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Abstract

Background: The gut hormone, ghrelin, is involved in the neuroendocrine and metabolic responses to hunger.
In monogastric species, circulating ghrelin levels show clear meal-related and body weight-related changes. The
pattern of secretion and its role in ruminant species is less clear. Ghrelin acts via growth hormone secretagogue
receptors (GHSR-Ia) to alter food intake, fat utilization, and cellular proliferation. There is also evidence that
ghrelin is involved in reproductive function. In the present study we used immunohistochemistry to investigate
the presence of ghrelin and GHSR-1a in sheep reproductive tissues. In addition, we examined whether ghrelin
and GHSR-Ia protein expression is developmentally regulated in the adult and fetal ovine testis, and whether
there is an association with markers of cellular proliferation, i.e. stem cell factor (SCF) and proliferating cell
nuclear antigen (PCNA).

Methods: Antibodies raised against ghrelin and its functional receptor, GHSR-type la, were used in standard
immunohistochemical protocols on various reproductive tissues collected from adult and fetal sheep. GHSR-Ia
mRNA presence was also confirmed by in situ hybridisation. SCF and PCNA immunoexpression was investigated
in fetal testicular samples. Adult and fetal testicular immunostaining for ghrelin, GHSR-1a, SCF and PCNA was
analysed using computer-aided image analysis. Image analysis data were subjected to one-way ANOVA, with
differences in immunostaining between time-points determined by Fisher's least significant difference.

Results: In adult sheep tissue, ghrelin and GHSR-1a immunostaining was detected in the stomach (abomasum),
anterior pituitary gland, testis, ovary, and hypothalamic and hindbrain regions of the brain. In the adult testis, there
was a significant effect of season (photoperiod) on the level of immunostaining for ghrelin (p < 0.01) and GHSR-
la (p < 0.05). In the fetal sheep testis, there was a significant effect of gestational age on the level of
immunostaining for ghrelin (p < 0.001), GHSR-Ia (p < 0.05), SCF (p < 0.05) and PCNA (p < 0.01).

Conclusion: Evidence is presented for the presence of ghrelin and its receptor in various reproductive tissues
of the adult and fetal sheep. In addition, the data indicate that testicular expression of ghrelin and its receptor is
physiologically regulated in the adult and developmentally regulated in the fetus. Therefore, the ghrelin ligand/
receptor system may have a role (endocrine and/or paracrine) in the development (cellular proliferation) and
function of the reproductive axis of the sheep.
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Background

Ghrelin is an acylated polypeptide hormone secreted pre-
dominantly by endocrine cells of the stomach [1,2]. Sev-
eral lines of evidence implicate ghrelin in the regulation of
growth hormone (GH) release, energy balance, food
intake and body weight [3-6], with the effects mediated
via a 7-transmembrane G protein-coupled receptor, the
GH secretagogue receptor (GHSR) type 1a [2]. Evidence is
also accumulating to suggest that ghrelin may play a role
in the central regulation of reproduction. For example,
exogenous ghrelin has been shown to inhibit luteinising
hormone (LH) secretion in rats, both in vivo and in vitro
[7,8], and immunoreactivity and gene expression for ghre-
lin and its functional receptor have been found in the
hypothalamic region of the rat and human brain, an area
known to be important in the control of reproduction
[2,9-11]. There may also be peripheral (paracrine) effects
of ghrelin on the reproductive axis, with reports of the
ghrelin ligand/receptor system being present in rat and
human gonads [12-15]. Although ruminant species also
appear to utilise the ghrelin system to modulate neuroen-
docrine and metabolic responses to hunger [1,6,16-20],
little is known of the tissue distribution of ghrelin and its
receptor, nor of its link to the reproductive axis in these
species.

Although ghrelin is predominantly produced by the stom-
ach, gene expression for ghrelin and its receptor in human
and rat tissues indicates a widespread distribution in vari-
ous organs, including the intestine, heart, kidney, liver,
lung, pancreas, placenta, pituitary, gonads and brain [21-
23]. The peripheral role of ghrelin is unclear, although it
has been indicated that it is involved in the control of cel-
lular apoptosis and proliferation [24-29]. The expression
of ghrelin receptor in the rat testis has also been shown to
be up-regulated around the time of pubertal gonad devel-
opment [30]. In sheep, the non-breeding season (which is
primarily regulated by photoperiod) is associated with a
marked reduction in testis weight, fewer germ cells matur-
ing beyond the spermatocyte stages, and decreased ster-
oidogenic activity of the Leydig cells [31]. The possible
paracrine role of ghrelin in the testis in this seasonal proc-
ess has not been investigated.

Development of the reproductive organs during fetal and
post-natal life is essential for normal sexual function in
adulthood. In rats, it is known that the fetus and placenta
secrete ghrelin, and that the ghrelin receptor is present in
fetal tissues [32-35]. It is speculated that alteration in
maternal, placental or fetal ghrelin during pregnancy,
such as that caused by maternal feed restriction [36-38],
might contribute to programming of adult infertility via
central or peripheral mechanisms. One such mechanism
could involve a link between ghrelin and cell proliferation
in the control of fetal testicular development. Ghrelin has
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been shown to specifically inhibit the proliferative activity
of immature Leydig cells by down-regulating stem cell fac-
tor (SCF) gene expression [39]. It remains equivocal
whether the ghrelin system is developmentally regulated
in fetal reproductive organs, and whether there are inter-
actions with other paracrine regulators of gonadal devel-
opment such as SCF.

In the present study we used immunohistochemistry to
test the hypothesis that ghrelin and its functional receptor,
GHSR-1a, are present in tissues of the ovine reproductive
axis, namely in adult hypothalamus, pituitary and
gonads. In addition, we examined whether (a) ghrelin
and GHSR-1a protein expression is developmentally or
physiologically regulated in the adult and fetal ovine testis
and (b) ghrelin expression is linked to proliferative activ-
ity in the developing fetal testis.

Methods

Animals and tissue collection

All experimental procedures involving animals were con-
ducted under the authority of the Animals (Scientific Pro-
cedures) Act, UK, 1986 after Home Office and local
ethical committee approval. Tissue samples including
stomach (abomasum; i.e. control tissue), brain (hypotha-
lamus & hindbrain), pituitary gland, testis and ovary from
adult Suffolk-cross sheep collected from a local abattoir,
were immersion-fixed in Bouin's solution for 6 h. Testicu-
lar tissue samples from 12 reproductively active (short-
day photoperiod, 8 h light:16 h dark) and 10 reproduc-
tively regressed (long-day photoperiod, 16 h light:8 h
dark) adult Soay rams (2 years old) housed under these
artificial lighting conditions for 12 weeks were also col-
lected [40] and immersion-fixed in Bouin's solution for 6
h. Testicular tissue samples for in situ hybridisation anal-
ysis of GHSR-1a mRNA expression were also collected,
immediately frozen on dry ice and stored at -80C. Fetal
testicular tissue samples were collected from Greyface
ewes killed, as part of another study [41], on days 30, 40,
50, 70, 100 and 140 of gestation (term = day 145). Fetuses
(n = 7 male fetuses at each gestational age) were quickly
recovered, immediately exsanguinated, and either the
hind torsos were fixed intact (days 30 and 40 of gestation)
or testes were fixed following dissection (on days 50, 70,
100 and 140 of gestation). Fetal testicular tissue samples
were immersion-fixed in Bouin's solution for 6 h. After
fixation, all tissue samples were rinsed and then stored in
70% alcohol before processing and embedding into par-
affin wax using standard procedures. Sections (5 um) were
cut and mounted on poly-L-lysine coated glass slides and
dried overnight at 42°C prior to immunohistochemical
analysis.
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Immunohistochemistry

Tissue sections were dewaxed in Histoclear, re-hydrated
through a graded ethanol series (100%, 95% &, 70%) and
washed in Tris-buffered saline for 2 x 5 min. Where anti-
gen retrieval procedures were necessary (see below), this
was achieved by microwaving (800 W) the tissue sections
in 0.01 M citrate buffer on full power for 3 x 5 minutes,
followed by a 20 minute rest period. Sections were placed
in a DAKO autostainer and incubated at room tempera-
ture with the appropriate primary antibodies as follows:
(a) anti-human ghrelin (Phoenix Europe GmbH, Karl-
sruhe, Germany) at a 1:600 dilution for 30 mins, (b) anti-
human growth hormone secretagogue receptor-1a (Phoe-
nix Europe GmbH, Karlsruhe, Germany) at a 1:400 dilu-
tion, (c) anti-ovine SCF (kindly supplied by Dr K
McNatty, Wallaceville Animal Research Station, Upper
Hutt, New Zealand, and characterised by Tisdall et al.
[42]), ata 1:450 dilution and (d) anti-rat PCNA (Novacas-
tra Laboratories Ltd., Newcastle, UK) at a 1:100 dilution.
Ghrelin peptide sequences are highly conserved between
species [43,44] and the cross-reactivity and specificity of
the anti-human ghrelin and GHSR-1a antibodies were
tested using control ovine stomach tissue.

Ghrelin and SCF immunoreactivity required antigen
retrieval and used the DAKO ChemMate peroxidase/DAB
detection system (DakoCytomation Ltd, Ely, UK). In
brief, this comprised a peroxidase block step with 3%
hydrogen peroxide for 5 mins, followed by a 30 minute
incubation with secondary biotinylated link antibody
(ChemMate A solution) and a 30 minute incubation with
peroxidase substrate (ChemMate B solution). In between
each of these steps the slides were rinsed with Tris-buft-
ered saline (TBS). Diaminobenzidine tetrahydrochloride
(DAB: DakoCytomation Ltd, Ely, UK) was then applied in
two 5 minute incubations. Sections were counterstained
with haematoxylin Z (Vector Laboratories Ltd, Peterbor-
ough, UK). The negative controls were produced by sub-
stituting the primary antibody with normal rabbit serum
at the same dilution as the primary antibody.

Ghrelin receptor (GHSR-1a) and PCNA immunoreactivity
were detected using the Vectastain Elite ABC kit (Vector
Laboratories Ltd, Peterborough, UK) The protocol was as
described above with exception of the following: the sec-
ondary antibody was a biotinylated rabbit anti-goat IgG
(Vector Laboratories Ltd, Peterborough, UK) in a 1:200
dilution. The tissue sections were then incubated with the
Vectastain Elite ABC reagent (Vector Laboratories Ltd,
Peterborough, UK) for 30 minutes before undergoing the
final steps (as above). Negative controls were produced by
substituting the primary antibody with normal rabbit or
horse serum (1:200).
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To determine antibody specificity, all primary antibodies
were incubated overnight with immunising peptide. Fol-
lowing incubation, antibody-antigen preparations were
centrifuged and the supernatant applied to selected tissue
sections.

Testicular GHSR-1a gene expression

Messenger RNA levels were quantified by in situ hybridisa-
tion using techniques previously described in detail by
Mercer et al. [45]. A riboprobe complementary to GHSR-
1a was generated from cloned cDNA from the hypothala-
mus of rat [46]. The sequence of this cDNA fragment used
by Tups and colleagues [46] was compared to the same
region of the ovine gene using the Multalin multiple
sequence alignment website. Across this region of the
GHSR-1a gene, there was 90% homology between rat and
sheep.

Frozen adult sheep testicular sections (20 um) were cut
onto glass slides double-coated with gelatin and poly-L-
lysine, with six or seven sections mounted on each slide.
Briefly, slides were fixed in cold NBF, acetylated, and
hybridised overnight at 58°C using [35S]-labelled cRNA
probes (2 x 107 c.p.m./ml). Slides were treated with RNase
A, desalted, with a final high stringency wash (30 min) in
0.1 x SSC at 60°C, dried and exposed for 4 weeks to
Kodak Biomax MR Film (Kodak, Rochester, NY, USA).
Autoradiographic images were captured using the Image-
Pro Plus system (Media Cybernetics, Maryland, USA).

Image and statistical analysis

Immunostained area for ghrelin and GHSR-1a in adult
testis tissue from the Soay rams, and ghrelin, GHSR-1a,
SCF and PCNA in fetal testis tissue was analysed using
computer aided image analysis. The system was com-
posed of a Zeiss axioplan microscope (Zeiss, West Ger-
many) and HV-C20 Hitachi camera (Hitachi, Japan)
connected to a computer running Image-Pro Plus system.
Four sections per testis were quantified for tissue section
area stained (brown colour) over six randomly selected
fields of view previously shown to be sufficient to stabilise
the mean and standard error [47]. The total area of posi-
tively stained cells (brown) was selected and expressed as
a sum of pixels. All nuclei were then selected (brown =
immunopositive + blue = haematoxylin Z) and the posi-
tively stained cells were expressed as a percentage of the
total.

Image analysis data were subjected to one-way ANOVA,
with differences between testicular immunostaining levels
of ghrelin, GHSR-1a, SCF and PCNA at different stages of
gestation in the fetuses determined by Fisher's least signif-
icant difference.
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Figure |

Immunohistochemical localisation of ghrelin and GHSR-1a in the sheep stomach and pituitary gland. Photomi-
crographs of sheep stomach (abomasum) and anterior pituitary (AP) sections immunostained with antibodies against either
ghrelin or GHSR-1a. (A) Stomach section showing positive staining for ghrelin (brown) in tunica mucosa (MUC), tunica submu-
cosa (SUB) and tunica muscularis (MUSC). (B) Positive immunostaining in the stomach was abolished when the antiserum was
pre-incubated with the immunising peptide (ghrelin). (C) High magnification micrograph of MUC showing the cytoplasmic and
perinuclear (arrow) nature of the immunostaining for ghrelin. (D) AP section showing positive staining for ghrelin in most cells.
(E) AP section showing positive staining for GHSR-1a in most cells. (F) Positive immunostaining for GHSR-1a in the AP was
abolished when the antiserum was pre-incubated with the immunising peptide. (G) High magnification micrograph of the AP
showing the cytoplasmic and perinuclear (arrows) nature of the immunostaining for GHSR- la. The scale bar of A represents
100 um, for B, D, E, F they represent 50 um, and for C, G they represent 20 um. The insert is the negative control.

Results

Antibody specificity

The specificity of the three antibodies (anti-ghrelin, anti-
GHSR1a and anti-SCF) was confirmed by the absence of
immunostaining when the primary antibody was replaced
with serum from the species in which the antibody was
raised. Additionally, immunostaining was abolished
when the antisera were pre-incubated with the immunis-
ing peptide (Fig. 1). In all tissues investigated, the ghrelin
immunopositive cells exhibited perinuclear staining and/
or more widespread cytoplasmic staining. At high magni-
fication it was confirmed that the nuclei were indeed neg-
ative (Fig. 1). The GHSR-1a and SCF positive cells both
exhibited cytoplasmic staining.

Ghrelin and GHSR-1a in adult sheep tissues

There was general immunopositive staining for ghrelin
and GHSR-1a throughout hypothalamic region of the
brain, including the median eminence (ME), arcuate
nucleus (ARC), ventromedial hypothalamus (VMH) and

ependymal lining (EL) of the third cerebral ventricle (Fig.
2). Ghrelin and GHSR-1a were also present in the hind-
brain where they were found in distinct neuronal bodies
in the nucleus tract solitarus (NTS). The immunoreactivity
of ghrelin in the NTS neuronal bodies showed general
cytoplasmic staining with some nuclear/perinuclear stain-
ing also detectable. (Fig. 2). In the anterior pituitary gland,
ghrelin and GHSR-1a immunoreactivity was also present,
with GHSR-1a showing cytoplasmic and perinuclear
staining in some cells (Fig. 1) In the adult ovary, ghrelin
and GHSR-1a were immuno-localised to ovarian follicles
at all developmental stages (primordial, primary, second-
ary, pre-antral and antral). Both proteins were also co-
localised to the granulosa cells and some staining was
observed in the thecal cells of the larger follicles (Fig. 3).
Ghrelin and GHSR-1a immunostaining was also present
in the luteal cells of the corpus luteum. In some of the sec-
tions their appeared to be some positive staining for ghre-
lin and GHSR-1a on the oocyte (especially in the larger
oocytes). However, this finding was not consistent across
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Figure 2

Immunohistochemical of ghrelin and GHSR-1a in the sheep brain. Photomicrographs of sheep brain sections. (A)
Hypothalamic section including the third ventricle (3V) showing positive staining for ghrelin in the median eminence (ME), arcu-
ate nucleus (ARC) and ventromedial hypothalamus (VMH). (B) Hypothalamic section showing positive staining for GHSR-1a in
the ME, ARC and VMH. (C) High magnification micrograph showing the staining for ghrelin in the VMH. (D) High magnification
micrograph showing the staining for GHSR-la in the VMH. (E) High magnification micrograph showing the staining for ghrelin
in the ARC, ME and ependymal lining (EL) of the 3V. (F) High magnification micrograph showing the staining for GHSR-1a in the
ARC, ME and EL. (G) Hindbrain section including the fourth ventricle (4V) showing positive staining for ghrelin in the nucleus
of the tractus solitarus (NTS). (H) Hindbrain section showing positive staining for GHSR-1a in the NTS. (I) High magnification
micrograph showing the staining for ghrelin in the NTS. (J) High magnification micrograph showing the staining for GHSR-a in
the NTS. The scale bars of A, B represent 150 um, for C, D, E, F G, H they represent 50 um, and for |, ] they represent 20 um.

The insert is the negative control.

all oocytes. In the adult testis, ghrelin immunostaining
was predominant in the germ and Sertoli cells, with the
germ cells showing intense perinuclear staining (Fig 3).
Moreover, there appeared to be more intense ghrelin
staining in the germ cells in all developmental stages prior

to the first meiotic division. Lower level immunostaining
was also observed in the interstitial tissue (where Leydig
cells are localised: Fig 3g). GHSR-1a protein was also
detected in cord Sertoli, and germ cells. (Fig 3h, Fig 4c,d).
In contrast to ghrelin, staining for the receptor appeared
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Figure 3

Immunohistochemical and in situ localisation of ghrelin and GHSR-1a in sheep gonads. Photomicrographs of sheep
ovarian and testicular sections. (A) Ovarian section showing positive immunostaining for ghrelin in the stroma, primordial folli-
cles (PF) and the ovarian surface epithelium (OSE). (B) Ovarian section showing positive immunostaining for ghrelin in second-
ary follicles (SF) and granulosa cells (GC). (C) High magnification micrograph showing positive immunostaining for ghrelin in the
corpus luteum (CL). (D) Ovarian section showing positive immunostaining for GHSR-1a in the stroma, PF and OSE. (E) Ovar-
ian section showing positive immunostaining for GHSR-1a in the SF and GC. (F) High magnification micrograph showing posi-
tive immunostaining for GHSR-1a in the CL. (G) Testicular section of seminiferous tubules showing positive immunostaining
for ghrelin in the Sertoli cells (SC), pre-spermatogonia (PS), round spermatids (RS) and in the interstitium (INT). (H) Testicular
section of seminiferous tubules showing positive immunostaining for GHSR-1a in the SC, PS, RS and INT. (I) Autoradiograph of
adult testis sections following in situ hybridisation to an antisense 33S-labelled riboprobe to GHSR-1a mRNA showing hybridisa-
tion mainly in the interstitial areas between the seminiferous tubules. The scale bars of A, B, D, E, | represent 50 im, and for
C, F, G, H they represent 150 um The insert is the negative control (in situ sense control for I).

to be more predominant in the interstitium (Fig 3h:
GHSR-1a v Fig 3g: ghrelin). In addition, in-situ hybridisa-
tion for GHSR-1a mRNA showed clear rings of hybridisa-
tion within the testis, indicative of gene expression in the
interstitial tissue around the seminiferous tubules (Fig.
3i).

Effect of photoperiod on Ghrelin and GHSR-1a in the
adult Soay testis

Testis size was reduced in the LD group (data not shown),
as expected [40]. Ghrelin and GHSR-1a immunostaining
was demonstrated in germ, Sertoli and interstitial cells of
adult Soay testes collected in both the short-day (SD:
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Immunolocalisation of ghrelin and GHSR-1a in the testes from adult sheep maintained in either short- or long-
day photoperiods. Photomicrographs of adult sheep testicular sections kept for 12 weeks in either a short day (SD) or long
day photoperiod (LD). (A) Section from a SD sheep showing positive staining for ghrelin in the interstitium (INT), Sertoli cells
(SC), pre-spermatogonia (PS) and round spermatids (RS). (B) Section from a LD sheep showing reduced staining for ghrelin in
the testis compared to the SD sheep. (C) Section from a SD sheep showing positive staining for GHSR-a. (D) Section from a
LD sheep showing reduced staining for GHSR-1a in the testis compared to the SD sheep. (E) The scale bars of A, B, D, E rep-

resent 50 um.

reproductively active) and long-day (LD: reproductively
regressed) photoperiods (Fig. 4). Comparison between
the two groups indicated that the number of ghrelin and
ghrelin receptor positive cells was reduced in the testes
from the LD (reproductively regressed) Soay rams. This
was verified after statistical analysis of the image analysis
data indicating a significant increase in immunostaining
levels in the SD photoperiod for both ghrelin (p < 0.01)
and GHSR-1a (p < 0.05) (Fig. 5). More detailed histologi-
cal examination indicated that the decreased ghrelin stain-
ing was predominantly associated with reduced staining

of the testicular cords (Sertoli and germ cells). In contrast,
photoperiod appeared to influence GHSR-1a staining in
both the cords and interstitial areas.

Ghrelin, GHSR-1a, SCF and PCNA in the fetal sheep testis
The ovine fetal testis is visible as an outgrowth of undiffer-
entiated cells from the mesonephros at gestational day 30
(Fig. 6a-d). At this stage it was impossible to visually dif-
ferentiate between somatic and germ cells. At day 50 (Fig.
6e-h), small testicular cords were distinguishable towards
the periphery of the gonadal tissue, and germ cells were
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Effect of photoperiod on the percentage of cells positively immunostained for ghrelin and GHSR-1a in adult
sheep testes. Ghrelin (A) and GHSR-1a (B) in adult sheep testes (short days, SD versus long days, LD). Values with different
alphabetical superscripts are significantly different to one another: a versus b = p < 0.05; a versus ¢ = p < 0.0l. Values are

means = S.E.-M.

present surrounded by cells that will constitute the Sertoli
cell population at a later gestational stage. At day 70 (Fig.
6i-1) the testicular cords were more pronounced. Germ
and Sertoli cells were identifiable within the cords. Inter-
stitial cells, probably Leydig cells and their precursors,
were clearly identifiable.

At day 30, low level immunostaining for ghrelin was
observed in the gonadal/mesonephros complex (Fig. 6a).
From day 70 (Fig. 6i) onwards ghrelin staining intensity
increased, and at day 140 (Fig. 6m), ghrelin was clearly
localised to the Sertoli, germ and some interstitial cells.
Maximum GHSR-1a immunostaining intensity was evi-
dent at day 50 (Fig. 6b), although lower levels were
present at all other gestational time points. From day 70
onwards, positive staining for GHSR-1a was restricted to
the Sertoli and interstitial cells (Fig. 6j,n)

Cells stained for SCF were most prominent in the fetal tes-
tis at day 30 (Fig. 6¢). The later gestational stages appeared
to have fewer cells of lower staining intensity. From day
70 onwards SCF immunopositive cells were localised to
the interstitium and to the endothelial cells of the blood
vessels. PCNA-immunopositive cells were detected in the

gonadal/mesonephros complex at day 30 (Fig. 6d) and
was predominantly localised to the seminiferous cords at
the later gestational ages examined. Positive PCNA stain-
ing was seen in the Sertoli and germ cells and staining was
also evident in the Leydig cell containing interstitial area
(Fig. 6h,1,p).

There was a significant overall effect of gestational age on
the immunostaining levels of ghrelin in the fetal testis
(Fig. 7a: p < 0.001), GHSR-1a (Fig. 7b: p < 0.05), SCF (Fig.
7c: p < 0.05) and PCNA (Fig. 7d: p < 0.01). At day 30,
ghrelin staining levels were about 2 times higher (p <
0.05) than the nadir levels at days 40 and 50. From days
70 to 140, ghrelin staining levels increased reaching peak
fetal levels at day 140 that were about 7 times higher than
the nadir level at day 40 (p < 0.005). In comparison,
GHSR-1a immunostaining intensity levels appeared to
have the opposite temporal pattern to ghrelin, with the
peak levels at days 40 to 50, which were about 3 to 4 times
higher than at any other time during gestation (p < 0.05).
The fetal staining intensity pattern for SCF was similar to
ghrelin, with immunostaining intensity levels at day 30
being 3 to 4 times higher than the nadir levels at day 40 to
50 of gestation (p < 0.05), whilst the staining intensity
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Immunolocalisation of ghrelin and GHSR-1a in fetal sheep testes. Photomicrographs of fetal sheep testicular sections.
(A, B, C, D) Sections from fetuses at day 30 of gestation showing positive immunostaining for ghrelin (A), GHSR-1a (B), SCF
(C) and PCNA (D) in the fetal testis and mesonephros (meson.). (E, F, G, H) Testicular sections from fetuses at day 50 of ges-
tation showing positive immunostaining for ghrelin (E), GHSR-Ia (F), SCF (G) and PCNA (H). (1, ], K, L) Testicular sections
from fetuses at day 70 of gestation showing positive immunostaining for ghrelin (I), GHSR-1a (J), SCF (K) and PCNA (L). (M, N,
O, P) Testicular sections from fetuses at day 140 of gestation showing positive immunostaining for ghrelin (M), GHSR-1a (N),
SCF (O) and PCNA (P) in the seminiferous cords (C) and interstitium (INT). Arrows depict germ cells. The scale bars of A, B,

C, D represent 150 um, and for the rest they represent 100 um.

pattern for PCNA was similar to GHSR-1a, with immu-
nostaining intensity levels peaking at day 50 to 70, which
were about 50 to 80% higher than at days 30, 40 and 100
(p < 0.05), and about 4 times higher than at day 140 (p <
0.01).

Discussion

The present study provides immunohistochemical evi-
dence for the presence of ghrelin and its functional recep-
tor, growth hormone secretagogue receptor (GHSR-1a), in
reproductive tissues of the sheep. Novel data are presented
that indicate that ghrelin and its functional receptor,
GHSR-1a, are regulated during development of the ovine
fetal testis and by seasonal developmental changes in the

adult testis. Moreover, the developmental pattern of
expression corresponds with the postulate by Barreiro and
colleagues [39] that the ghrelin system is linked to the
proliferative activity of germ and somatic cells in the testis.

In the sheep brain, ghrelin and GHSR-1a immunoreactiv-
ity were demonstrated in the hypothalamic region,
including the median eminence (ME), arcuate nucleus
(ARC), ventromedial hypothalamus (VMH) and ependy-
mal lining (EL) of the third cerebral ventricle. The pres-
ence of ghrelin and GHSR-1a in the hypothalamus is
consistent with its role in the regulation of food intake
[48]. However, the hypothalamic localisation also corre-
sponds with ghrelin's putative role in the control of LH
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Effect of gestational age on the percentage of fetal testicular cells positively immunostained for ghrelin, GHSR-
la, SCF and PCNA. Ghrelin (A), GHSR-1a (B), SCF (C) and PCNA (D) in fetal sheep testes (days 30 — 140 of gestation; n =
7 at each gestational age). Values with different alphabetical superscripts are significantly different to one another: a versus b, b
versus ¢, and c versus d = p < 0.05; a versus ¢, and b versus d = p < 0.01; a versus d = p < 0.005. Values are means + S.E.M.

secretion, as neurons that secrete gonadotrophin-releas-
ing hormone (GnRH) are also located in these hypotha-
lamic regions [49,50]. Central administration of ghrelin
has been shown to rapidly suppress pulsatile LH secretion
in ovariectomized rats [8]. Ghrelin and GHSR-1a mRNA
and protein [2,9-11,51-53] have previously been found in
the rat and human hypothalamus. In the sheep hindbrain,
ghrelin and GHSR-1a immunostaining was also identified
in neuronal cell bodies within the nucleus tract solitarus
(NTS), but not in the area postrema. Similarly, an immu-
nohistochemical study in rats by Lin et al. [54] revealed
that the GHSR-1a was expressed in the neuronal cells of
the NTS and the dorsal motor nucleus of the vagus, but
not in the cells of the area postrema. Using c-fos immuno-
histochemistry, Lawrence et al. [55] demonstrated that
central ghrelin administration activated two regions of the

brainstem, the NTS and the area postrema. It is tempting
to speculate that ghrelin may affect food intake and the
neuroendocrine system at the level of the NTS, a central
nervous system (CNS) site that receives primary vagal
afferent input from the digestive tract and acts as a neuro-
nal relay station to the hypothalamus [56]. However, it
could also be possible that ghrelin is simply participating
in the central regulation of gastric acid secretion via the
vagus system. ICV administration of ghrelin in rats
increases gastric acid output in a dose-dependent manner,
and vagotomy and the administration of atropine abol-
ishes gastric acid secretion induced by ghrelin [57].

In the sheep anterior pituitary gland, ghrelin and GHSR-
1a were ubiquitously expressed. Ghrelin gene expression
has been found in the pituitary glands of rodents, pigs and
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humans [13,21,58]. It is evident from the literature that
the main action of ghrelin at the level of the pituitary is
the release of GH [59,60]. Indeed, GH secretagogue recep-
tors were first identified in the pituitary by the ability of
enkephalin analogues to stimulate GH release [60]. How-
ever, ghrelin may also be involved in somatotroph cell dif-
ferentiation since ghrelin regulates pituitary-specific
transcription factor (Pit-1) expression in the rat pituitary
[62]. Somatotroph cell-specific expression of the GH gene
is dependent on Pit-1 [63,64]. Ghrelin has also been
shown to exert a proliferative effect on a rat pituitary
somatotroph cell line via the mitogen-activated protein
kinase (MAPK) pathway [27]. Interestingly, ghrelin may
also play a role in LH secretion at the level of the pituitary
as it has been shown that ghrelin stimulates gonado-
trophin release from rat pituitary cells in vitro [7]. Particu-
larly evident in the sheep pituitary tissue was the finding
that GHSR-1a immunoreactivity in some cells of the pitu-
itary showed intense perinuclear staining. This staining
pattern may arise if the polyclonal antibody is detecting
the ligand/receptor complex and is consistent with the
finding of Camina et al. [65] that the ghrelin/GHSR-1a
complex progressively disappears from the plasma mem-
brane after binding of the ligand and accumulates in the
perinuclear region.

Ghrelin and GHSR-1a immunostaining were detected in
sheep ovarian follicles at all developmental stages, mainly
in the granulosa cells. Caminos et al. [13] and Gaytan et
al. [14] also found immunoreactivity for ghrelin and its
receptor in the rat and human ovary, though only weak
ghrelin staining was evident in the follicles. Strong ghrelin
and GHSR-1a immunostaining was evident in corpora
lutea (CL) of the sheep ovary, similar to the findings in the
rat and human CL. Caminos et al. [13] found dynamic
changes in the profile of ghrelin expression during the
oestrous cycle and throughout pregnancy in rats, suggest-
ing a precise regulation of ovarian expression of ghrelin.
Gaytan and colleagues [14] have suggested a potential, yet
unproven relationship between GHSR-1a expression and
follicle growth, since expression of the receptor in somatic
cells derived from ovarian follicles roughly parallels follic-
ular development in the human ovary. There was addi-
tional evidence for ghrelin and GHSR-la peptide
expression within the ovarian surface epithelium (OSE) in
the present study. Gaytan et al. [66] have also recently
shown GHSR-1a peptide expression in human OSE. Dur-
ing ovulatory cycles the OSE is subject to a series of injury
and repair processes associated with follicular rupture and
CL formation, which involve natural inflammatory
events. Pro-inflammatory IL-1a. produces an increase in
mRNA levels of 11 betahydroxysteriod dehydrogenase
type 1 (11BHSD1) in OSE cells, encoding the steroid
dehydrogenase that reversibly reduces cortisone to anti-
inflammatory cortisol [67]. Tan and colleagues [68] have

http://www.rbej.com/content/3/1/60

recently demonstrated the ability of ghrelin to stimulate
11BHSD1 in the human ovary, providing evidence to sup-
port the theory that ghrelin plays an immunomodulatory
role in OSE cells of the ovary via an anti-inflammatory
action.

In the adult sheep testis, strong ghrelin immunostaining
was evident in the interstitial area where Leydig cells are
localised. Staining was also present in the germ and Sertoli
cells, with an indication of increased ghrelin immunore-
activity in the germ cells during the mitotic phases and
meiotic pro-phases of the spermatogenic cycle. GHSR-1a
protein was detected in the interstitial Leydig cell contain-
ing area of the testis, as well as in the Sertoli and germ cells
within the tubules, and the pattern of GHSR-1a mRNA
expression across the testis indicated that the mRNA was
present in the interstitial area and around the periphery of
the tubules. Ghrelin immunostaining has been demon-
strated in interstitial Leydig cells and, at lower intensity, in
Sertoli cells of the rat [15]. Ghrelin and its receptor are
present in the human testis, but in contrast to the ovine
data, ghrelin protein is not detectable in germ cells at any
stage of spermatogenesis [21]. There appears, therefore, to
be some species differences in the localisation of ghrelin
protein in the testis. Ghrelin has been shown to dose-
dependently inhibit testicular testosterone secretion in
vitro, and to modulate Leydig cell proliferation in vivo and
the expression of relevant testicular genes, such as that
encoding stem cell factor (SCF) [69]. In the testicular sam-
ples collected from Soay rams maintained in different
photoperiods (short day = reproductively active, and long
day = reproductively regressed), it was evident that ghrelin
and GHSR-1a were up-regulated in the short-day pho-
toperiod. This finding corresponds with the postulated
role of ghrelin in the proliferation of somatic and germ
cells in the testis [15,30]. It has been suggested that the
expression of ghrelin peptide in mature Leydig cells in the
rat testis is under the hormonal regulation of pituitary LH
[12]. Whether this action is carried out directly, or is medi-
ated by LH-driven locally produced factors, such as testo-
sterone, requires further investigation. It is pertinent that
this observation accompanies an increase in testis size
which characterises reproductively active animals [40].

In the fetal sheep testis, the present findings indicate that
the expression of ghrelin and GHSR-1a protein is linked
to gestational age. Differentiation of the fetal gonad
begins with the development of the gonadal ridges from
thickening of the ventrolateral surface of the embryonic
mesonephros. The genital ridge is composed of somatic
cells from the mesonephros and migratory primordial
germ cells originating from the extraembryonic meso-
derm. In the fetal sheep, morphological sexual differenti-
ation of the gonads begins around day 27 of gestation,
and germ cell migration is complete just after day 30
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[70,71]. In the present study, significant levels of ghrelin
and SCF were found in the gonad/mesonephros complex
at day 30 of gestation. Ghrelin has been implicated in pro-
liferative activity in a number of tissues, including the
gonad [27-29,39]. SCF is also said to be involved in pro-
liferation, germ cell migration and survival [72]. There-
fore, ghrelin and SCF may be involved in the early
differentiation of the ovine fetal testis. Intratesticular
injection of ghrelin has also been shown to decrease the
proliferative activity of differentiating immature Leydig
cells in the rat, and this response is associated with a
decrease in the mRNA levels of SCF, a putative regulator
of Leydig cell development [39]. In the fetal sheep, Leydig
cell hyperplasia occurs between day 50 and 70 of gesta-
tion [73]. In the present study it was noted that at day 50,
GHSR-1a and PCNA were significantly up-regulated at the
same gestational time-point when SCF protein levels were
at their lowest, i.e. at the start of Leydig cell hyperplasia.
These data are consistent with the putative involvement of
fetal testicular ghrelin and its functional receptor in the
paracrine regulation of Leydig and germ cell develop-
ment, possibly via interactions with SCF and PCNA.

Conclusion

The present data indicate that both components (ligand
and receptor) of the ghrelin signalling system are present
in tissues of the reproductive axis of the sheep. The ligand
and receptor are developmentally regulated in the fetal
testis and physiologically regulated by photoperiod in the
adult testis. These findings are consistent with both a cen-
tral endocrine role and a potential peripheral paracrine/
endocrine regulatory role for ghrelin in the control of
reproductive tissue development and function in sheep.
Further studies are needed to identify the precise func-
tional role of the ghrelin system in the reproductive axis.

Authors' contributions

DWM participated in the design of the studies, collection
of tissues, all immunological analyses, statistical analyses
and drafting the manuscript. JLH participated in the
design of the studies, collection of tissues, immunological
and in situ analyses of ghrelin and GHSR-1a, statistical
analyses and drafting the manuscript. YAB participated in
the immunological analysis of GHSR-1a, statistical analy-
sis and drafting the manuscript. UD participated in the
immunological analysis of SCF, statistical analysis and
drafting the manuscript. AL participated in the immuno-
logical analysis of PCNA, statistical analysis and drafting
the manuscript. RGL participated in the design of the
studies, all immunological analyses, statistical analyses
and drafting the manuscript. CLA participated in the
design of the studies, collection of tissues, in situ analysis,
statistical analyses and drafting the manuscript.

Acknowledgements

http://www.rbej.com/content/3/1/60

The authors of this article would like to thank Lisa Hannah and Patricia
Findlay for help with tissue collection, immunohistochemical and in situ anal-
yses, and Dr A. Nigel Brooks at ZENECA Central Toxicology Laboratory,
Macclesfield, Cheshire, UK, for kindly providing the fetal testicular tissue
samples. The polyclonal antibody for ovine SCF was kindly supplied by Dr
Ken McNatty, Wallaceville Animal Research Station, Upper Hutt, New
Zealand, and the GHSR-1a cDNA was generously provided by Dr Zoe
Archer, Rowett Research Institute.

References

I. Hayashida T, Murakami K, Mogi K, Nishihara M, Nakazato M, Mondal
MS, Horii Y, Kojima M, Kangawa K, Murakami N: Ghrelin in domes-
tic animals: distribution in stomach and its possible role.
Domest Anim Endocrinol 2001, 21:17-24.

2. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K:
Ghrelin is a growth-hormone-releasing acylated peptide
from stomach. Nature 1999, 402:656-660.

3. ArvatE, Broglio F, Aimaretti G, Benso A, Giordano R, Deghenghi R,
Ghigo E: Ghrelin and synthetic GH secretagogues. Best Pract
Res Clin Endocrinol Metab 2002, 16:505-517.

4. Cummings DE, Shannon MH: Roles for ghrelin in the regulation
of appetite and body weight. Arch Surg 2003, 138:389-396.

5.  Hosoda H, Kojima M, Kangawa K: Ghrelin and the regulation of
food intake and energy balance. Mol Interv 2002, 2:494-503.

6.  Sugino T, Hasegawa Y, Kurose Y, Kojima M, Kangawa K, Terashima
Y: Effects of ghrelin on food intake and neuroendocrine func-
tion in sheep. Anim Reprod Sci 2004, 82-83:183-194.

7.  Fernandez-Fernandez R, Tena-Sempere M, Aguilar E, Pinilla L: Ghre-
lin effects on gonadotropin secretion in male and female
rats. Neurosci Lett 2004, 362:103-107.

8. Furuta M, Funabashi T, Kimura F: Intracerebroventricular admin-
istration of ghrelin rapidly suppresses pulsatile luteinizing
hormone secretion in ovariectomized rats. Biochem Biophys Res
Commun 2001, 288:780-785.

9.  Cowley MA, Smith RG, Diano S, Tschop M, Pronchuk N, Grove KL,
Strasburger CJ, Bidlingmaier M, Esterman M, Heiman ML, Garcia-Seg-
ura LM, Nillni EA, Mendez P, Low M], Sotonyi P, Friedman JM, Liu H,
Pinto S, Colmers WF, Cone RD, Horvath TL: The distribution and
mechanism of action of ghrelin in the CNS demonstrates a
novel hypothalamic circuit regulating energy homeostasis.
Neuron 2003, 37:649-661.

10. LuS, Guan L, Wang QP, Uehara K, Yamada S, Goto N, Date Y, Naka-
zato M, Kojima M, Kangawa K, Shioda S: Immunocytochemical
observation of ghrelin-containing neurons in the rat arcuate
nucleus. Neurosci Lett 2002, 321:157-160.

I'l. Mozid AM, Tringali G, Forsling ML, Hendricks MS, Ajodha S, Edwards
R, Navarra P, Grossman AB, Korbonits M: Ghrelin is released
from rat hypothalamic explants and stimulates cortico-
trophin-releasing hormone and arginine-vasopressin. Horm
Metab Res 2003, 35:455-459.

12.  Barreiro ML, Gaytan F, Caminos JE, Pinilla L, Casanueva FF, Aguilar E,
Dieguez C, Tena-Sempere M: Cellular location and hormonal
regulation of ghrelin expression in rat testis. Biol Reprod 2002,
67:1768-1776.

13.  Caminos JE, Tena-Sempere M, Gaytan F, Sanchez-Criado JE, Barreiro
ML, Nogueiras R, Casanueva FF, Aguilar E, Dieguez C: Expression of
ghrelin in the cyclic and pregnant rat ovary. Endocrinol 2003,
144:1594-1602.

14.  Gaytan F, Barreiro ML, Chopin LK, Herington AC, Morales C, Pinilla
L, Casanueva FF, Aguilar E, Dieguez C, Tena-Sempere M: Immu-
nolocalization of ghrelin and its functional receptor, the type
la growth hormone secretagogue receptor, in the cyclic
human ovary. | Clin Endocrinol Metab 2003, 88:879-887.

I15. Gaytan F, Barreiro ML, Caminos JE, Chopin LK, Herington AC,
Morales C, Pinilla L, Paniagua R, Nistal M, Casanueva FF, Aguilar E,
Dieguez C, Tena-Sempere M: Expression of ghrelin and its func-
tional receptor, the type la growth hormone secretagogue
receptor, in normal human testis and testicular tumors. | Clin
Endocrinol Metab 2004, 89:400-409.

16. Hashizume T, Horiuchi M, Tate N, Nonaka S, Kojima M, Hosoda H,
Kangawa K: Effects of ghrelin on growth hormone secretion
from cultured adenohypophysial cells in cattle. Endocr J 2003,
50:289-295.

Page 12 of 14

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524171
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11524171
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10604470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10604470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10604470
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12464231
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12686525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12686525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14993401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14993401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15193764
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15193764
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15193764
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11688975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11688975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11688975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12597862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12597862
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11880196
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11880196
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11880196
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12953161
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12953161
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12953161
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12444052
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12444052
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12574228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12574228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12574228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14715878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14715878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14715878
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12940457
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12940457

Reproductive Biology and Endocrinology 2005, 3:60

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

32.

33.

34.

Miura H, Tsuchiya N, Sasaki I, Kikuchi M, Kojima M, Kangawa K,
Hasegawa Y, Ohnami Y: Changes in plasma ghrelin and growth
hormone concentrations in mature Holstein cows and
three-month-old calves. | Anim Sci 2004, 82:1329-1333.

Sugino T, Hasegawa Y, Kikkawa Y, Yamaura J, Yamagishi M, Kurose Y,
Kojima M, Kangawa K, Terashima Y: A transient ghrelin surge
occurs just before feeding in a scheduled meal-fed sheep. Bio-
chem Biophys Res Commun 2002, 295:255-260.

Sugino T, Yamaura ], Yamagishi M, Ogura A, Hayashi R, Kurose Y,
Kojima M, Kangawa K, Hasegawa Y, Terashima Y: A transient surge
of ghrelin secretion before feeding is modified by different
feeding regimens in sheep. Biochem Biophys Res Commun 2002,
298:785-788.

Sugino T, Yamaura |, Yamagishi M, Kurose Y, Kojima M, Kangawa K,
Hasegawa Y, Terashima Y: Involvement of cholinergic neurons
in the regulation of the ghrelin secretory response to feeding
in sheep. Biochem Biophys Res Commun 2003, 304:308-312.
Gnanapavan S, Kola B, Bustin SA, Morris DG, McGee P, Fairclough P,
Bhattacharya S, Carpenter R, Grossman AB, Korbonits M: The tis-
sue distribution of the mRNA of ghrelin and subtypes of its
receptor, GHS-R, in humans. | Clin Endocrinol Metab 2002,
87:2988-2991.

Kojima M, Hosoda H, Kangawa K: Purification and distribution of
ghrelin: the natural endogenous ligand for the growth hor-
mone secretagogue receptor. Horm Res 2001, 56(Suppl
1):93-97.

Papotti M, Ghe C, Cassoni P, Catapano F, Deghenghi R, Ghigo E, Muc-
cioli G: Growth hormone secretagogue binding sites in
peripheral human tissues. | Clin Endocrinol Metab 2000,
85:3803-3807.

Andreis PG, Malendowicz LK, Trejter M, Neri G, Spinazzi R, Rossi GP,
Nussdorfer GG: Ghrelin and growth hormone secretagogue
receptor are expressed in the rat adrenal cortex: evidence
that ghrelin stimulates the growth, but not the secretory
activity of adrenal cells. FEBS Lett 2003, 536:173-179.

Baldanzi G, Filigheddu N, Cutrupi S, Catapano F, Bonissoni S, Fubini
A, Malan D, Baj G, Granata R, Broglio F, Papotti M, Surico N, Bus-
solino F, Isgaard |, Deghenghi R, Sinigaglia F, Prat M, Muccioli G, Ghigo
E, Graziani A: Ghrelin and des-acyl ghrelin inhibit cell death in
cardiomyocytes and endothelial cells through ERK1/2 and Pl
3-kinase/AKT. | Cell Biol 2002, 159:1029-1037.

Kim MS, Yoon CY, Jang PG, Park Y], Shin CS, Park HS, Ryu JW, Pak
YK, Park JY, Lee KU, Kim SY, Lee HK, Kim YB, Park KS: The
mitogenic and antiapoptotic actions of ghrelin in 3T3-L1 adi-
pocytes. Mol Endocrinol 2004, 18:2291-301.

Nanzer AM, Khalaf S, Mozid AM, Fowkes RC, Patel MV, Burrin JM,
Grossman AB, Korbonits M: Ghrelin exerts a proliferative effect
on a rat pituitary somatotroph cell line via the mitogen-acti-
vated protein kinase pathway. Eur | Endocrinol 2004,
151:233-240.

Xia Q, Pang W, Pan H, Zheng Y, Kang JS, Zhu SG: Effects of ghrelin
on the proliferation and secretion of splenic T lymphocytes
in mice. Regul Pept 2004, 122:173-178.

Zhang W, Lin TR, Hu Y, Fan Y, Zhao L, Stuenkel EL, Mulholland MW:
Ghrelin stimulates neurogenesis in the dorsal motor nucleus
of the vagus. | Physiol 2004, 559:729-737.

Barreiro ML, Suominen JS, Gaytan F, Pinilla L, Chopin LK, Casanueva
FF, Dieguez C, Aguilar E, Toppari J, Tena-Sempere M: Developmen-
tal, stage-specific, and hormonally regulated expression of
growth hormone secretagogue receptor messenger RNA in
rat testis. Biol Reprod 2003, 68:1631-1640.

Mortimer D, Lincoln GA: Ultrastructural study of regressed and
reactivated testes from Soay rams. | Reprod Fertil 1982,
64:437-42.

Cortelazzi D, Cappiello V, Morpurgo PS, Ronzoni S, Nobile De Santis
MS, Cetin |, Beck-Peccoz P, Spada A: Circulating levels of ghrelin
in human fetuses. Eur | Endocrinol 2003, 149:111-116.

Katayama M, Nogami H, Nishiyama ), Kawase T, Kawamura K:
Developmentally and regionally regulated expression of
growth hormone secretagogue receptor mRNA in rat brain
and pituitary gland. Neuroendocrinol 2000, 72:333-340.

Rindi G, Necchi V, Savio A, Torsello A, Zoli M, Locatelli V, Raimondo
F, Cocchi D, Solcia E: Characterisation of gastric ghrelin cells in
man and other mammals: studies in adult and fetal tissues.
Histochem Cell Biol 2002, 117:511-519.

35.
36.

37.

38.

39.

40.

41.

42.

43.
44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

http://www.rbej.com/content/3/1/60

Wierup N, Sundler F: Circulating levels of ghrelin in human
fetuses. Eur | Endocrinol 2004, 150:405.

Chanoine JP, Wong AC: Ghrelin gene expression is markedly
higher in fetal pancreas compared with fetal stomach: effect
of maternal fasting. Endocrinol 2004, 145:3813-3820.

Desai M, Gayle D, Babu |, Ross MG: Programmed obesity in
intrauterine growth restricted newborns: Modulation by
newborn nutrition. Am | Physiol Regul Integr Comp Physiol 2004,
288:R91-96.

Gualillo O, Caminos JE, Nogueiras R, Seoane LM, Arvat E, Ghigo E,
Casanueva FF, Dieguez C: Effect of food restriction on ghrelin in
normal-cycling female rats and in pregnancy. Obes Res 2002,
10:682-687.

Barreiro ML, Gaytan F, Castellano JM, Suominen S, Roa J, Gaytan M,
Aguilar E, Dieguez C, Toppari J, Tena-Sempere M: Ghrelin inhibits
the proliferative activity of immature Leydig cells in vivo and
regulates stem cell factor messenger RNA expression in rat
testis. Endocrinol 2004, 145:4825-4834.

Archer ZA, Findlay PA, McMillen SR, Rhind SM, Adam CL: Effects of
nutritional status and gonadal steroids on expression of
appetite-regulatory genes in the hypothalamic arcuate
nucleus of sheep. | Endocrinol 2004, 182:409-419.

Sweeney T, Saunders PT, Millar MR, Brooks AN: Ontogeny of anti-
mullerian hormone, 3 beta-hydroxysteroid dehydrogenase
and androgen receptor expression during ovine total
gonadal development. | Endocrinol 1997, 153:27-32.

Tisdall D), Fidler AE, Smith P, Quirke LD, Stent VC, Heath DA, McN-
atty KP: Stem cell factor and c-kit gene expression and pro-
tein localization in the sheep ovary during fetal
development. | Reprod Fertil 1999, 116:277-291.

Lazarczyk MA, Lazarczyk M, Grzela T: Ghrelin: a recently discov-
ered gut-brain peptide (review). Int | Mol Med 2003, 12:279-87.
Smith RG, Leonard R, Bailey AR, Palyha O, Feighner S, Tan C, Mckee
KK, Pong SS, Griffin P, Howard A: Growth hormone secreta-
gogue receptor family members and ligands. Endocrine 2001,
14:9-14.

Mercer |G, Moar KM, Logie TJ, Findlay PA, Adam CL, Morgan P): Sea-
sonally inappropriate body weight induced by food restric-
tion: effect on hypothalamic gene expression in male
Siberian hamsters. Endocrinol 2001, 142:4173-418I.

Tups A, Helwig M, Khorooshi RM, Archer ZA, Klingenspor M, Mercer
JG: Circulating ghrelin levels and central ghrelin receptor
expression are elevated in response to food deprivation in a
seasonal mammal (Phodopus sungorus). | Neuroendocrinol
2004, 16:922-928.

Murray TJ, Fowler PA, Abramovich DR, Haites N, Lea RG: Human
fetal testis: second trimester proliferation and steroidogenic
capacities. | Endocr Metab 2000, 85:4812-4817.

Kojima M, Kangawa K: Ghrelin, an orexigenic signaling mole-
cule from the gastrointestinal tract. Curr Opin Pharmacol 2002,
2:665-668.

Blache D, Fabre-Nys C, Venier G: Inhibition of sexual behaviour
and the luteinizing hormone surge by intracerebral proges-
terone implants in the female sheep. Brain Res 1996,
741:117-122.

Strubbe JH, Mein CG: Increased feeding in response to bilateral
injection of insulin antibodies in the VMH. Physiol Behav 1977,
19:309-313.

Guan XM, Yu H, Palyha OC, McKee KK, Feighner SD, Sirinathsinghji
DJ, Smith RG, Van der Ploeg LH, Howard AD: Distribution of
mRNA encoding the growth hormone secretagogue recep-
tor in brain and peripheral tissues. Brain Res Mol Brain Res 1997,
48:23-29.

Kim MS, Yoon CY, Park KH, Shin CS, Park KS, Kim SY, Cho BY, Lee
HK: Changes in ghrelin and ghrelin receptor expression
according to feeding status. Neuroreport 2003, 14:1317-1320.
Shuto Y, Shibasaki T, Wada K, Parhar |, Kamegai J, Sugihara H, Oikawa
S, Wakabayashi |: Generation of polyclonal antiserum against
the growth hormone secretagogue receptor (GHS-R): evi-
dence that the GHS-R exists in the hypothalamus, pituitary
and stomach of rats. Life Sci 2001, 68:991-996.

Lin Y, Matsumura K, Fukuhara M, Kagiyama S, Fujii K, lida M: Ghrelin
acts at the nucleus of the solitary tract to decrease arterial
pressure in rats. Hypertension 2004, 43:977-982.

Page 13 of 14

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15144072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15144072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15144072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12150940
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12150940
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12419323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12419323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12419323
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12711315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12711315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12711315
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12050285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12050285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12050285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11786694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11786694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11786694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11061542
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11061542
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12586359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12586359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12586359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12486113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12486113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12486113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15178745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15178745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15178745
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15296479
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15296479
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15296479
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15491788
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15491788
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15491788
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15272046
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15272046
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15272046
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12606422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12606422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12606422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7069660
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7069660
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12887287
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12887287
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12107501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12107501
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15012628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15012628
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297266
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12105291
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12105291
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15350183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15350183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15350183
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9135566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9135566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9135566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10615253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10615253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10615253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12883642
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12883642
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11322507
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11322507
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15584933
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15584933
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15584933
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12482728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12482728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9001713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9001713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9001713
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=607241
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=607241
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9379845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9379845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9379845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12876464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12876464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11212874
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11212874
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11212874
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14993197
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14993197
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14993197

Reproductive Biology and Endocrinology 2005, 3:60

55.

56.

57.

58.

59.

60.

6l.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Lawrence CB, Snape AC, Baudoin FM, Luckman SM: Acute central
ghrelin and GH secretagogues induce feeding and activate
brain appetite centers. Endocrinol 2002, 143:155-162.

Schwartz GJ, Moran TH: Leptin and neuropeptide Y have
opposing modulatory effects on nucleus of the solitary tract
neurophysiological responses to gastric loads: implications
for the control of food intake. Endocrinol 2002, 143:3779-3784.
Date Y, Nakazato M, Murakami N, Kojima M, Kangawa K, Matsukura
S: Ghrelin acts in the central nervous system to stimulate
gastric acid secretion. Biochem Biophys Res Commun 2001,
280:904-907.

Salfen BE, Carroll JA, Keisler DH: Endocrine responses to short-
term feed deprivation in weanling pigs. | Endocrinol 2003,
178:541-551.

Tolle V, Zizzari P, Tomasetto C, Rio MC, Epelbaum J, Bluet-Pajot MT:
In vivo and in vitro effects of ghrelin/motilin-related peptide
on growth hormone secretion in the rat. Neuroendocrinol 2001,
73:54-61.

Yamazaki M, Nakamura K, Kobayashi H, Matsubara M, Hayashi Y,
Kangawa K, Sakai T: Regulational effect of ghrelin on growth
hormone secretion from perifused rat anterior pituitary
cells. | Neuroendocrinol 2002, 14:156-162.

Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosen-
blum CI, Hamelin M, Hreniuk DL, Palyha OC, Anderson , Paress PS,
Diaz C, Chou M, Liu KK, McKee KK, Pong SS, Chaung LY, Elbrecht
A, Dashkevicz M, Heavens R, Rigby M, Sirinathsinghji DJ, Dean DC,
Melillo DG, Van der Ploeg LH: A receptor in pituitary and
hypothalamus that functions in growth hormone release. Sci-
ence 1996, 273:974-977.

Garcia A, Alvarez CV, Smith RG, Dieguez C: Regulation of Pit-1
expression by ghrelin and GHRP-6 through the GH secreta-
gogue receptor. Mol Endocrinol 2001, 15:1484-1495.

Bodner M, Castrillo JL, Theill LE, Deerinck T, Ellisman M, Karin M:
The pituitary-specific transcription factor GHF-1 is a home-
obox-containing protein. Cell 1988, 55:505-518.

Ingraham HA, Chen RP, Mangalam HJ, Elsholtz HP, Flynn SE, Lin CR,
Simmons DM, Swanson L, Rosenfeld MG: A tissue-specific tran-
scription factor containing a homeodomain specifies a pitui-
tary phenotype. Cell 1988, 55:519-529.

Camina JP, Carreira MC, El Messari S, Llorens-Cortes C, Smith RG,
Casanueva FF: Desensitization and endocytosis mechanisms of
ghrelin-activated growth hormone secretagogue receptor
la. Endocrinol 2004, 145:930-940.

Gaytan F, Morales C, Barreiro ML, Jeffery P, Chopin LK, Herington
AC, Casanueva FF, Aguilar E, Dieguez C, Tena-Sempere M: Expres-
sion of growth hormone secretagogue receptor type la, the
functional ghrelin receptor, in human ovarian surface epithe-
lium, mullerian duct derivatives, and ovarian tumors. | Clin
Endocrinol Metab 2005, 90:1798-1804.

Rae MT, Niven D, Critchley HO, Harlow CR, Hillier SG: Antiinflam-
matory steroid action in human ovarian surface epithelial
cells. J Clin Endocrinol Metab 2004, 89:4538-4544.

Tan TM-M, Jonas KC, Thurston LM, Vanderpump MP, Hardiman P),
Michael AE: Ghrelin is a potential paracrine stimulator of
| Ibeta-hydroxysteroid dehydrogenase (I1I1BHSD) in the
human ovary. Reprod Abst Series 2004, 30:P96.

Tena-Sempere M: Exploring the role of ghrelin as novel regula-
tor of gonadal function. Growth Horm IGF Res 2005, 15:83-88.
McNatty K, Smith P, Hudson N, Heath D, Tisdall DOW, BrawTal R:
Development of the sheep ovary during fetal and early neo-
natal life and the effect of fecundity genes. | Reprod Fert 1995,
49(Suppl):123-135.

Peers A, Hantzis V, Dodic M, Koukoulas |, Gibson A, Baird R, Salemi
R, Wintour EM: Functional glucocorticoid receptors in the
mesonephros of the ovine fetus. Kidney Int 2001, 59:425-433.
De Felici M, Pesce M: Growth factors in mouse primordial
germ cell migration and proliferation. Prog Growth Factor Res
1994, 5:135-143.

Lea RG, Rae MT, Murray TJ, Brooks AN, Rhind SM, Fowler PA, Miller
DW: Developmental determinants of steroidogenesis in fetal
sheep testis. | Endocrin 2000, 164(Suppl):P305.

http://www.rbej.com/content/3/1/60

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 14 of 14

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11162609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11162609
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12967345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12967345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11849375
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11849375
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11849375
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8688086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8688086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11518797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11518797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11518797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2902927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2902927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2902927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2902928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2902928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2902928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15585554
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15585554
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15585554
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15356059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15356059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15356059
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15809012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15809012
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11168924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11168924
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7919220
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7919220
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Animals and tissue collection
	Immunohistochemistry
	Testicular GHSR-1a gene expression
	Image and statistical analysis

	Results
	Antibody specificity
	Ghrelin and GHSR-1a in adult sheep tissues
	Effect of photoperiod on Ghrelin and GHSR-1a in the adult Soay testis
	Ghrelin, GHSR-1a, SCF and PCNA in the fetal sheep testis

	Discussion
	Conclusion
	Authors' contributions
	Acknowledgements
	References

