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Abstract
Relaxin is a peptide hormone that exerts numerous effects in a variety of tissues across a broad
range of species. Although first identified more than 75 years ago interest in relaxin biology has
waxed and waned over the years consistent with peaks and troughs of new experimental data on
its wide-ranging biological effects and advances in relaxin enabling technologies. Recent insights into
species-dependent differences in relaxin biology during pregnancy have once again stimulated a
relative surge of interest in the study of relaxin's reproductive biology. Identification and
pharmacological characterization of orphaned relaxin receptors and exploration of its paracrine
effects on pregnancy using genomic and proteomic technologies have succeeded in fueling current
interest in relaxin research. Primates and non-primate vertebrates exhibit very disparate profiles
of relaxin genomics, proteomics and functional biology. Non-human primates appear to exhibit a
very close similarity to humans with respect to relaxin reproductive biology but the similarities and
subtle differences are only just beginning to be understood. We, and others, have shown that
relaxin produces significant changes to the non-human primate endometrium during the peri-
implantation period that are consistent with relaxin's long perceived role as a paracrine modulator
of pregnancy. The purpose of this review is to summarize the reproductive biology of relaxin in
non-human primates with a specific emphasis on the paracrine role of ovarian and endometrial
relaxin during embryo implantation and early pregnancy.

Review – Relaxin genetics and protein structure
The relaxin and relaxin-like peptides have been described
in a broad range of non-primate vertebrates including
mouse [1], rat [2], dog [3], pig [4], wallaby [5], horse [6]
and camel [7]. Three very elegant descriptions of the
molecular phylogenetics of primate relaxin can be found
elsewhere [8-10]. Relaxin, relaxin-like factor (Insulin 3,
INSL 3) and closely related insulin family genes are dis-
tributed on chromosomes 1, 9 and 19 in the human
genome [5,11]. To date three human relaxin genes have
been identified compared to two relaxin genes in the great
apes, and a single relaxin gene in old and new world mon-
keys [8,12]. Two of the human relaxin genes (H1 and H2)
are found at a single locus on chromosome 9 (9p24.1)

whereas the H3 gene is located on chromosome 19
(19p13) [13,14]. The great ape relaxin genes are equiva-
lent to human H1 and H2 but the great ape equivalent of
H3 has not yet been discovered. H1 and the great ape
equivalents are believed to have arisen through gene
duplication of H2 and its equivalent great ape gene [14].
Chromosomal locations for non-human primate relaxin
genes have not been reported. Both H1 and H2 gene prod-
ucts have been demonstrated in human reproductive tis-
sues but specific pregnancy-related biological roles for
these gene products have not been described [15].

Relaxin is synthesized and secreted as a preprohormone
containing a signal peptide and B-, C- and A-domains
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respectively arranged from N- to C-termini [10]. Cleavage
of the preprohormone signal peptide and C-domain is
carried out by tissue convertases and produces the mature
relaxin hormone [16,17]. The mature hormone, arranged
as an A-B domain heterodimer exhibits three disulfide
bonds and opposing supportive α-helices in the A-
domain. Conserved arginine residues on the B-domain
that are exposed during convertase-mediated cleavage are
important determinants of receptor binding [10]. Biolog-
ical activities have not been reported for the preprohor-
mone, signal peptide or C-domain although the C-
domain has been used to characterize sources and sinks
for relaxin production and accumulation, respectively
[18,19]. Like other prohormones (e.g. pro-islet amyloid
polypeptide, [20]), the primate relaxin prohormone is
biologically active but the physiological significance of
this ligand has not been fully elucidated [13,21,22].

The homology of relaxin A- and B-domains is lower and
more variable amongst human and non-human primates
compared to the homology of relaxin-like factor
sequences [8-10]. The rank order of similarity in great ape
relaxin sequences compared to H1 relaxin are Gorilla >
Chimpanzee > Orangutan (A- and B-domain). Great ape
A-domain sequences exhibit uniform differences com-
pared to H2 relaxin and a rank order of similarity of
Chimpanzee > Gorilla > Orangutan compared to H2 B-
domain sequences [8]. Old and new world monkey relax-
ins exhibit lower homology to human sequences com-
pared to great apes, and exhibit a higher variance in B-
versus A-domain homology compared with human
sequences. The functional significance of the differences

in relaxin sequence homology across species is not readily
apparent given the demonstrable interspecies biological
activity of relaxin molecules (Table 1). Despite the
observed variation in sequence homology, the receptor-
binding domain is a highly conserved motif consisting of
two arginine residues and one isoleucine residue [10].

Splice variants of relaxin have been demonstrated in
humans but the peptides produced by these variants have
not yet been isolated and tested for biological activity
[23]. Recent evidence suggests that CT and GT dinucle-
otide polymorphisms in the transcriptional control
regions of H1 and H2 exist, exhibit protein-DNA binding
interactions that increase with repeat expansion and may
support transcriptional regulation of the two genes [15].
These studies may have implications for disorders where
abnormal levels of relaxin are thought to be associated
with a specific reproductive pathology (e.g. pre-term labor
[24]). The H1 and H2 relaxin genes both exhibit zinc and
mineralocorticoid response elements whereas only the
H2 gene exhibits NFκβ and glucocorticoid response ele-
ments. Furthermore, the H1 and H2 genes exhibit differ-
ent combinations of AP-1 and SP-1 steroid hormone and
gonadotrophin dependent response sites [24-27] thus
suggesting that gene expression may be regulated differ-
ently in the presence or absence of different hormones.
Functional steroid hormone or gonadotrophin response
sites have not yet been described for non-human primate
relaxin genes.

Table 1: Various interspecies biological effects of relaxins relevant to known physiological actions.

Relaxin Species a Test species/system Biological effect Reference

Human Adult NHP ↑ Prolactin and growth hormone secretion [186]
Neonatal NHP uterine cells ↑ cAMP production [187]

Prepubertal pig ↑ E-cadherin expression and uterine epithelial 
cell growth

[18]

Non-pregnant rat myometrium ↓ Vassopressin induced contraction [189]
Rat uterine artery ↑ Nitric oxide production

↓ Phenylepherine induced contraction
[190]

Rat kidney ↑ Glomerular filtration rate
↓ Renal vascular resistance

[191]

Mouse endometrial stromal cells ↑ Protein synthesis
↑ Laminin production

[192]

Marmoset Human stromal cells, THP-1 monocytes ↑ cAMP production [21]
Porcine Rat ↑ Uterine/body weight ratio [193]

Mouse ↑ interpubic ligament length [194]
Guinea Pig Adult NHP endometrium ↑ Thickness

↑ Vascularization
[141]

Wallaby Human THP-1 monocytes ↑ cAMP production [5]

a = native, synthetic or prohormone. cAMP = cyclic adenosine monophosphate, NHP = non-human primate.
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Relaxin receptors and signal transduction
A number of studies have indicated binding sites for pri-
mate relaxin in the corpus luteum, endometrial glandular
epithelium, decidua and placenta [28-32]. However,
relaxin receptors (LGR7 and LGR8) remained orphaned
from their peptide until very recently and have now been
characterized pharmacologically in vitro [33]. The relaxin
receptors are G-protein coupled receptors with 7-transme-
mebrane spanning domains, a long extracellular sequence
containing a series of leucine-rich repeats and an N-termi-
nal ectodomian [33,34]. The receptors belong to a family
of glycoprotein hormone receptors including follicle stim-
ulating and luteinizing hormones and, thyroid-stimulat-
ing hormone [11]. Pharmacological evidence indicates
that LGR7/8 can discriminate H2 and H3 relaxin with H2
and porcine relaxin being effective at both receptors
whereas H3 is effective at the LGR7 receptor only [34,35].
Relaxin exhibits greater potency and efficacy as an agonist
at LGR7 compared to LGR8 [33-35]. LGR7/8 have both
recently been identified in human and non-human pri-
mate endometrium [36,37].

Some of the binding characteristics and intracellular sig-
nal transduction mechanisms involved in relaxin receptor
occupancy, and other cellular mechanisms activated by
relaxin are listed in Tables 1 and 2. In reproductive tissues
relaxin appears to be tightly coupled to cAMP metabolism
(activation of adenylate cyclase, activation of protein
kinase A and inhibition of phosphodiesterase) but also
exhibits cell type specific signal transduction mechanisms
that involve nitric oxide, phospholipid dependent signal-
ing and ion channel regulation [38-40]. All of these signal
transduction mechanisms are consistent with the known
physiology of relaxin in a broad range of cell types. The
effects of relaxin on cAMP metabolism are highly relevant
to its role in early implantation and pregnancy in primates

(see below). The physical and pharmacological character-
ization of relaxin receptors in tissues of the murine, non-
human primate and human female reproductive tracts
represent significant advances in relaxin research and
should precipitate the development of selective relaxin
agonists and antagonists for use in functional studies of
the specific effects of relaxin during implantation and
pregnancy in primates.

Ovarian relaxin secretion and functional 
regulation
Relaxin is produced in significant quantities in human
and non-human primate ovaries during the luteal phase
[24,41]. The non-human primate corpus luteum of natu-
ral non-conceptive cycles produces relaxin that rises to a
peak within approximately 14 days of ovulation and
declines following demise of the corpus luteum. In preg-
nant cycles, rather than subsiding, relaxin secretion con-
tinues to rise during the first trimester consistent with
rescue of the corpus luteum and formation of a functional
placenta [42,43]. The characteristics of relaxin secretion
following ovulation in humans and some non-human
primate species are listed in Table 3. Marmosets exhibit
serum relaxin profiles that are clearly distinguishable
from great apes, old world monkeys and rodents [[44],
references in Table 3]. These differences could possibly be
related to the distinct differences in anatomy and physiol-
ogy of marmoset embryo implantation and parity com-
pared to macaques and great apes on one hand and
rodents on the other [45,46]. However, experiments dem-
onstrating a direct link between variations in relaxin secre-
tion profiles in different non-human primate species and
variations in the physiology of implantation and preg-
nancy have not been described.

Table 2: Binding characteristics of recombinant human relaxin at putative binding sites and intracellular signals affected.

Cell Type Kd (nM)/# binding sites per cell * Intracellular signal or Biological Effect Reference

Human THP-1 Monocytes 0.102/275 ↑ cAMP
↑ Extracellular acidification

[195]

Human Uterine Fibroblast 4.4 ± 1.7/3220 ± 557 ↑ Tyrosine phosphorylation [196]
Human Uterine Epithelial Cells 0.44/1082 ± 62 NA [28]
Human Endometrial Stromal Cells 0.150/963–1000 ↑ p42/44 MAPK activity

↑ Activation of CREB
↑ VEGF expression

↑ cAMP
↑ Prolactin gene expression

[103]
[119]
[197]

Human Sperm 0.650/NA ↑ Sperm motility
↑ Acrosome reaction

[198]

Human Granulosa Cells NA ↑ Release of calcium from intracellular stores [199]

cAMP = cyclic adenosine monophosphate; CREB = cAMP response element binding protein; MAPK, mitogen-activated protein kinase; NA = data 
not available; VEGF = vascular endothelial growth factor. The asterisk (*) indicates that reported estimates for Kd values may be different due to 
tissue and radioligand differences, or both.
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Several lines of experimental evidence suggest that circu-
lating levels of relaxin may not be suitable markers for the
full biological impact of this hormone, and that local syn-
thesis and release of relaxin may be highly relevant to its
biological effects, particularly those effects related to
embryo implantation and pregnancy. First, many early
relaxin hormone assay systems were developed using syn-
thetic H2-relaxin [47] and negligible H2 antibody cross
reactivity to H1 and H3 relaxins has been demonstrated
[13]. Therefore, in many of the early studies detailing
relaxin secretion, circulating levels of total relaxin may
have been underestimated compared to H2. Second, cir-
culating relaxin levels are often much lower than blood or
tissue levels within specific organs [48]. Third, circulating
relaxin levels in steroid hormone supplemented patients
undergoing ovum donation cycles remain below the lim-
its of detection despite successful pregnancy [49]. Non-
human primates subjected to ovariectomy also maintain
pregnancy when supplemented with steroid hormones
[48,50]. Finally, unlike some non-primate vertebrates, cir-
culating levels of relaxin in primates are not maintained
during steroid hormone supplemented pregnancy in the
absence of ovaries [51-53]. Taken together these observa-
tions indicate that the primate ovary may be responsible
for the majority of circulating relaxin but elevated levels of
circulating relaxin may not be necessary for embryo
implantation or maintenance of pregnancy in primates.

The functional regulation of relaxin secretion in primates
is complex and very poorly understood. Measurements of

relaxin in ovarian cycles and throughout pregnancy indi-
cate, in agreement with histological studies, that the ovary
and uterus produce relaxin in a manner that is dependent
upon steroid hormone and/or gonadotrophin secretion,
and that pituitary-ovarian-uterine feedback mechanisms
may exist [48,54,55]. Because the corpus luteum and pre-
placental endometrium are important regulators of early
implantation in natural conceptive cycles the functional
regulation of relaxin secretion in these tissues will be dis-
cussed but will be limited to a summary of the effects of
steroid hormones and gonadotrophins. Very detailed
reviews of non-human primate corpus luteum function
and regulation can be found elsewhere [54,56].

Ovarian relaxin is clearly a hormone of the luteal phase of
non-conceptive cycles and early pregnancy in old world
monkeys, great apes and humans (Table 3). A series of
very elegant studies in rhesus macaques have
demonstrated steroid hormone and gonadotrophin-
mediated regulation of ovarian relaxin secretion [57-60].
The data from those studies clearly indicate that ovarian
relaxin secretion very closely parallels the time-course of
the rise of circulating chorionic gonadotrophin (CG), that
luteal secretion of ovarian relaxin is not dependent upon
progesterone (P4) or estrogen (E2) and that ovarian
relaxin secretion produced by administration of exoge-
nous human CG (hCG) is dependent upon sufficient
ovarian exposure to E2 and P4 prior to hCG exposure
[57,58]. The effects of chronic hCG administration on
ovarian relaxin secretion in vivo are recapitulated on

Table 3: Characteristics of relaxin secretion in non-pregnant and pregnant cycles of humans and selected non-human primate species.

Species Days to peak serum 
relaxin concentrations 

(Ovulation = D0)

Peak serum relaxin 
concentrations (ng/ml)

Normal term gestation 
(Days)

Reference

Human
Non-pregnant cycle 10 0.06 [200]
Pregnant cycle 56–77 1.0–3.5 280 [201]
Chimpanzee
Non-pregnant cycle 8–13 0.15–1.40 [202]
Pregnant cycle 30 2.0 230 [202]
Baboon
Non-pregnant cycle 12 0.45 [48]
Pregnant cycle 25–35 1.0–1.5 177 [203]
Rhesus macaque
Non-pregnant cycle 13 0.05 [204]
Pregnant cycle 45–60 1.0–1.5 165 [43]
Cynomolgus macaque
Non-pregnant cycle 16 0.03 [43]
Pregnant cycle 45–60 1.0–1.5 165 [43]
Common marmoset
Non-pregnant cycle 10–11 1.0–2.5 [205]
Pregnant cycle 84–98 12.0–16.0 155 [51]
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chronic exposure, but not acute exposure, of luteal cells to
hCG in vitro, thus suggesting a need for the continued
presence of hCG to maintain ovarian relaxin secretion in
primates [61,62]. A wealth of studies in a broad range of
species including primates indicate a functional interac-
tion between steroid hormones and gonadotrophins in
determination of corpus luteum function and life span
[56,63], two variables that directly effect ovarian relaxin
secretion. It follows, and not surprisingly, that conceptive
cycles rely on a sequential and dynamic interaction of ster-
oid and gonadotrophin hormones to produce functional
secretion of ovarian relaxin [43,58]. A potential role for
ovarian relaxin as a luteotrophic agent is suggested by
experiments in rats demonstrating a relaxin-dependent

increase in pituitary luteinizing hormone (LH) release but
only in the presence of combined E2 and P4 priming [55].
Studies in domestic species also indicate a potential lute-
otrophic action of ovarian relaxin during the early stages
of pregnancy possibly mediated by enhanced secretion of
P4 [64]. Whether or not primate relaxin produces a func-
tional regulation of ovarian steroidogenesis, feedback reg-
ulation of pituitary gonadotrophin secretion and/or
feedback regulation of uterine and conceptus gene expres-
sion during menstrual and conceptive cycles remains to
be determined (Figure 1). Use of selective relaxin agonists
and antagonists, or the application of relaxin ablation
experiments, in primate models of corpus luteum func-
tion will be necessary to demonstrate potential autocrine/

Relaxin secretion from the primate corpus luteumFigure 1
Relaxin secretion from the primate corpus luteum Describes the sequential nature of steroid hormone priming of 
relaxin secretion from the primate corpus luteum and gonadotrophin influences from the pituitary and conceptus. Potential 
undocumented feedback mechanisms are indicated (?). LH, luteinizing hormone; CG, chorionic gonadotrophin.
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paracrine/endocrine control mechanisms for ovarian
relaxin.

That ovarian relaxin is not required for successful term
pregnancy in primates is suggested by several independent
lines of clinical and experimental evidence indicating that
pregnancies can be initiated and maintained: (i) in
humans with premature ovarian failure, a sub population
of infertility patients who fail to develop a corpus luteum
and, presumably, ovarian relaxin [49], (ii) in baboons
subjected to unilateral removal of the corpus luteum bear-
ing ovary following establishment of a functional pla-
centa [48], (iii) in macaques subjected to bilateral
ovariectomy at embryo transfer, prior to establishment of
a placenta [50] and (iv) in marmosets subjected to pros-
taglandin F2α-mediated luteolysis in mid-pregnancy [51].
The results of these studies indicate that pregnancies can
be maintained in the absence of a functional luteal phase
ovary provided that steroid hormone supplementation is
provided. Pregnancies subjected to the removal of the cor-
pus luteum bearing ovary during pregnancy, after steroid
production has shifted to a placental source, do not
require steroid hormone supplementation. Taken
together these observations clearly indicate that uterine
exposure to steroid hormones, but not ovarian relaxin, is
necessary and sufficient for implantation and on-going
pregnancy in primates. Although ovarian relaxin appears
to be unnecessary for term pregnancy in primates its
potential role in proper corpus luteum function during
natural cycles should not be discounted and requires fur-
ther study.

Relaxin and paracrine modulation of embryo 
implantation and pregnancy
Ovarian relaxin is not required for pregnancy in primates
but relaxin is secreted from the primate syncytiotrophob-
last and glandular endometrium [41,65] in a manner that
may be up-regulated in the absence of ovaries [48]. Then
what role, if any, does embryonic/endometrial relaxin
play during implantation and pregnancy in primates?
Unfortunately it is not possible to answer this question
directly as selective relaxin receptor agonists and antago-
nists have not been employed in models capable of pro-
viding an answer. Furthermore, key relaxin ablation
experiments have not yet been performed in non-human
primate models of pregnancy. However, it is possible to
demonstrate effects of relaxin on the endometrium that
are consistent with a paracrine mode of action during
embryo implantation and pregnancy. Embryo-endome-
trial recognition, decidualization of endometrial stromal
cells, embryonic vascularization and avoidance of mater-
nal immune recognition are all very important aspects of
embryo implantation and will be used as platforms for
discussion of relaxin's potential paracrine actions in early
pregnancy in primates.

Embryo-endometrial recognition
The molecular mechanisms that mediate embryo-
endometrial communication in primates are incom-
pletely understood [66]. However, studies of embryo-
endometrial communication in species where larger num-
bers of embryos can be created and used experimentally
indicate that such a communication does exist [67].
Embryonic and uterine expression of insulin growth fac-
tors (IGF's) and insulin growth factor binding proteins
(IGFBP's) represent some of the earliest markers of
implantation in primates and other mammalian species
[68-70]. Studies in mice indicate that IGFBP-1 mRNA
expression in uterine stromal cells and embryos cultured
in isolation is static during pre-implantation embryo
development in vitro but is up-regulated in stromal cells
cultured in the presence of developing embryos [69]. Up-
regulation of IGFBP mRNA expression in mouse embryos
exposed to human endometrial stromal cells and relaxin
has been demonstrated [71]. IGF's are secreted from the
endometrium and differentially effect expression of IGF
receptors and IGFBP's in preimplantation bovine
embryos in vitro [70]. In primates IGFBP mRNA is
expressed in embryos at all stages of preimplantation
development but increases sharply at the blastocysts stage
and coincides with embryonic implantation competence
[72,73]. Taken together these studies indicate that
embryo-endometrial communication takes place prior to
full implantation competence, and that soluble factors
secreted by both the embryo and endometrium can alter
gene expression in their counterpart [74].

Marmoset embryos cultured in vitro secrete a substance
into culture medium, prior to the appearance of detecta-
ble CG and implantation competence, which reduces
platelet number and aggregation in vivo [75,76]. Relaxin
suppresses the release of platelets from megakaryocytes
and reduces platelet aggregation in vivo and in vitro [77].
Given that relaxin receptors are expressed in the primate
endometrium during the peri-implantation period it is
tempting to speculate that embryonic relaxin could func-
tion as a paracrine signal of implantation before embryo-
endometrial attachment takes place. However, to our
knowledge, studies detailing the expression and func-
tional regulation of relaxin genes in primate embryos
have not been reported. The presence of relaxin gene tran-
scripts in the primate endometrium prior to embryo
implantation [15,65] indicates that endometrial relaxin
genes could also be targets for embryonic signaling factors
during the peri-implantation period. Rabbit blastocysts
induce endometrial secretion of relaxin prior to implanta-
tion and the secretion is maintained by the conceptus
throughout the remainder of gestation [78]. The factor(s)
that mediate blastocyst initiation of endometrial relaxin
secretion in the rabbit have not been identified. Again, to
our knowledge, similar studies detailing blastocyst-medi-
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ated regulation of endometrial relaxin secretion in pri-
mates have not been reported. Chorionic gonadotrophin
is a primate specific embryonic signal of early implanta-
tion [76,79] that produces a significant up-regulation of
relaxin secretion in the primate ovary [58], and therefore
could potentially regulate endometrial relaxin secretion in
primates. However, to our knowledge, studies demon-
strating CG-mediated regulation of endometrial relaxin
secretion in primates have also not been reported. Further
investigations of primate embryonic factors that modu-
late uterine relaxin secretion and uterine signals that regu-
late embryonic relaxin gene expression will be important
to the field of relaxin reproductive biology.

Decidualization of endometrial stromal cells
As mentioned above, CG, like IGFBP-1, is one of the ear-
liest embryonic signals secreted during the peri-implanta-
tion period and produces profound changes in the
secretory nature of both the corpus luteum and the
endometrium [56,80,81]. Plaque formation at the site of
embryo apposition and attachment and decidualization
of maternal endometrial stromal cells are driven by CG
and its down stream effectors, and represent two very
important events in early pregnancy [79]. Some of the CG-
dependent endometrial signals required for plaque for-
mation and decidualization have been demonstrated
using very elegant in vitro and in vivo models of early
implantation in the baboon [82-84]. When CG is admin-
istered to ovariectomized baboons treated with E2 and P4
in a manner designed to mimic a natural cycle the CG-
mediated decidualization reaction is found throughout
the entire endometrium [84]. In contrast, in vivo in the
presence of a conceptus, the plaque formation and decid-
ualization reactions are restricted to the site of embryo
attachment [84,85]. Therefore, it appears that the CG-
mediated plaque formation and decidualization
responses in primates are specific conceptus-driven sig-
nals, and that paracrine factors associated with this
response may be responsible for limitation of the reaction
to specific areas despite high circulating levels of CG [84].
Although CG is a primate specific signal of implantation
studies of embryo attachment in rabbits have also demon-
strated a conceptus-mediated restriction of implantation
events to areas where direct embryo-endometrial cell-cell
contact occurs [86]. Furthermore, in the rabbit model,
conceptus-driven endometrial relaxin secretion is also
restricted to implantation sites [78] thus suggesting a local
paracrine effect of relaxin at the site of embryo attachment
and implantation. The effects of CG on decidualization of
primate endometrial stromal cells are enhanced by the
presence of steroid hormones and relaxin [83,87,88]. It is
also clear from studies in humans and the baboon that
steroid hormones are necessary and sufficient to elicit
decidualization of endometrial stromal cells whereas
relaxin, in the absence of steroid hormones, is not suffi-

cient for the complete decidualization reaction to occur
[88-90]. Detailed studies of relaxin transcripts in human
endometrium in pregnant and non-pregnant cycles clearly
indicated that relaxin expression preceded the expression
of IGFBP-1 and prolactin [91], two classical markers of
decidualization [92], and strongly suggest a non-redun-
dant paracrine role for primate relaxin during the peri-
implantation period. Further studies detailing potential
links between CG and endometrial relaxin secretion in
non-human primate models are needed.

Experimental observations indicate that in the presence of
adequate steroid hormone priming the decidualization of
endometrial stromal cells is heavily regulated by cAMP-
dependent mechanisms [72,90,93,94]. In rodents non-
conceptus mediated decidualization stimuli produce
increases in cellular cAMP content through activation of
adenylate cyclase, which in turn modifies its own micro-
environment so as to remain impervious to inhibitory
influences [95]. Conversely, inhibition of adenylate
cyclase reduces cAMP production and prevents adequate
decidualization of rat stromal cells in vitro [96]. In
humans accumulation of cAMP within endometrial biop-
sies is greater during the luteal phase compared to the fol-
licular phase [97]. Levels of cAMP required for
decidualization of primate endometrial cells may be
maintained in the absence of classic regulators of ade-
nylate cyclase (e.g. LH/hCG) if gonadotrophin-induced
paracrine effectors have been activated and appropriate
steroid hormone exposure is maintained [81,98]. Inter-
lukin-1β, prostaglandin E2 and relaxin are just a few repre-
sentatives of a large group of paracrine signals that
modulate cAMP signaling in the primate endometrium
[79,98,99].

In an in vitro setting baboon and human endometrial cells
undergo decidualization in the presence of E2 and P4 and
this reaction is enhanced by the addition of relaxin [100].
The intracellular signaling mechanism(s) responsible for
relaxin-mediated enhancement of the decidualization
process appear to be cAMP-dependent. Transfected cells
expressing the relaxin receptors LGR7/8 respond to
porcine relaxin by producing large increases in intracellu-
lar cAMP. The same responses are not observed in the
presence of relaxin related peptides such as insulin
[35,101]. Relaxin also stimulates cAMP production in the
mouse pubic symphysis (a classic model of relaxin phar-
macology) in a manner that is prevented by previous
exposure of relaxin to dithiothreitol or monoclonal anti-
bodies [102]. The effect of relaxin on cAMP production
and decidualization in human endometrial stromal cells
in vitro is enhanced by concomitant inhibition of specific
isoforms of phosphodiesterase [103]. The same authors
also demonstrated that progesterone and relaxin alone do
not stimulate cAMP production or up-regulate the expres-
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sion of markers of decidualization (e.g. IGFBP-1 and pro-
lactin). Human endometrial cells exposed to relaxin in the
presence of a phosphodiesterase inhibitor produced
markedly elevated cAMP levels and up-regulated expres-
sion of both IGFBP-1 and prolactin genes whereas proges-
terone, under the same conditions, produced a very
limited increase in cAMP production and up-regulated
prolactin gene expression only [103]. Exposure of human
endometrial stromal cells and THP-1 monocytes to
relaxin also resulted in an elevation of intracellular cAMP
that the authors suggested was mediated in part by relaxin
mediated tyrosine kinase signaling and inhibition of
phosphodiesterase activity [104]. Taken together these
results suggest that progesterone and relaxin can synergize
to affect significant and sustained increases in intracellular
cAMP, an essential part of the decidualization process in
primate endometrial cells [83,103,104]. Several sensitive
control mechanisms exist to regulate relaxin-mediated
cAMP accumulation, and thereby implicates cAMP as a
prominent mediator of relaxins paracrine effects in the
primate endometrium.

The interactions between steroid hormones, steroid hor-
mone receptors, steroid hormone response elements and
intracellular signaling pathways during decidualization of
primate endometrial stromal cells involve a number of
very complex features including ligand- and receptor-
independent modifications of gene expression and signif-
icant cross-talk between signaling pathways [105,106]. A
detailed discussion of the complex steroid-dependent reg-
ulation of decidualization is beyond the scope of this
review. However, the interactions between progesterone,
progesterone receptors and the cAMP-signaling cascade in
endometrial stromal cells have recently been expertly
reviewed [98]. Based on the information contained in that
work it was clearly demonstrated that cAMP-mediated sig-
naling produces a very sensitive regulation of various pro-
gesterone response elements (e.g. C/EBPβ, Stat5 and
FoxO1a) and subsequent regulation of decidua specific
gene expression. The in vitro and in vivo studies cited above
and in Table 2 clearly identify relaxin as modulator of
cAMP production in the primate endometrium and, by
extension, its potential to regulate gene expression during
the decidualization process. However, relaxin is only one
of many paracrine modulators of cAMP production in the
primate endometrium and it remains to be determined
whether or not relaxin is a redundant modulator of the
decidualization process. Given that relaxin is routinely
used in conjunction with E2 and P4 to produce morpho-
logically and biochemically relevant decidualization of
primate stromal cells in model systems in vitro [88,100], it
is possible that relaxin is necessary for optimal/clinically
relevant decidualization and subsequent placentation in
vivo.

Embryo vasculogenesis
Following embryo attachment vascularization of the pri-
mate embryo is one of the most important events in early
pregnancy [107]. Tapping of the maternal vasculature by
the embryo is necessary for survival but at the same time
exposes the embryo to the full force of the maternal
immune system [108] and to the potential dangers of
blood borne component effects on endometrial quies-
cence [109]. In macaques trophoblastic invasion of the
maternal vasculature occurs rapidly (within 2 days of blas-
tocyst attachment) and is marked by syncytiotrophoblast
invasion of capillary endometrial cells and cytotrophob-
last invasion of superficial arterioles and spiral arteries
[110,111]. Syncytio- and cytotrophoblast cells then work
in concert to initiate the villous stage of placenta forma-
tion and formalization of feto-maternal circulation [112].
The uterus also exhibits profound changes in vasculariza-
tion during this period and these changes are mediated by
factors of trophoblastic origin [113]. CG acting on LH/CG
receptors has been shown to produce many of the charac-
teristic changes in trophoblast cell phenotype and uterine
vascularization that are required for embryonic recruit-
ment of the primate maternal circulation [114]. Impor-
tantly, CG is able to stimulate the expression of one of the
most ubiquitous regulators of angiogenesis, vascular
endothelial growth factor (VEGF) [115]. In primates,
VEGF expression rises during the secretory phase of the
cycle, is prominent in syncytiotrophoblast and decidual
vascular endometrium and exhibits positive functional
regulation by estrogen and progesterone in a steroid
receptor-dependent manner [107,116-118]. Like CG,
relaxin also stimulates the expression of VEGF in endome-
trial cells in vitro and produces conceptus-like mediated
changes of non-human primate maternal vasculature in
vivo in the absence of a conceptus [112,119].

Formation and maintenance of the vascularized corpus
luteum, like the formation and maintenance of the vascu-
larized and receptive endometrium, is also dependent
upon angiogenesis and is driven by expression of VEGF
and other angiogenic factors such as the angiopoetins
[120,121]. In primates, LH and CG appear to be potent
regulators of ovarian VEGF expression and promote the
vascularization and stabilization of the functional steroid
producing corpus luteum [122,123]. As demonstrated
above (see Table 3) CG is clearly able to increase corpus
luteum derived relaxin secretion (e.g. pregnancy) over and
above that produced by sequential exposure to estrogen
and progesterone in the absence of CG (e.g. non-pregnant
cycle). LH and/or CG may initiate corpus luteum angio-
genesis through direct actions and maintain angiogenesis
through stimulation of local activators of angiogenesis
signaling such as relaxin [122]. Whether or not ovarian
relaxin acts as a functional regulator of VEGF and angio-
genesis within the primate corpus luteum or has endo-
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crine effects on endometrial VEGF expression remains to
be determined. Studies detailing a parallel effect of CG on
endometrial relaxin secretion similar to that observed in
the ovary has not yet been demonstrated in primates. Fur-
thermore, a link between CG and relaxin and functional
regulation of VEGF expression in the primate
endometrium has not been established. However, given
that CG and relaxin both stimulate the expression of
VEGF in primate endometrial tissues [114,119], that
relaxin expression within the primate endometrium coin-
cides with elevated serum CG levels [91] and that relaxin
induces changes in vascularization of the primate
endometrium in the absence of conceptus-derived CG
[112], it is tempting to speculate that some of the CG-
mediated effects on endometrial angiogenesis during
implantation in primates could be produced by relaxin.
Relaxin may also help to enhance embryonic access to the
maternal vasculature through other non-VEGF mediated
effects such as reduction of platelet release and aggrega-
tion [77] and subsequent reduction in the release of anti-
angiogenic factors such as thrombospondin [124], reduc-
tion of vascular fibrosis mediated by enhanced expression
of tissue plasminogen activator [125,126], enhanced syn-
thesis and secretion of prorenin [127] and direct vasodila-
tion of the endometrial vasculature [reviewed in,
[128,129]].

Evasion of the maternal immune response
In order to initiate and maintain contact with the
endometrium and maternal circulation the implanting
embryo must avoid stimulation of the maternal immune
system. This very unique situation is often referred to as
the immunological paradox of pregnancy given the large
numbers of immune cells present at the feto-maternal
interface, and is highly dependent upon the cytokine
microenvironment of the endometrium at the time of
implantation [130,131]. Progesterone is a powerful
immunosuppressant [132] and produces polarization of
T-helper (Th) cytokine profiles to the Th2 phenotype at
physiologically relevant concentrations [108]. The Th2
phenotype is generally considered necessary for the avoid-
ance of fetal rejection and maintenance of pregnancy
[133]. Relaxin also produces biological effects on periph-
eral blood monocytes that polarize the cytokine profile to
the Th1 phenotype, a phenotype that appears at first
glance to be inconsistent with a role for relaxin in suppres-
sion of a potential maternal immune response against the
implanting embryo [134]. Relaxin stimulates the produc-
tion of interferon-gamma (IFN-γ) and tumor necrosis fac-
tor-beta (TNF-β) in peripheral blood monocytes, two
cytokines that mediate MHC class II restricted host
defenses predominantly through phagocytosis, and are
potentially detrimental to implantation and pregnancy
[135,136]. Because the embryo is hemiallogenic it is
expected that a relaxin-induced Th1 cytokine profile

would be disadvantageous to embryo implantation. How-
ever, it should be recognized that the effects of relaxin on
peripheral blood mononuclear cells may be advantageous
in protecting both the fetus and the mother from oppor-
tunistic infection, and that the effects of relaxin on T-lym-
phocyte mediated cytokine expression at the feto-
maternal interface may be quite different to that observed
in the general circulation based on the unique hormonal
milieu of the pregnant endometrium [108,133]. Indeed,
previous reports have demonstrated elevated levels of
INF-γ in pregnant women presenting for voluntary abor-
tion compared to non-pregnant women and suggest that
elevated IFN-γ may be necessary for fetal maintenance,
possibly through stimulation of macrophage mediated
expression of the cytotoxic T-cell suppressor indolamine
2,3-dioxygenase [108]. Further support for a positive role
of IFN-γ during implantation comes from studies with
knockout mice that exhibit deficits in the IFN-γ signaling
cascade and also exhibit deficits in endometrial decidual
reactions and fertility [137]. Further studies aimed at
describing the effects of relaxin on cytokine expression in
primate endometrium will be an important area of inves-
tigation relating to relaxin biology in early pregnancy.

Exogenous relaxin administration in a non-
human primate model of pregnancy: 
Implications for human assisted reproductive 
technology
As described above, relaxin exhibits key attributes of a
paracrine regulator of implantation in primates: relaxin
secretion increases during the mid-late luteal phase of the
non-pregnant cycle and continues to rise throughout the
first trimester in early pregnancy [42], tissue specific pro-
duction of relaxin is up- or down-regulated in a steroid
dependent manner during early and late pregnancy
[65,91,138,139] and relaxin signaling modifies steroid-
dependent regulation of gene expression within the
endometrium, decidua and placenta [98,139,140]. How-
ever, direct evidence linking relaxin administration to
changes in endometrial morphology/function and
embryo implantation has long been a matter of specula-
tion. Early histological studies with porcine relaxin
demonstrated an apparent increase in endometrial angio-
genesis in M. mulatta [141,142]. Functional studies in the
common marmoset indicated that administration of
highly purified recombinant human relaxin (rhRLX) dur-
ing the peri-implantation period precipitated an increase
in endometrial thickness (E. Unemori, personal commu-
nication). More recent observations in humans undergo-
ing rhRLX treatment for systemic sclerosis unmasked a
treatment associated increase in menstrual bleeding in a
large proportion of the study subjects [119,143,144]. A
very elegant series of experiments recently performed in
M. mulatta has demonstrated the direct effects of relaxin
on uterine weight, lymphocyte and arteriole numbers and
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steroid hormone receptor expression [145]. Thus rhRLX
clearly affects the primate endometrium in a manner con-
sistent with a role as a physiological modulator of embryo
implantation and early pregnancy. However, the direct
effect of relaxin administration on implantation and preg-
nancy in primate species remains less well studied.

We have recently examined the effects of rhRLX adminis-
tration during the peri-implantation period using in vitro
fertilization and embryo transfer (IVF/ET) in M. fascicula-
ris [146]. Many of the difficulties associated with mating
and natural conception in macaques that make the study
of implantation and early pregnancy difficult can be cir-
cumvented by the use of IVF/ET. Previous studies have
shown some success with IVF/ET procedures in M. fascicu-
laris, with implantation rates of 8.3%–12.0% achieved
using 1–4 embryos transferred per recipient during natu-
ral cycles [147-149].

We investigated implantation and early pregnancy in M.
fascicularis during IVF/ET using more recently developed
techniques [150-152]. Relaxin or vehicle was infused into
recipient monkeys (n = 11 per treatment group) from
seven days prior (Day 0) to embryo transfer (Day 7) to 14
days post embryo transfer (Day 21), encompassing the
luteal phase and extending into early pregnancy (approx-
imately day 8 to day 29 of the cycle). Recipient monkeys
received 4 IVF derived and frozen-thawed embryos (2 per
oviduct). The effect of rhRLX administration on implanta-
tion, pregnancy and endometrial thickness were assessed
by ultrasound at various time points during drug infusion
and up to 46 days after cessation of drug infusion (Day 28
and Day 67) and compared to vehicle treated animals
[146].

Recipient menstrual cycles and the quality of thawed IVF
derived embryos were not different between the two treat-
ment groups. Recombinant human relaxin produced a
transient (Day 7 only) but significant increase in endome-
trial thickness compared to vehicle (Figure 2). Relaxin
also significantly reduced the number of days to the
appearance of placental sign (implantation associated
bleeding) and significantly increased the total number of
bleeding days associated with implantation compared to
vehicle (Figure 3). There was a persistent increase in
implantation rate in the relaxin group compared to the
control group, but this difference did not achieve statisti-
cal significance (Figure 4). However, sustained multiple
pregnancies (twins or triplets) were observed in 60% of
pregnant relaxin-treated females compared to 0% in con-
trols (Figure 5). The difference in multiple pregnancy rates
was borderline significant (p = 0.06) and was somewhat
unexpected given that macaque species exhibit very low
rates (0.07%) of multiple gestations in natural and captive
breeding environments [153] and during IVF/ET proce-

dures [147-149] and suggests a possible relaxin-mediated
influence. Placental circumference and surface area
tended to be larger in relaxin treated pregnancies (Figure
6) but again the effect failed to achieve statistical signifi-
cance. Fetal growth parameters tended to be smaller in
relaxin treated pregnancies, possibly as a result of
increased numbers of viable fetuses in this group (Figure
7).

We observed a positive relaxin-mediated effect on
endometrial thickness in M. fascicularis. Endometrial
thickness increases progressively during a normal human
menstrual cycle and remains at and early/mid-luteal
phase maximum until one to two days prior to menses
[154]. This increase is believed to reflect alterations occur-
ring in the tissue, including an increase in endometrial
blood flow [154,155] and glandular secretory and stromal
predecidual changes [156] that occur under the influence
of the steroid hormone milieu. Thus, thickness measure-
ments may be useful as a general descriptive feature of a
normally developing endometrium, and, in fact, have
been used to identify abnormally thin endometria, which,
for whatever reason, have a high implantation failure rate
following IVF [157-159]. The relaxin-related increase in
thickness may be due to a cellular influence, such as stim-
ulation of predecidualization [88], or may be the result of
increased vascularization, both purported to be effects of
relaxin [119,141]. Our results are in agreement with
recent results demonstrating increased uterine weight in
rhesus monkeys exposed to exogenous relaxin administra-
tion [145].

Relaxin administration in M. fascicularis was also associ-
ated with an increased placental sign, or implantation
related bleeding. Placental sign is a natural phenomenon
that appears several days following mating in pregnant
females in some non-human primate species [160]. The
bleeding is believed to be associated with the physiology
of embryonic implantation in monkeys [46] and is, con-
trary to the situation in humans, a positive sign of preg-
nancy. Relaxin treatment was associated with a
significantly shorter time period to first appearance of the
placental sign and a significant increase in duration of
implantation bleeding, compared to treatment with vehi-
cle alone. A reasonable hypothesis for these increases
would be that relaxin has a positive influence on endome-
trial perfusion, which is known to increase in the luteal
phase of the menstrual cycle when relaxin is naturally
present [161]. Previous findings, including those cited
above, have supported the hypothesis that relaxin affects
the uterine vasculature in primates
[119,141,142,144,162]. In vitro, relaxin caused a dose-
dependent increase in the secretion of the cytokine, VEGF,
in normal human endometrial stromal cells [99,119].
VEGF stimulates endothelial proliferation and vasodila-
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tion, as well as vascular permeability [163]. VEGF and its
receptors, which are expressed cyclically in the
endometrium [117,164], may be at least partly responsi-
ble for increased blood vessel growth, vasodilation, and
vascular permeability that occur in the luteal phase of the
menstrual cycle [165-167]. How relaxin interacts with
estrogen and progesterone, whose induction of VEGF in
the primate endometrium has not been clearly defined
[165], and whether other mediators of angiogenesis are
involved remain to be elucidated.

Based on the current available body of work with relaxin
in non-human primate models of pregnancy several
indications for exogenous relaxin use in human assisted
reproductive technology (ART) applications become
apparent and include amelioration of deficits in endome-
trial development and vascularization associated with
implantation failure, improvement of suboptimal decid-
ual/placental cAMP accumulation associated with abnor-
mal pregnancy and administration combined with single

Effects of recombinant human relaxin on endometrial thickness at embryo transfer (Day 7) in M. fascicularisFigure 2
Effects of recombinant human relaxin on endometrial thickness at embryo transfer (Day 7) in M. fascicularis 
Illustrates the effects of recombinant human relaxin on endometrial thickness measurements in M. fascicularis at embryo trans-
fer, 7 days into a 21-day treatment regimen. Data are expressed as mean ± SEM (n = 11) for recipient monkeys receiving vehi-
cle (control) and relaxin (treatment). Endometrial thickness measurements were taken in transverse (yellow) and sagital (blue) 
planes and are expressed in centimeters (cm). An asterisk (*) indicates a significant treatment related difference compared to 
control (P < 0.05).
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embryo transfer to help promote positive pregnancy out-
come while at the same time reducing the risk of multiple
gestations.

A number of studies have implicated thin endometria as a
negative predictor of pregnancy outcome in an IVF/ET set-
ting and experimental evidence in laboratory animals
clearly implicates inhibition of angiogenesis with implan-
tation failure [159,168,169]. Clinical studies have dem-
onstrated a close negative relationship between poor
vascularization of extraembryonic tissues during early
pregnancy and viable term delivery [170,171]. Indeed

reduced trophoblastic VEGF expression and decidual
VEGF-receptor expression are significantly and negatively
correlated with recurrent miscarriage [172]. Supplementa-
tion of human IVF/ET cycles with progesterone leads to an
increase in endometrial thickness [173] and progesterone
induces up-regulation of angiogenic factors during the
secretory phase of the cycle in a manner that is prevented
by the PR-antagonist RU486 [113]. However, it is not
known if the effects of progesterone on primate endome-
trial thickness and vascularization involve, or are depend-
ent upon, the presence of relaxin. The fact that relaxin and
progesterone synergize to affect full expression of markers

Effects of recombinant human relaxin on implantation bleeding in M. fascicularisFigure 3
Effects of recombinant human relaxin on implantation bleeding in M. fascicularis. Demonstrates the effects of 
recombinant human relaxin on implantation bleeding in M. fascicularis. Data are expressed as mean ± SEM (n = 5–6) for preg-
nant recipient monkeys receiving vehicle (control) and relaxin (treatment). Days to the onset of first appearance of implanta-
tion bleeding (yellow) were calculated as the number of days from embryo transfer to the first external signs of bleeding. The 
duration of implantation bleeding was calculated as the number of days from the onset of bleeding to the complete cessation of 
bleeding (blue). An asterisk (*) indicates a significant treatment related difference compared to control (P < 0.05)
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of endometrial receptivity [103] suggests that relaxin may
be required to establish optimal implantation conditions.
Recent studies in macaques have clearly demonstrated
that on a background of steroid hormone priming relaxin
produces a direct and significant increase in uterine
weight and blood vessel neogenesis [145]. Therefore,
administration of exogenous relaxin to subsets of infertile
patients presenting with thin and/or undervascularized
endometria could potentially improve term IVF/ET preg-
nancy rates.

Mice subjected to lipopolysaccharide (LPS) administra-
tion during pregnancy exhibit markedly reduced

endometrial cAMP levels and spontaneous abortion
marked by fetal expulsion [174]. The LPS mediated effect
is enhanced by reduction of β-adrenoceptor-mediated
cAMP production and reduced by exogenous administra-
tion of dbcAMP or theophylline, a known inducer of cel-
lular cAMP production [174,175]. These experimental
results indicate that maintenance of endometrial cAMP
may be a requirement for maintenance of pregnancy.
Patients that suffer from recurrent miscarriage exhibit
reduced plasma and endometrial concentrations of cAMP
[176-178]. Patients with this pregnancy phenotype also
exhibit reduced plasma steroid hormone levels and
reduced serum levels of hCG [179]. Some groups have

Effects of recombinant human relaxin on implantation in M. fascicularisFigure 4
Effects of recombinant human relaxin on implantation in M. fascicularis. Shows the effects of recombinant human 
relaxin on implantation in M. fascicularis at various ultrasound observation time points. Data is expressed as implantation calcu-
lated as a percentage of the number of gestational sacs or fetus per embryo transferred (n = 11) in recipient monkeys receiving 
vehicle (control, yellow) or relaxin (treatment, blue). PR, pump removal; GS, ultrasound scan for gestational sacs; ultrasound 
can for fetuses.
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suggested the application of hCG or gonadotrophin prep-
arations containing LH for the prevention of recurring or
spontaneous pregnancy loss [180]. Although a direct link
between hCG, endometrial relaxin secretion and
endometrial cAMP production has not been established
in primates hCG does prolong the P4 and relaxin produc-
ing life span of the corpus luteum [58], and directly acti-
vates cAMP production in cells transfected with the hCG/
LH receptor, a receptor that is abundantly expressed in
human and non-human primate endometrium during the
implantation period [79,82,181]. Taken together these
results support the use of hCG for treatment of recurrent
miscarriage. Whether or not any potential benefits of
exogenous LH or hCG treatment against recurrent preg-

nancy loss are mediated directly by P4, relaxin, cAMP or a
combination of these factors is not yet known. Given that
relaxin synergizes with P4 and phosphodiesterase inhibi-
tors to potently stimulate and maintain cAMP production
in hormonally primed endometrial stromal cells [103]
new therapeutic approaches that employ exogenous P4,
relaxin and selective phosphodiesterase inhibitors alone
or in combination could reduce spontaneous or habitual
pregnancy loss associated with inadequate endometrial
cAMP signaling.

Recently a number of clinical IVF/ET variables including,
but not limited to, patient selection criteria, aggressive
superovulation protocols, improvements in embryo

Effects of recombinant human relaxin on pregnancy (Day 67) in M. fascicularisFigure 5
Effects of recombinant human relaxin on pregnancy (Day 67) in M. fascicularis. Highlights the effects of recombinant 
human relaxin on multiple pregnancy rates in recipient monkeys receiving vehicle (control) or relaxin (treatment). The data are 
expressed as percentages of pregnancies (number/total number of recipients, yellow) and multiple pregnancies (number/
number of pregnancies, blue). Numbers above the columns indicate proportions of pregnant animals.
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culture conditions, improved morphological assessment
of developing embryos and hormone supplementation of
transfer cycles have led to increases in both singleton preg-
nancy rates and multiple pregnancy rates resulting from
ART procedures [182,183]. Where steroid hormone
profiles can be closely monitored the judicious adminis-
tration of exogenous relaxin combined with transfer of a
limited number (n = 1?) of good quality embryos could
potentially enhance pregnancy rates and, at the same
time, limit the number of multiple pregnancies. Given
that high levels of circulating relaxin are not needed for
initiation and maintenance of pregnancy in primates it
may be possible to achieve the desired outcome of single-
ton pregnancy with relaxin administration at the time of

embryo transfer only. Because relaxin can produce
disparate effects on reproductive physiology depending
upon the underlying steroid hormone milieu [55,89,99]
and because relaxin may be responsible for aggravation of
tumor growth and invasiveness under certain conditions
[184,185], any potential applications of exogenous
relaxin in human ART procedures may require further
mechanistic, efficacy and safety studies in clinically rele-
vant non-human primate species.

Conclusions
As is often the case in reproductive biology the stage is set
and directed by the steroid hormones and
gonadotrophins with bit parts played by paracrine/auto-

Effects of recombinant human relaxin on fetal size (Day 67) in M. fascicularisFigure 6
Effects of recombinant human relaxin on fetal size (Day 67) in M. fascicularis. Demonstrates the effects of recom-
binant human relaxin on greatest fetal length in pregnant in M. fascicularis. Data are expressed as mean ± SEM (n = 4–6) for 
pregnant recipient monkeys receiving vehicle (control) and relaxin (treatment). Fetal length measurements represent crown-
rump distances and are expressed in centimeters (cm).
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crine actors that may or may not be redundant. Primate
relaxin is clearly paracrine modulator of reproductive
physiology related to pregnancy whose redundancy has
not yet been established. Primate ovarian relaxin is not
required for initiation or maintenance of pregnancy
provided adequate levels of steroid hormones are devel-
oped and maintained. However, primate relaxin is also
produced by both fetal and maternal sources within the
pregnant endometrium and directly or indirectly activates
a number of cellular signaling systems that are crucial to
initiation and maintenance of pregnancy and proper term
delivery. Administration of human relaxin to cycling
female monkeys during the peri-implantation period
resulted in a transient increase in endometrial thickness

and increased implantation-related bleeding and are
consistent with other studies in non-human primates
demonstrating a positive role for relaxin in modulating
endometrial physiology during the implantation period.
Whether or not primate relaxin is necessary for successful
pregnancy remains to be determined. Key relaxin ablation
experiments and/or application of selective relaxin recep-
tor agonists and antagonists in model systems will be
required to expand our understanding of the nature of
relaxin in primate pregnancy. Pharmacological manipula-
tion of the endometrium with exogenous relaxin could be
of value in human ART procedures where inadequate
endometrial development and vascularization have a neg-
ative impact on pregnancy rates, where dysregulation of

Effects of recombinant human relaxin on placental size in M. fascicularis (Day 67)Figure 7
Effects of recombinant human relaxin on placental size in M. fascicularis (Day 67). Illustrates the effects of recom-
binant human relaxin on placental size in pregnant M. fascicularis. Data are expressed as mean ± SEM (n = 3–4) for pregnant 
recipient monkeys receiving vehicle (control) and relaxin (treatment). Placental sizes were measured as circumference (yellow) 
and surface area (blue) and are expressed in centimeters (cm) and square centimeters (cm2), respectively.
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cAMP production and metabolism are associated with
pregnancy disorders and where a reduction in multiple
pregnancy rates associated with ART procedures is war-
ranted. The recent discovery of functional relaxin recep-
tors offers the promise of further identification of specific
relaxin targets within reproductive tissues, as well as the
design and development of potent and selective synthetic
relaxin agonists and antagonists with which to perform
functional studies. The use of these tools in non-human
primate models should accelerate the elucidation of
relaxin's specific role(s) in pregnancy and any potential
applications for relaxin in human ART.
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