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Abstract
In mouse ovaries, the enzyme 3 beta-hydroxysteroid dehydrogenase (HSD) is distributed between
microsomes and mitochondria. Throughout the follicular phase of the estrous cycle, the HSD
activity in microsomes is predominant; whereas, after LH stimulation, HSD activity during the luteal
phase is highest in the mitochondria. The current study examined whether or not LH stimulation
always results in an increase in mitochondrial HSD activity. This was accomplished by measuring
the HSD activity in microsomal and mitochondrial fractions from ovaries of pregnant mice. These
animals have two peaks of LH during gestation, and one peak of LH after parturition. It was found
that mitochondrial HSD activity was highest after each peak of LH. It is proposed that
mitochondrial HSD is essential for the synthesis of high levels of progesterone. The increase in HSD
activity in mitochondria after LH stimulation occurs because: 1) LH initiates the simultaneous
synthesis of HSD and the cholesterol side-chain cleavage enzyme (P450scc); and, 2) HSD and
P450scc bind together to form a complex, which becomes inserted into the inner membrane of the
mitochondria. High levels of progesterone are synthesized by mitochondrial HSD because: 1) the
requisite NAD+ cofactor for progesterone synthesis is provided directly by the mitochondria,
rather than indirectly via the rate limiting malate-aspartate shuttle; and, 2) the end-product
inhibition of P450scc by pregnenolone is eliminated because pregnenolone is converted to
progesterone.

Background
With the exception of 3β-hydroxysteroid dehydrogenase
(HSD), the enzymes involved in the conversion of choles-
terol to steroid hormones are located in either the mito-
chondria or the endoplasmic reticulum. HSD is unique in
that it is located in both subcellular organelles. In either
location, HSD converts pregnenolone and dehydroepian-
dosterone (DHEA) to progesterone and androstenedione,

respectively, using NAD+ as cofactor. The reason for two
separate sites for this enzyme is not known.

Establishing the existence of two separate locations for
HSD has been a lengthy process. In 1956, Beyer and Sam-
uels reported that the microsomal (endoplasmic reticu-
lum) and mitochondrial fractions from the homogenate
of bovine adrenal cortex contained HSD activity [1].
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However, the HSD activity found in the mitochondrial
fraction was attributed to microsomal contamination and
the result of the homogenizion process. While this study
established the legitimacy of microsomal HSD, it tended
to preclude further research on mitochondrial HSD. For
mitochondrial HSD to be considered a distinct and sepa-
rate entity, additional research over a number of years
would be required. Starting in 1965, investigators began
to report a dual location for HSD in ovaries [2-4], testes
[5,6], human term placenta [7-10], and rat adrenal cortex
[11-14]. In toto, these studies suggested that mitochon-
drial HSD was indeed a separate entity. Other investiga-
tors, however, still considered mitochondrial HSD activity
to be due to microsomal contamination [15,16], and the
result of a redistribution artifact [17].

In 1979, we reported the results of an intracellular enzyme
distribution study of HSD, cytochrome c oxidase (mito-
chondrial marker), and steroid 21 hydroxylase (micro-
somal marker) in rat adrenal cortex [18]. We found that
exhaustively washed mitochondria retained 26 % of total
HSD activity. In retrospect, this percentage appears to be
on the low side. For example, when the specific activity of
microsomal HSD is determined, and its contribution to
the HSD activity in the remaining cell fractions (nuclear/
unbroken cell, mitochondrial, and mitochondrial wash
fractions) ascertained, then a maximum of 60 % of total
homogenate HSD activity can be attributed to micro-
somal HSD. This indicates that mitochondrial HSD con-
stitutes 40 % of total homogenate HSD activity, rather
than 26 % as we initially reported. In rhesus monkey pla-
centa, HSD activity is equally distributed between mito-
chondria and microsomes [19], and in bovine adrenal
cortex, mitochondrial HSD comprises 30 % of total HSD
activity [20,21].

Our study also found that mitochondrial HSD utilizes
matrix space NAD+ as cofactor, indicating that the enzyme
is located in the inner mitochondrial membrane [18].
This location for mitochondrial HSD has been established
in bovine adrenal cortex [20,21], and in rat testis [5]. The
combined techniques of immuno-cytochemistry and elec-
tron microscopy have identified immune reactive HSD in
mitochondria of human ovary [22], and in the mitochon-
dria of rat ovary, testis, and adrenal cortex [23]. Mitochon-
drial HSD has now been isolated from bovine adrenal
cortex [21,24], and from human term placenta [25,26],
and purified to homogeneity. It is now known that micro-
somal HSD and mitochondrial HSD are identical proteins
[25-28]. The reason for two locations for the same enzyme
has yet to be determined.

In a study of the intracellular distribution of mitochon-
drial HSD and microsomal HSD in mouse ovaries over
the course of the estrous cycle [29], we reported that dur-

ing diestrus (luteal phase), the specific activity of mito-
chondrial HSD was 80 % higher than that of microsomal
HSD. This is in sharp contrast to the other three stages of
estrus where microsomal HSD had the highest specific
activity. In a study in which the cDNA of human placental
HSD was transfected into Sf9 cells, the resultant HSD
enzyme was distributed between mitochondria and
microsomes [27]. In the luteal cells of mouse ovary, the
distribution of the enzyme is skewed in favor of the mito-
chondria. During the luteinization process, luteal cells
express high levels of mRNA for the cholesterol side-chain
cleavage enzyme (P450scc) and for HSD [30,31]. The
simultaneous synthesis of these two enzymes is very likely
the reason for the increase in mitochondrial HSD activity,
as will be discussed later.

The results of our previous study [29] tentatively sug-
gested that the increase in mitochondrial HSD activity in
mouse ovary during diestrus is due to LH. The pregnant
mouse has two peaks of LH during gestation, and one
peak of LH after parturition [32]. After each peak of LH,
the levels of circulating progesterone increase [33]. The
present study examined the distribution of HSD activity in
pregnant mouse ovaries to determine whether or not
mitochondrial HSD activity also increased after each peak
of LH. We found that it did, which led to our proposed
explanation for the reason for two separate locations for
HSD in corpora lutea.

Methods
Animals
Female mice of the (C3H/HeJ × 129/J)F1 (C31) hybrid
were used in the study. Parental stocks were purchased
from Jackson Laboratories, Bar Harbor, ME. The mice
were housed in an animal room kept at 24°C, with con-
trolled lighting of 14L:10D (lights on at 0600 hr and off
at 2000 hr). Purina lab chow (Ralston-Purina, St. Louis,
MO) and water were provided ad libitum. The C31 off-
spring were weaned at 23–28 days of age. Female siblings
were housed two per cage. For pregnancy experiments,
C31 females were mated with C31 males. Only those with
regular estrous cycles (4–5 days) were used for the study.

Determining Stage of the Estrous Cycle and mating
In order to promote a regular estrous cycle in the C31
females, cage shavings were taken from cages containing
C31 males, and placed in cages containing the females.
Also, male cages surrounded female cages. Vaginal smears
were taken daily, usually in the afternoon. The smears
were spread on a glass slide in a drop of physiological
saline, stained using hematoxylin and eosin Y, and the
stage of estrous determined by the method of Rugh [34].

In all experiments, each study group consisted of six
females that were between 80 and 190 days of age. Two of
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the study groups were comprised of animals that were in
diestrus and proestrus. The remaining groups all consisted
of pregnant animals. These groups were formed as fol-
lows: females that were in either proestrus or estrus were
mated late in the afternoon or about 2 hr prior to lights
off. At lights on the following morning, and for subse-
quent days if necessary, all females were inspected for the
presence of vaginal plugs. The day of vaginal plug was
considered as day 0 of pregnancy. Over the gestation
period, pregnant females were sacrificed on days 5, 10, 15,
and 20. An additional group of females was sacrificed on
day 5 postpartum.

Tissue Collection and Processing
Animals were lightly etherized, weighed, and then decap-
itated. The ovaries were removed, trimmed of fat, weighed
in pairs, and placed on an ice-filled petri dish in a few
drops of homogenizing buffer (0.3 % BSA, 1 mM EDTA,
0.25 M Sucrose, and 30 mM Tris-HCL [pH 7.4], 4°C), as
per Chapman and Sauer [18]. The twelve ovaries were
finely minced, then transferred to an ice-cold 5 ml Potter-
Elvehjem glass homogenizer. The volume of the sample
was brought up to 4 ml with additional homogenization
medium, and the ovaries homogenized in the cold room
(4°C) with 8 complete strokes of a motorized Teflon pes-
tle. The homogenate was then transferred to a 10 ml cen-
trifuge tube, and the glass homogenizer rinsed with 1 ml
of homogenizing medium. The rinse was combined with
the homogenate, and a 1 ml sample of the total homoge-
nate removed and saved for later assay.

The uteri were removed from 10 day, 15 day, and 20 day
pregnant mice. Trophoblasts were excised from the mid-
dle section of each uterine horn. After weighing, the tro-
phoblasts were minced, and processed as described for the
ovaries, except that the mince was homogenized in a Tho-
mas glass-glass homogenizer.

Differential Centrifugation
The ovarian homogenate, contained in a 10 ml centrifuge
tube, was centrifuged at 700 × g in a Sorvall RC-5 refriger-
ated centrifuge for 10 min. The supernatant was removed
and spun at 10,000 × g for 20 minutes in the same centri-
fuge. The low-speed pellet, containing nuclei and unbro-
ken cells, was resuspended in 1.5 ml homogenizing
buffer. Following the 10,000 × g centrifugation, the result-
ant mitochondrial pellet was resuspended in 1.5 ml
homogenizing buffer. The postmitochondrial superna-
tant was centrifuged in a Beckman L65 Ultracentrifuge
(Beckman Co., Fullerton, CA) for 1 h at 105,000 × g. This
yielded cytosol and a pellet of microsomes. Microsomes
were resuspended in 1.5 ml homogenizing buffer using a
2 ml Potter-Elvehjem glass homogenizer with Teflon pes-
tle. All fractions, including the total homogenate, were
divided into aliquots in 12 × 75-mm borosilicate glass

tubes, covered with Parafilm (American Can Co., Green-
wich, CT), and frozen at -10°C. Enzymatic analyses were
scheduled so that the frozen sub-cellular fractions were
thawed only once prior to assay.

Enzymatic Analyses and Other Assays
The total homogenate, low speed pellet (nuclei/unbroken
cells), mitochondrial, and microsomal fractions were
assayed for HSD activity by measuring the conversion of
pregnenolone to progesterone. Duplicate tissue samples
of 50 µl and 100 µl were added to 15-ml glass test tubes
containing 1 ml of incubation medium (50 mM sucrose,
20 mM KC1, 1 mM EDTA, 30 mM Tris-HCl [pH 7.4],
0.3% BSA), and 0.5 mM NAD+, as per Chapman et al.
[29]. The incubates were then placed in a 37°C water bath
and allowed to equilibrate for 5 min. The reaction was
started by the addition of 100 nmol of pregnenolone in
10 µl of ethanol. After 15 min of incubation, the proges-
terone product was extracted into 1 ml of spectral grade
heptane. The absorbency of progesterone was measured
in a Gilford Response spectrophotometer (Gilford Sys-
tems, Oberlin, OH). Progesterone has an absorbency peak
at 233 nm in heptane and a molar extinction coefficient
of 17,000 [18]. In order to access the extraction efficiency
of 1 ml of heptane, known concentrations of progesterone
standards were run concurrently with the tissue samples.
After extraction into heptane, the absorbancy of the stand-
ards was compared to their absorbance measured directly
in heptane.

Cytochrome c oxidase, an inner mitochondrial mem-
brane marker, was assayed by the procedure of Wharton
and Tzalgaloff [35]. Enzymatic activity was determined by
the rate of decrease in absorbancy at 550 nm. Protein con-
tent was measured by using the method of Bradford [36].
All assays were in duplicate. Replicate data were analyzed
for significant differences using ANOVA (Dunnett, and
Scheffe' F-test).

Results
The distribution of HSD activity between mitochondria
and microsomes undergoes a unique shift in the transi-
tion from proestrus to diestrus. At proestrus, for example,
the highest HSD activity is in the microsomes. At diestrus,
in contrast, mitochondrial HSD activity is almost double
that of microsomal HSD [29]. The present study re-exam-
ined this phenomenon; and, as Figure 1 shows, the activ-
ity of mitochondria HSD increases significantly at
diestrus. The activity of the mitochondrial inner mem-
brane enzyme, cytochrome c oxidase, also increases at die-
strus. Total ovarian protein, in contrast, decreases.

Figure 2 contains the results of two separate experiments
in which HSD activity was measured in mitochondrial
and microsomal fractions during pregnancy, and 5 days
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Protein content, cytochrome c oxidase activity, and HSD activity in total homogenates, and in mitochondrial and microsomal fractions from ovaries of C31 mice that were in either proestrus or diestrusFigure 1
Protein content, cytochrome c oxidase activity, and HSD activity in total homogenates, and in mitochondrial 
and microsomal fractions from ovaries of C31 mice that were in either proestrus or diestrus. Each experimental 
group consisted of 6 mice. Mitochondrial and microsomal fractions were isolated by differential centrifugation. Results are 
expressed per individual ovary.
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Protein content, cytochrome c oxidase activity, and HSD activity in total homogenates, and in mitochondrial and microsomal fractions from ovaries of C31 mice that were pregnant for 5 days, 10 days, 15 days, and 20 days, or were 5 days postpartumFigure 2
Protein content, cytochrome c oxidase activity, and HSD activity in total homogenates, and in mitochondrial 
and microsomal fractions from ovaries of C31 mice that were pregnant for 5 days, 10 days, 15 days, and 20 
days, or were 5 days postpartum. Each experimental group consisted of 6 mice. Mitochondrial and microsomal fractions 
were isolated by differential centrifugation. Results of two separate experiments are expressed per individual ovary. Statistical 
analyses of the enzymatic activities of cytochrome c oxidase and HSD in total homogenates at each time-point showed a signif-
icant difference @ P < .05, when compared to animals in diestrus. In addition, the HSD activities in all mitochondrial and 
microsomal fractions of pregnant mice were significantly different @ P < .05, when compared to animals in diestrus.
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after parturition. As indicated, the activities of mitochon-
drial HSD and microsomal HSD both increased over the
course of the gestation period. However, the increase in
HSD activity in the two organelles was inconsistent. For
example, at 15 days and 20 days of gestation, the highest
HSD activity was in the microsomal fraction. In contrast,
at 5 days and 10 days of gestation, and at 5 days postpar-
tum, mitochondrial HSD activity was greater than that of
microsomal HSD. These three time points directly follow
the peaks of LH [32]. Cytochrome c oxidase activity also
increased during pregnancy. At day 20, cytochrome c oxi-
dase activity was more than double the activity measured
at 5 days. Total ovarian protein was inversely correlated
with the peaks of LH. For example, at 15 days and 20 days
of gestation, each ovary contained 1190 µg protein and
1025 µg protein, respectively. In contrast, at 5 days and 10
days of gestation, and at 5 days postpartum, each ovary
contained 890 µg protein, 825 µg protein, and 810 µg pro-
tein, respectively. This relationship between LH and total
ovarian protein also occurs during the estrous cycle [29].
For example, as shown in Figure 1, each ovary at proestrus
contained 1030 µg protein; whereas at diestrus, each
ovary contained 838 µg protein.

Figure 3 contains the results of the measurement of HSD
activity in mitochondrial and microsomal fractions of tro-
phoblasts from 10 day, 15 day, and 20 day pregnant mice.
As indicated, HSD activity was not detected (N.D.) in tro-
phoblasts from 10 day pregnant mice. However, trophob-
lasts from 15 day and 20 day pregnant mice were found to
produce 0.4 nmol progesterone/min/trophoblast and 0.6
nmol progesterone/min/trophoblast, respectively. Note
that the highest HSD activity in trophoblasts is in the
microsomal fraction.

Discussion
The results of this and the previous study [29] leave little
doubt that mitochondrial HSD activity increases after LH
stimulation. How the increase in mitochondrial HSD
activity is achieved and for what purpose, are the topics of
this discussion.

When mitochondrial HSD was initially purified from the
bovine adrenal cortex, the enzyme was found to have a
close association with P450scc [24]. This association was of
such a high degree that mitochondrial HSD actually cop-
urified with P450scc. Antibodies against mitochondrial
HSD precipitated both HSD and P450scc; and, conversely,
antibodies against P450scc precipitated both P450scc and
mitochondrial HSD. The degree of association between
the two enzymes was measured, and a binding constant
(KD) of 0.12 µM was determined. As would be expected,
P450scc also bound to purified microsomal HSD [24].
HSD is insoluble and inactive in an aqueous medium, due
to a segment of the protein, referred to as the "membrane-

spanning domain" [27]. Delete this segment and HSD
becomes soluble. With the segment in place, HSD is
inserted into the membranes of microsomes and mito-
chondria [27]. The observation that mitochondrial HSD
activity increases after LH stimulation suggests that HSD is
preferentially inserted into the mitochondrial membrane.
The fact that HSD binds to P450scc is very likely the mech-
anism for its insertion. This suggests that HSD and P450scc
bind together, either during, or directly after their synthe-
sis, since it is unlikely that HSD could bind to P450scc,
already in place. The mRNAs for HSD and P450scc are
expressed concurrently in luteal cells of the rat [37-40],
cow [41,42], sheep [42-44], horse [45], macaque monkey
[46], and human [38,47-49].

Figure 4 is a representative diagram of the proposed effect
of the concurrent synthesis of HSD and P450scc on the
intracellular distribution of HSD in luteal cells. Initiated
by LH; the expression of HSD mRNA and P450scc mRNA
results in the simultaneous synthesis of HSD and P450scc.
The two enzymes bind to each other to form a complex,
which is then inserted into the inner mitochondrial mem-
brane. Molecules of HSD that do not bind to P450scc are
inserted into the membrane of the endoplasmic
reticulum.

In the mouse there are peaks of estradiol-17β at proestrus
(100 pg/ml) and metestrus (200 pg/ml) [29]. However,
these levels are significantly less than the levels of proges-
terone produced throughout the luteal phase. During
pregnancy the levels of circulating progesterone are even
higher. One could argue that the increased levels of circu-
lating progesterone in pregnant mice are due to the HSD
activity in trophoblasts. This possibility was addressed in
the current study. As shown in Figure 3, homogenates of
individual trophoblasts from 15 day and 20 day pregnant
mice are capable of producing 0.4 nmol progesterone/
min/trophoblast and 0.6 nmol progesterone/min/tro-
phoblast, respectively. This level of HSD activity in a sin-
gle trophoblast is only 3 % of the HSD activity produced
by the paired ovaries. However, large litters would
increase the percentage. At day 10 there is no question
that the ovaries are the major source of circulating proges-
terone, which averages 55 ng/ml [33]. This level of proges-
terone is between 275 fold and 550 fold of the peak levels
of estradiol-17β produced during the follicular phase.

In order for luteal cells to synthesize high levels of proges-
terone, a number of events have to occur. First, higher lev-
els of the two enzymes, P-450scc and HSD, have to be
produced. This event is initiated when their respective
mRNAs are expressed, as referenced above. Secondly, the
increase in steroid synthesis requires an increased supply
of cholesterol. This is achieved by removing cholesterol
from cholesterol ester stores [50,51], and by initiating the
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Protein content, cytochrome c oxidase activity, and HSD activity in total homogenates, and in mitochondrial and microsomal fractions from trophoblasts of C31 mice that were pregnant for 10 days, 15 days, and 20 daysFigure 3
Protein content, cytochrome c oxidase activity, and HSD activity in total homogenates, and in mitochondrial 
and microsomal fractions from trophoblasts of C31 mice that were pregnant for 10 days, 15 days, and 20 days. 
Each experimental group in the 10 day and 20 day pregnant animals consisted of 6 mice. N = 12 for the 15 day pregnant group. 
Mitochondrial and microsomal fractions were isolated by differential centrifugation. Results are expressed per individual tro-
phoblast. N.D. = Not detected.
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de novo synthesis of cholesterol [52-54]. The latter event
is quite likely in anticipation of fertilization of the ova and
the need for a supply of cholesterol beyond diestrus. In
the pregnant mouse, luteal cells synthesize high levels of
progesterone for three weeks [33]. The de novo synthesis
of cholesterol requires a carbon source, as well as ATP and
NADPH. In luteal cells the carbon source is acetate; ATP is
generated through glycolysis; and NADPH is produced
during the oxidative decarboxylation of isocitrate and
malate [54]. The enzymes that catalyze the latter reaction
are NADP+-linked isocitrate dehydrogenase and NADP+-
linked malate dehydrogenase. Both enzymes are in abun-
dance in the cytoplasm of luteal cells [55].

The enzyme, P450scc is capable of producing 53 nmol
pregnenolone/min/mg protein [56]. This requires an
undiminished supply of NADPH, as well as the
aforementioned cholesterol. The NADPH that is pro-
duced in the cytoplasm is of no direct use to the P450scc
enzyme. However, reducing equivalents from NADPH
can be transferred from the cytoplasm to mitochondria
via the malate-aspartate shuttle [57,58]. Unfortunately,
the mitochondria in luteal tissue lack an NADP+-linked
malate dehydrogenase [59,60]. As a result, NADPH can-
not be generated in the mitochondria by the oxidative
decarboxylation of malate. This is in sharp contrast to
adrenal cortex tissue, which does have a mitochondrial

Representative diagram of the proposed effect of the concurrent synthesis of HSD and cytochrome P450scc on the intracellular distribution of HSD in luteal cellsFigure 4
Representative diagram of the proposed effect of the concurrent synthesis of HSD and cytochrome P450scc on 
the intracellular distribution of HSD in luteal cells. Initiated by LH; the transcription of HSD mRNA and P450scc mRNA 
results in the simultaneous production of HSD and P450scc. The two enzymes bind to each other to form a complex, which is 
then inserted into the inner mitochondrial membrane. Molecules of HSD that do not bind to P450scc are inserted into the 
membrane of the endoplasmic reticulum.
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NADP+-linked malate dehydrogenase [61,62]. In luteal
tissue the mitochondria and cytoplasm both contain an
NAD+ -linked malate dehydrogenase, each enzyme having
a high specific activity [55,59]. This indicates that there is
ample capacity to transfer reducing equivalents from
NADH into the mitochondria. If this transfer were to
occur in tissues such as liver and heart, the NADH would
be used to produce ATP. In steroidogenic tissues, the
NADH can also be used to produce NADPH. For example,
in mitochondria of luteal tissue, reducing equivalents are
transferred from NADH to NADP+ by an energy-inde-
pendent pyridine-nucleotide transhydrogenase [56]. Son-
icates of luteal mitochondria are reported to catalyze the
production of 60 nmol NADPH/min/mg protein from
NADH [56]. Mitochondria in adrenal cortex tissue have a
similar process, except that the transfer is energy-depend-
ent [63]. The main source of NADPH in the mitochondria
of luteal tissue is provided by NADP+-linked isocitrate
dehydrogenase [56]. This enzyme is capable of reducing
253 nmol NADP+/min/mg protein [56].

In the synthesis of progesterone, NAD+ is reduced to
NADH. In order to maintain a high rate of progesterone
synthesis, NADH has to be continually oxidized to NAD+.
With microsomal HSD, the oxidation of NADH would
have to occur via either the α-glycerol phosphate shuttle
or the malate-aspartate shuttle. Both shuttles transfer
reducing equivalents from NADH into the mitochondria.
However, the α-glycerol phosphate shuttle does not oper-
ate in the ovary [64], which leaves the transfer of reducing
equivalents to the malate-aspartate shuttle. The ovary
already heavily utilizes this shuttle. As discussed earlier,
the malate-aspartate shuttle transfers reducing equivalents
from NADH into the mitochondria for the P450scc
enzyme. In addition, the shuttle is involved in the oxida-
tion of the NADH produced during glycolysis. A high rate
of glycolysis during the de novo synthesis of cholesterol,
for example, generates high levels of NADH. If the levels
of NADH exceed the carrying capacity of the shuttle sys-
tem, the reducing equivalents are transferred to pyruvate
via the enzyme, lactate dehydrogenase. A high level of lac-
tate is a signal that the shuttle system is rate limiting.

The ovary produces appreciable amounts of lactate, even
during the early follicular phase [65]. As follicular size
increases, lactate levels also increase [66], coinciding with
the start of antrum formation and detectable estradiol-
17β secretion [66,67]. After the LH surge, the levels of lac-
tate increase an additional 2.5 fold [66,68]. In luteal tis-
sue, a high percentage of the glucose taken up is
metabolized only as far as pyruvate and lactate [69].
Iodoacetate, an inhibitor of glycolysis, abolishes the effect
of LH on lactate accumulation and significantly reduces
LH-stimulated progesterone synthesis [68,70].

The fact that the malate-aspartate shuttle is rate-limiting
could be the reason for a mitochondrial location for HSD.
However, pregnenolone is an end-product inhibitor of the
P450scc reaction [71,72], and a mitochondrial location for
HSD would remove the steroid from its site of inhibition.
Progesterone does not inhibit the P450scc reaction [71].
Evidence that mitochondrial HSD is involved in the pro-
duction of high levels of progesterone is provided by the
observation that mitochondria from thecal tissue convert
only 6.4 % of total 14C-cholesterol to 14C-progesterone
(1.2 %) and 14C-pregnenolone (5.2 %); whereas, in con-
trast, mitochondria from luteal tissue convert 16.1 % of
total 14C-cholesterol to 14C-progesterone (13.5 %) and
14C-pregnenolone (2.6 %) [73].

In human adrenals and gonads, HSD is derived from the
same gene and has been classified as type II, relative to the
placental enzyme, which is classified as type I
[27,28,74,75]. In the adrenals and gonads of the rat [74-
76] and mouse [77,78], the enzyme is also derived from
the same gene, which in these rodents is classified as type
I. The fact that ovaries and adrenal cortex contain the
same HSD enzyme indicates that their response to trophic
hormone stimulation would also be the same. One would
expect, therefore, that ACTH stimulation would cause an
increase in mitochondrial HSD activity in adrenal cortex
tissue. ACTH stimulation of male and female rats does
cause an increase in HSD mRNA and HSD activity [79].
However, it is not known if ACTH stimulation causes a
preferential increase in mitochondrial HSD activity.

Aside from the role that Steroidogenic Acute Regulatory
protein (StAR) plays in controlling cholesterol access to
mitochondria, the rate-limiting step in steroidogenesis is
considered to be P450scc [80]. However, the fact that
P450scc and HSD are bound together as a complex [24]
suggests that the rate-limiting step, or steps, entails the
conversion of cholesterol to progesterone. There is a
decided advantage in these two enzymes functioning as a
unit. Instead of shuttling steroid intermediates from
organelle to organelle, cholesterol can be converted to
progesterone in what could be described as a single step.
The levels of progesterone can be increased even further if
the reactions of both enzymes are coupled together, which
appears to be the case. The discovery of the energy-inde-
pendent NADH/NADP+ transhydrogenase initially led to
the assumption that it existed to supply P450scc with
NADPH [56]. However, the transhydrogenase is capable
of producing less than one/half the NADPH needed to
synthesize high levels of pregnenolone. If its function is to
act as a principal supplier of NADPH, it is inadequate.
However, if its main function is to ensure that HSD has an
undiminished supply of NAD+, and is operating at Vmax, it
is more than adequate. It is an ideal means of coupling
HSD to P450scc. Unfortunately, the exchange of one
Page 9 of 13
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molecule of NADH to produce one molecule of NADPH
is insufficient for the overall conversion of progesterone
to cholesterol. This is because the P450scc reaction utilizes
3 molecules of NADPH for the synthesis of one molecule
of pregnenolone. The remainder of the NADPH for this
reaction would have to be supplied by mitochondrial
NADP+-linked isocitrate dehydrogenase [56].

The P450scc/HSD enzyme complex is well regulated. In
addition to the end-product inhibition exerted by pregne-
nolone on the P450scc reaction [71,72], the HSD reaction
is affected by the redox state of cytoplasmic pyridine
nucleotides [81]. For example, extramitochondrial NAD+

increases mitochondrial HSD activity by up to 40 %;
whereas, extramitochondrial NADH inhibits HSD activity

The proposed regulation of progesterone synthesis by pregnenolone and by extramitochondrial NAD+/NADHFigure 5
The proposed regulation of progesterone synthesis by pregnenolone and by extramitochondrial NAD+/NADH. 
In the overall conversion of cholesterol to progesterone, pregnenolone acts as an end product inhibitor in the P450scc reaction, 
[······ (-)]; and, in the mitochondrial HSD reaction, extramitochondrial NAD+ operates as an allosteric activator [------(+)] and 
extramitochondrial NADH operates as an allosteric inhibitor [······ (-)].
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by as much as 70 %. Figure 5 is a representative diagram
of the proposed regulation of the conversion of choles-
terol to progesterone. As indicated, pregnenolone acts as
an end product inhibitor of the P450scc reaction, [······
(-)]; and, in the mitochondrial HSD reaction, extramito-
chondrial NAD+ operates as an allosteric activator [------
(+)] and extramitochondrial NADH operates as an allos-
teric inhibitor [······ (-)]. With this level of control it is
difficult to imagine how pregnenolone could ever leave
the luteal cells without being converted to progesterone.

Finally; it was noted in the results section that total ovar-
ian protein was inversely correlated with the peaks of LH.
A decrease in total ovarian protein during diestrus could
be due to ovulation. However, this does not explain the
lower protein levels following LH stimulation that occurs
during pregnancy and after parturition. A rapid and ongo-
ing synthesis of the two enzymes, P450scc and HSD is crit-
ical to the production of high levels of progesterone. This
necessitates a ready supply of amino acids. It is speculative
of course, but the action of LH could include the initiation
of proteolysis of protein stores from luteal tissue, which
could explain the lower protein levels.

Conclusion
The ovary has two levels of steroid synthesis. One level
occurs during the follicular phase, and a higher level of
synthesis occurs throughout the luteal phase. We believe
the higher level of synthesis is due to, and the reason for,
mitochondrial HSD. To synthesize estradiol-17β during
the follicular phase, steroid precursors are shuttled from
cell type to cell type and from organelle to organelle. The
synthesis of progesterone during the luteal phase involves
one cell type and two enzymes. With HSD in the mito-
chondria, rather than in the microsomes, the shuttle of
steroid precursors is unnecessary. It also allows for HSD
and P450scc to function together as a unit, a decided
advantage for producing high levels of progesterone. This
is especially true if the two enzymes are coupled together
by the NADH/NADP+ transhydrogenase. A mitochondrial
location for HSD also solves the problem inherent with
the rate-limiting malate-aspartate shuttle, and it removes
the end-product inhibition of pregeneolone by converting
it to progesterone. Finally, the fact that HSD and P450scc
have a strong binding affinity for each other, and are syn-
thesized simultaneously, tentatively suggests a means by
which LH stimulation results in an increase in mitochon-
drial HSD activity.
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