatric risks. In regard to
ovarian function, 26 to 34 CGG nucleotide repeats
represent normal (median 30), independent of ethnicity/
race [49]. Using this range to define genotypes, women
can be designated as normal (norm), when both alleles



Gleicher et al. Reproductive Biology and Endocrinology 2011, 9:23
http://www.rbej.com/content/9/1/23

are in normal range, heterozygous (het) if one is normal
and the other abnormal and homozygous (hom) if both
alleles are outside normal range.

Figure 2 demonstrates linear regressions of AMH over
age, depending on whether women are norm, het-
abnormal or som- abnormal: Depending on FMRI gen-
otype, ovarian aging patterns differ. Before physiologic
ovarian aging significantly contributes to OR at young
ages, differences are most obvious. As expected, norm
women demonstrate better OR than /et females, with
hom women demonstrating the lowest OR.

Differences between these three FMRI genotypes per-
sist with advancing female age, and take interesting, and
somewhat surprising, turns: As Figure 2 demonstrates,
the three genotypes do not age in parallel, as suggested
by FMRI-independent models of Wallace and Kelsey
[12] and Faddy and co-workers [43]. While norm
women start with highest FOR, they quickly deteriorate
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and, by approximately age 35, cross the FOR regression
line of het females, who initially had started out with
lower FOR. In the late 40s the FORs of norm women
then also fall below those of hom females.

These distinct “ovarian aging” patterns strongly imply
that FMR1 genotypes define speed of follicular recruit-
ment and, inversely, rates of decline in OR. If, as pre-
viously discussed, recruitment rates, indeed, reflect
TOR, this observation also reflects that FMRI geno-
types, likely, reflect TOR. FMRI can, therefore, be
viewed as an “ovarian aging gene.”

Norm women at younger ages appear to recruit
actively and, therefore, likely deplete TOR quicker than
het and hom females, who from young age on recruit at
much slower pace. The latter two genotypes, therefore,
demonstrate much slower and steadier declines in AMH
levels. Still preliminary data suggest that ket patients
can be further subdivided into het-norm/high and het-

100 4

AMH (ng/mL)

T

20,00

AGE (years)

Figure 2 Linear regressions of OR with advancing age (reflected by AMH) based on FMR1 genotype. The figure depicts on logarithmic
scale linear regressions of AMH (ng/mL) with advancing age in different FMRT genotypes. Modified with permission from [46], where statistical
differences between the three genotypes are presented in detail and where in age-binned analysis it is demonstrated that women with norm
genotype decline precipitously in AMH around age 32, while het and hom genotypes demonstrate a slow, gradual decline).
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norm/low sub-genotypes (depending on whether the
abnormal allele is abnormally high or low), which may
further differ in respective aging curves [52,53].

These observations confirm statistical associations
between FMRI genotypes (based on normal CGG
range of 26 to 34) and FOR, based on FOR assessment
with AMH. They, thus, suggest significant relevance of
triple CGG repeat counts to clinical practice [49,50],
and that FMRI genotypes, within reasons, already at
young ages allow predictions about “ovarian aging”
patterns. Paradoxically, due to rapid recruitment at
young ages, the norm population appears at greatest
risk for early follicle depletion and, possibly, early
menopause. Whether early depletion can be equated
with early menopause has, however, so far not been
established.

FMRI1, thus, is involved in regulating FOR but may
also affect TOR by regulating follicular recruitment.
How FMRI actually regulates physiologic functions has
remained controversial: In association with neuro/psy-
chiatric consequences, the number of CGG triple
repeats is a determining factor. Risks increase with
increasing expansion sizes up to approximately the
lower half of the so-called premutation range (ca.
55-200 repeats), though not necessarily in linear fashion
[47,54]. The gene codes for an RNA-binding protein,
the so-called fragile X mental retardation protein
(FMRP) [55], important in synaptic physiology and
apparently demonstrating RNA toxicity [56].

Chen and associates reported that maximal translation
of the gene product and that the switching point
between positive and negative effects of the gene occurs
at 30 CGG repeats [57]. This exactly reflects the median
of the normal range, reported for the gene’s ovarian
function [46,58].

This normal range of 26 to 34 repeats also contains at
midpoint the tall distribution peak of CGG repeats in
the general population, reported by Fu and associates at
29 to 30 repeats [59]. Combined, these observations sug-
gest that FMRP, the gene product of FMRI, and/or its
translation, may play a role in follicular recruitment and
“ovarian aging.”

Mouse models have allowed progress in understanding
follicular recruitment and, by extension, OR regulation.
We noted earlier the important recent paper by Reddy
et al [4]. In humans, this area, however, still largely
represents a black box [3], resulting in many models of
“ovarian aging” [11,12,43] but little factual data.
Described FMRI genotypes raise additional questions
about these proposed human models of ovarian aging
normal ovarian aging, quite obviously, has to be defined
separately for individual FMRI genotypes.

In some aspects, Wallace and Kelsey’s model [12]
appears superior to others since it detected rapid
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declines in OR at younger ages than Faddy and co-
workers, who reported an accelerated declines only at
age 37 to 38 years [43]. Considering varying “ovarian
aging” patterns of different FMRI genotypes [46],
Faddy and Gosden’s later timing, however becomes
understandable as norm women demonstrate acceler-
ated declines in FOR at approximately age 35 years
(Figure 2), while ket and hom females demonstrate a
more gradual decrease. Mathematically combined, all
three genotypes, indeed, resemble Faddy and Gosden’s
model.

Ultimate purposes of FMRI genotypes remain to be
determined. Since norm women, in contrast to /et and
hom counterparts, relatively quickly deplete FOR, the
latter two genotypes preserve better FOR into advanced
age. One can speculate that, due to better FOR at older
ages, especially %et, but also hom women, may end up
with higher spontaneous and treatment-induced preg-
nancy chances. Indeed, norm women may be the ones
with earliest menopause, suggesting a need to reanalyze
menopause data based on FMRI genotypes.

FMRI genotypes may, finally, also explain why a gene
with such severe neuro/psychiatric and reproductive
consequences is, nevertheless, so highly preserved. The
answer may lie in survival of the species: By expanding
a relatively narrow fertile window at young ages in
norm women to more advanced ages in het and hom
women, a longer window for reproductive success is
opened and, with it, higher likelihood for preservation
of the species.

Diagnosis and treatment

Since it is generally believed that FOR declines with age,
it is somewhat peculiar that evaluations are still mostly
based on age-independent FSH, AMH and AFCs. As
FOR declines, these three OR parameters, of course,
change in parallel [7,8]. To define DOR, independent of
age, is, therefore, limiting.

We established age-specific cut off values for our
patient population, based on 95% Cls for FSH [8] and
AMH [7] (Figure 1), and demonstrated their superiority
in predicting DOR [7,8]. Universally applicability age-
specific values appear overdue.

Practically all women develop diminished FOR above
age 40, as their ovaries age [8]. Age-specific testing is,
therefore, primarily useful in younger women, where
diminished FOR is frequently overlooked and, often,
mistaken for so-called unexplained infertility [60].
Timely FOR evaluations are especially importance in
young women at risk for POA/OPOI. Risk factors
include FMRI genotypes [46], history or family history
of autoimmunity [61-63], history of ovarian surgery [64],
chemo/radiation therapy [65] and maternal history of
early menopause [66].
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With accurate diminished FOR diagnosis still a rather
imprecise science, treatments are limited and, often,
controversial. Indeed, controversies abound: For exam-
ple, do increasing gonadotropin dosages improve oocyte
yields? Many authorities believe that dosages beyond
225-300 IU are useless [67,68]; others disagree. We
reported that increasing stimulation benefits women
with POA/OPOI, but to lesser extent women with NOA
[69]. Both, of course, represent distinctively different
pathophysiologies [70].

Later stage GFs from large pre-antral to pre-ovulatory
stages are gonadotropin (FSH) - sensitive [71]. Contra-
dicting older reports that earlier stage follicles are unaf-
fected by FSH [72], more recent data demonstrate that
FSH also significantly affects primordial and early antral
follicles [44,45]. We, therefore, previously pointed out
that continuous FSH exposure may beneficially affect
follicle recruitment. The same, of course, may also apply
to higher dosages. There is, however, one difference:
Since recruitment of currently gonadotropins-sensitive
cohorts occurred months earlier, effects of currently
applied higher gonadotropin dosages would, clinically,
likely, be comperatively insignificant.

Any observed improvements in oocyte yields, there-
fore, have to be consequence of reduced follicle degen-
eration and apoptosis (i.e., follicle “rescue”). Based on
Henderson and Edwards’ “production line hypothesis,”
higher gonadotropins dosages then, indeed, should be
more likely successful in younger women’s ovaries [73].

Quality of ovarian stimulation has remained as contro-
versial as quantity: Agonist or antagonist [74,75], pure
FSH or human menopausal (hMG) stimulation [76,77].
Which amongst those offers better results in diminished
FOR patients has so far remained unresolved.

Our center primarily utilizes a microdose agonist pro-
tocol, with FSH preponderance and hMG contribution
[78]. In younger women an FSH protocol may also be
effective [79]. A microdose agonist protocol was also
proposed by Schoolcraft and associates [80], with both
protocols attempting to avoid suppressive effects on
ovaries. Others see no difference between microdose
agonist and antagonist protocols [81,82]. Appropriately
controlled studies are lacking.

Dehydroepiandrosterone and a new concept for

ovarian aging

One of the most controversial issues in reproductive
medicine is, however, undoubtedly, the questions
whether diminished FOR can be pharmacologically
improved. This may be a principle reason why dehy-
droepiandrosterone (DHEA) supplementation [83,84],
though now utilized by approximately one third of IVF
centers world-wide (http://www.ivf-worldwide.com), is
not used even more widely.
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DHEA supplementation improves egg/embryo quan-
tity/quality and pregnancy chances [85]. Remarkably,
spontaneous miscarriage rates are also decreased to
levels in normal, fertile populations [86]. Since dimin-
ished FOR patients, likely, demonstrate the highest
spontaneous miscarriage rates amongst infertility
patients [23,24,87] such profound declines can mathe-
matically not be achieved without decreasing aneuploidy
rates. And DHEA supplementation has, indeed, been
demonstrated to lower aneuploidy [88,89].

DHEA improves pregnancy outcomes even in women
with most severe degrees of diminished FOR, who have
no, or only minimal FOR left, with undetectable to
extremely low AMH (<0.4 ng/mL) [90]. Except for our
published case series [91], the literature contains only
one published case of pregnancy with undetectable
AMH [90]. Following DHEA supplementation, we
recently reported over 30 pregnancies in women with
either undetectable or extremely low AMH, reaffirming
very low miscarriage rates even in most severe dimin-
ished FOR [91]. Since publication of this study the num-
ber of pregnancies in such patients has almost doubled.

While, even with DHEA supplementation, pregnancy
and delivery chances in severe diminished FOR patients
may be low, they are not as low as often suggested [91].
One, therefore, should be cautious about withholding
care to patients because of allegedly too poor FOR [40].

It also appears time to abandon healthy skepticism
about DHEA. Since prospectively randomized studies in
women with severe diminished FOR are difficult to con-
duct (two such studies had to be abandoned because
FOR patients objected to randomization) [85], skeptics
have been unwilling to accept other study formats as
best available evidence. Israeli investigators, however,
recently published a first, small prospectively rando-
mized DHEA study, confirming the hormone’s efficacy
with diminished FOR [92].

Minimal or even undetectable AMH, thus, does not
preclude pregnancy with DHEA. This does not surprise
because, as long as ovaries contain follicles, at least the-
oretically, pregnancies should be possible. Even meno-
pausal ovaries still contain approximately 1,000 follicles
in freshly menopausal women [11,12,28,42,43]. Assum-
ing these follicles, and their oocytes, are functionally
intact, recruitable and given opportunity to go through
normal follicle maturation, why should they not be able
to lead to pregnancy?

Then why don’t they?

We noted at the beginning that current dogma still
holds that women are born with their life-long follicle/
oocyte pool. Dogma further holds that these oocytes
“age” as women age, leading to progressively declining
oocyte quality with advancing female age. Decreasing
oocyte quality is irreversible and, in turn, results in
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increasing aneuploidy, lower implantation rates, declin-
ing pregnancy chances per embryo, and increasing spon-
taneous miscarriage rates. In short, aging oocytes
represent the principal culprits in ovarian aging [5,93].

If correct, one expects aging oocytes to be progres-
sively more damaged, very likely an irreversible process.
Incidentally occurring pregnancies, at very advanced
ages or with severe diminished FOR, can easily be
attributed to genetic variations in women’s fecundity
[94] or mere chance. A concept of aging oocytes, how-
ever, does not explain why, after DHEA-supplementa-
tion, miscarriage rates in even the most severe
diminished FOR cases remain very low, resulting in sur-
prisingly high live birth rates [91].

In the presence of irreversibly deteriorating oocyte
quality, such outcomes should be unachievable since
already damaged oocytes only very unlikely can still be
“rescued” or pharmacologically “rejuvenated.” A direct
effect of DHEA on oocytes, therefore, appears unlikely.
DHEA, instead, probably has different targets, and
effects DHEA may exert on oocyte quality have to pre-
cede significant oocyte damage. This means that these
effects are, likely, indirect, and occur at relatively early
stages of follicle maturation.

If DHEA does not directly target oocytes, yet oocyte
quality still improves, only one possible explanation
remains: The target of DHEA has to be the ovarian
environment in which follicles mature. DHEA in some
ways improves the ovarian environment, leading to bet-
ter follicle maturation and, therefore, better oocyte qual-
ity as end product.

Under such a concept unrecruited oocytes in primordial
follicles, however, cannot age, as current dogma holds. As
long as unrecruited, they have to maintain their original
quality. Only once recruited and entering maturation do
they risk “losing quality” if their maturation takes place
within a poor quality ovarian environment. Since ovarian
environments decline in quality as women age, aging
women produce increasingly poor oocytes.

Building on such a concept of aging ovarian environ-
ments, above described DHEA effects on ploidy and
miscarriage rates, suddenly, are not only plausible but
outright logical. DHEA levels decline significantly with
advancing age in even healthy women and men [95]
and, often undiagnosed, with adrenal insufficiency [96].

Potential therapeutic effectiveness of DHEA (and
other androgens) in DOR is also strongly supported by
recent mouse studies, which demonstrate the essential
importance of ovarian androgens to normal follicle
development and female fertility [97].

Hodges and associates, already a number of years ago,
suggested that ovarian environments may be subject to
therapeutic interventions, which could reduce spindle
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defects during meiosis, leading to lower aneuploidy and
miscarriage rates [21]. Female aging, of course, predis-
poses oocytes towards meiotic nondisjunction [98].

DHEA, therefore, may be a first restorative medica-
tion for aging ovarian environments, with others likely
to follow. Other candidates have already been sug-
gested: Based on loss of mitochondrial function with
advancing age, Casper’s laboratory in Toronto, Canada,
proposed supplementation with the mitochondrial
nutrient coenzyme Q10 (CoQ10). These authors
demonstrated favorable effects on ovarian reserve in a
mouse model [99]. A mitochondrial DHEA effect can-
not be ruled out since androgens beneficially affect
mitochondrial function [100]. Mitochondrial DNA con-
tent, in general, has been reported low in women with
DOR [101]. Korean investigators reported that co-
administration of leptin with gonadotropins regulates
angiogenesis and improves ovarian response and
oocyte quality in aged mice [102].

A new concept of aging ovarian environments, rather
than aging oocytes, offers considerable new opportu-
nities for treatment of diminished FOR, allowing for
successful fertility therapy into older age and closer to
menopause. For developed countries like the United
States, where women above age 40 are the most rapidly
growing age group having children [40], this could have
considerable impact on public health.

Over the last 50 years, most research in the specialty
has almost exclusively concentrated on the gonadotrpin-
sensitive stages of folliculogenesis. Over the next dec-
ades the earlier phases of follicular maturation deserve
closer attention.
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