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Abstract

EQ-5 D values.

be estimated due to data restrictions.

Background: An increasing amount of studies report mapping algorithms which predict EQ-5 D utility values
using disease specific non-preference-based measures. Yet many mapping algorithms have been found to
systematically overpredict EQ-5 D utility values for patients in poor health. Currently there are no guidelines on
how to deal with this problem. This paper is concerned with the question of why overestimation of EQ-5 D utility
values occurs for patients in poor health, and explores possible solutions.

Method: Three existing datasets are used to estimate mapping algorithms and assess existing mapping algorithms
from the literature mapping the cancer-specific EORTC-QLQ C-30 and the arthritis-specific Health Assessment
Questionnaire (HAQ) onto the EQ-5 D. Separate mapping algorithms are estimated for poor health states. Poor
health states are defined using a cut-off point for QLQ-C30 and HAQ, which is determined using association with

Results: All mapping algorithms suffer from overprediction of utility values for patients in poor health. The large
decrement of reporting ‘extreme problems’ in the EQ-5 D tariff, few observations with the most severe level in any
EQ-5 D dimension and many observations at the least severe level in any EQ-5 D dimension led to a bimodal
distribution of EQ-5 D index values, which is related to the overprediction of utility values for patients in poor
health. Separate algorithms are here proposed to predict utility values for patients in poor health, where these are
selected using cut-off points for HAQ-DI (> 2.0) and QLQ C-30 (< 45 average of QLQ C-30 functioning scales). The
QLQ-C30 separate algorithm performed better than existing mapping algorithms for predicting utility values for
patients in poor health, but still did not accurately predict mean utility values. A HAQ separate algorithm could not

Conclusion: Mapping algorithms overpredict utility values for patients in poor health but are used in cost-
effectiveness analyses nonetheless. Guidelines can be developed on when the use of a mapping algorithms is
inappropriate, for instance through the identification of cut-off points. Cut-off points on a disease specific
questionnaire can be identified through association with the causes of overprediction. The cut-off points found in
this study represent severely impaired health. Specifying a separate mapping algorithm to predict utility values for
individuals in poor health greatly reduces overprediction, but does not fully solve the problem.

Background

In recent years there has been an increasing amount of
publications concerned with ‘mapping’ condition specific
measures on EQ-5 D to estimate EQ-5 D utility values.
Mapped EQ-5 D utility values are accepted as evidence
in cost-utility analyses by reimbursement agencies such
as the National Institute of Health and Clinical Excel-
lence (NICE) [1] (see § 5.4.6) but suffer from non-trivial
problems like the overprediction of utility values for
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patients in poor health. A mapping algorithm can be
estimated by regressing a non-preference-based measure
onto a preference-based measure on a dataset external
to your study dataset [2]. The resulting mapping equa-
tion is used to estimate the utility values of the prefer-
enced-based measure in the study dataset where such a
measure is absent. Criteria for the quality of a mapping
algorithm do not currently exist although it is well
known that utilities estimated by mapping algorithms
typically have larger errors for lower utility values [2]
and mapped EQ-5 D utilities show a systematic overpre-
diction of utility values for patients in poor health [3].
For instance, a study mapping SF-12 on EQ-5 D report
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predicted values under 0.5 to be notably higher than
observed values, for both 2™ and 4™ order models [4].
Another study, mapping the modified Rankin scale mea-
surement, which assesses disability after stroke, on EQ-5
D reports decreased accuracy for patients in poor health
and significant overprediction of low values [5]. While it
is unlikely for such overprediction to be a problem in all
samples, given that many studies have reasonably high
mean EQ-5 D values [6], it is likely to occur in patient
(sub) samples containing a significant proportion of
individuals in poor health. The current study explores
whether the causes of overprediction of utility values for
patients in poor health found in the literature can
inform a method to minimize that overprediction. The
proposed solution involves the use of a different algo-
rithm for patients in poor health, where health status is
determined using available information from a condi-
tion-specific non-preference-based measure.

There are several causes for the overprediction of low
utility values. First, the non-preference based measure
may have different severity content than the preference-
based measure. For instance, the lowest possible range of
scores on the Health Assessment Questionnaire Disabil-
ity Index (HAQ-DI) is between 2.5 and 3.0 which is not
necessarily associated with the lowest value of -.59 on the
EQ-5 D, but with a value near .1 [7], as the HAQ mea-
sures different dimensions of health [8]. Adding addi-
tional covariates to the mapping functions, like clinical
variables or dimension scores of other questionnaires
may overcome this problem, but this limits the use of the
function to datasets that hold all those variables.

Second, in many clinical studies, health states are not
normally distributed: most patients typically experience
mild to moderate health problems and few experience
severe problems [6,8,9]. Progression from moderate to
poor states, for instance moving from ‘some problems
with washing or dressing myself to ‘unable to wash or
dress myself, results in a steep drop in utilities. This ‘drop’
may not be adequately predicted in a linear model which
is powered on the large group of patients which reports
mild to moderate health problems. This has led to the sug-
gestion that using Ordinary Least Squares regression on
the entire sample, which is more accurate for mean values
than for extremes, may contribute to the problem of over-
prediction [2]. Specifying other models may lead to better
predictions, but will rarely overcome overprediction.

Alternatively, one option is to specify a separate map-
ping function for patients in poor health whose utility
values are overpredicted. Such an approach would require
a method to identify the ‘poor health’ population. A study,
mapping SF-36 onto EQ-5 D, reported overprediction of
utility values for poorer health states (EQ-5 D index values
< 0.5) for existing algorithms from the literature and algo-
rithms estimated in the study [3]. The study hypothesized
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that this may be observed because more severe health
states (utility value <0.5) have at least one of five EQ-5 D
health dimensions at the most severe level causing the
aforementioned steep decline in utility values. Further sup-
port for this hypothesis is that in many patient populations
a ‘bimodal distribution” of EQ-5 D utility values is
observed. Bimodal distribution refers to the observation of
high (> 0.5) mean utility values for EQ-5 D states with no
dimensions at the most severe level and low (< 0.5) mean
utility values for EQ-5 D states with one or more dimen-
sions at the most severe level. This bimodal distribution
has a ‘gap’ in the distribution of EQ-5 D utility values
around the .5 value [9]. This observation is limited to
EQ-5 D, as prediction errors are also increased for patients
in poor health when mapping to SF-6 D [10], but no sys-
tematic overprediction is present.

This suggests that the alternative mapping function
ought to be estimated on the lower part of the bimodal
distribution of EQ-5 D values. However, as the EQ-5 D
is absent by definition if a mapping algorithm is applied,
it is difficult to assess which predicted values are over-
predicted. It is plausible that values can be identified on
the condition-specific instrument that are associated
with the lower part of the EQ-5 D utility distribution,
which represents ‘poor health’. To this purpose mapping
algorithms and datasets for three condition-specific
measures, the arthritis Health Assessment Questionnaire
(HAQ) and the cancer EORTC’s Quality of Life Ques-
tionnaire C-30 (version 2) are investigated. When avail-
able mapping algorithms systematically overpredict
utility values for patients in poor health, it is explored
whether it is possible to identify the ‘poor health’ popu-
lation by the health status reported on the condition
specific measure. If so, we estimate a separate mapping
algorithm for use in patients in poor health.

Method

Existing and new mapping algorithms will be applied to
one sample of patients with arthritis [11] (arthritis sam-
ple) and two samples of patients with cancer: patients
with Multiple Myeloma (MH sample) and patients with
Non-Hodgkin’s Lymphoma (NH sample) [12,13]. A short
description of the population characteristics of the sam-
ples (pooled data for 8 follow-up time points of QLQ-
C30, baseline of HAQ) on which the algorithms are run
is presented in Table 1. Thus all work presented in this
paper is performed using these datasets, limiting general-
izability to different types of cancer.

Instruments

The EuroQol EQ-5 D is a generic preference-based
measure of health related quality of life. It classifies
health states on five dimensions (mobility; self-care;
usual activities; pain/discomfort and anxiety/depression)
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Table 1 Patient characteristics
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EQ-5D N Mean % at level 1/2/3*

Multiple Myeloma population (pooled)

Age (range) 652 54 (37 - 65)

EQ-5D Mobility 56,7/41,4/19
Self-care 85,8/12,8/14
Usual activities 30,1/51,1/18,8
Pain/Discomfort 39,6/59/14
Depression/Anxiety 69,4/29,6/1,0
EQ-5 D utility (UK tariff) 69 (-32-1)

Male/Female 81/252

Follow-up series t=01,23,47567

Non-Hodgkin population (pooled)

Age (range) 789 72 (65 - 84)

EQ-5D Mobility 48/473/4,7
Self-care 81,4/139/4,7
Usual activities 38,1/43,3/18,6
Pain/Discomfort 52,2/42,9/49
Depression/Anxiety 70/29/1,0
EQ-5 D utility (UK tariff) 68 (-59 - 1)

Male/Female 480/351

Follow-up series t=0,1273,456,738

Arthritis population

Age (range) 457 50 (16 - 88)

EQ-5D Mobility 58,5/41,5/0
Self-care 753/243/4
Usual activities 37,1/58,2/4,7
Pain/Discomfort 9/774/13,6
Depression/Anxiety 70,7/27,1/2,2
EQ5 D utility (UK tariff) 62 (-24 - 1)

Male/Female 133/333

Follow-up series t=0

Condition specific instruments

EORTC QLQ-C30 (Sum scores)

Physical functioning
Role functioning
Emotional functioning
Cognitive functioning
Social functioning
Global health

Fatigue
Nausea/Vomiting
Pain

Dyspnoea

Sleep

Appetite
Constipation

Diarrhea

Financial difficulties

MM population mean (SD)

NH Population mean (SD)

HAQ (Domain scores)

Arthritis population mean (SD)

64 (24,6)
59,5 (289)
82,8 (189)
82 (20,8)
762 (25:8)
637 (18,0)
357 (25,0)
6,1 (14,3)
252 (24,7)
16,1 (24.9)

1273
16 (27,2)
4 (154)
83 (18,7)
12,5 (230)

573 (268
574 (315
81,3 (20,
819 (237
757 (286
62 (21,7)
44,7 (44,7)
8 < 69)
7 (262)
248(28,9)
287 (31,8)
(326)
8 (228)

68)
1.5

6)
237)
28,6)

21,9 (326
22,8

( 85)
6,3 (16,9)

Dressing & Grooming
Arising

Eating

Walking

Hygiene

Reach

Grip

Activities

0,58 (,71)
0,65 (73)
0,75 (82)
0,54 (,78)
0,64 (81)
0,64 (,75)
0,78 (,85)
094 (88)

* EQ-5D: 1/2/3 = no problems/moderate problems/severe problems.
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with three severity levels each: level one represents no
problems; level two represents some problems; and level
three represents extreme problems. The classification
system defines 243 unique health states which are given
a utility score using an existing tariff. The EQ-5 D tariff
represents the preferences of the general public as eli-
cited using time trade-off, and differs per country. Here
the UK tariff [14] and Dutch tariff [15] are used.

The EORTC QLQ-C30 (version two) is a cancer spe-
cific questionnaire which consists of 30 items across 6
functioning scales (physical, role, cognitive, emotional,
social, global quality of life) and 9 symptom scales (fati-
gue, nausea and vomiting, pain, dyspnoea, sleep distur-
bance, appetite loss, constipation, diarrhoea, financial
impact). High scores on the functioning and global
health status scales reflect good quality of life, while
high scores on the symptom scales represent a high
level of symptoms [16].

The Health Assessment Questionnaire (HAQ) was first
developed for use in patients in rheumatology. The most
widely used version of the HAQ assesses the functional
ability of patients using 20 items across eight domains
(dressing, arising, eating, walking, hygiene, reach, grip
and usual activities) [17]. Questions are scored on a four
level disability scale from zero to three, where three
represents the highest degree of disability. Scores for the
eight domains are adjusted for the use of aids or devices
and averaged into an overall disability index value, HAQ-
DI (Health Assessment Questionnaire Disability Index),
with a range from zero to three and adjacent steps of
0.125 (e.g. 0, 0.125, 0.250), which represents the extent of
functional ability of the patient. A value between one and
two represents moderate to severe disability [18].

Algorithms

Algorithms are taken from the literature and predict
EQ-5 D index values from either the QLQ-C30 (version
2) or the HAQ. All algorithms have been tested on
another dataset with the exception of one HAQ model
that was developed for this article, from now on referred
to as a test model.

The original articles in which the algorithms were pre-
sented labelled them as suitable for estimating utility
values [8,19,20]. Details of the algorithms are presented
in Table 2. All models were developed using ordinary
least squares regression. The HAQ algorithm developed
and tested by Bansback et al. [19] was estimated on
patient samples from Canada (N = 319) and the United
Kingdom (N = 151) who were clinically diagnosed with
rheumatoid arthritis (RA). The algorithm computes EQ-5
D utility values based on the UK tariff. We estimated one
additional HAQ algorithm, the test model, for this article
based on a larger group of patients than was used for the
published algorithm, as this sample holds more patients
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in severe conditions [8]. The test model was developed
using the Rotterdam Early Arthritis Cohort with 493
patients with and without clinically diagnosed RA
recruited from the Erasmus Medical Centre in the Neth-
erlands. It is not recommended for use as not all patients
are clinically diagnosed with RA. A tested HAQ model
that predicts Dutch utilities is presented elsewhere [8].
The QLQ-C30 algorithm by McKenzie & Van der Pol
[20] was developed on a sample of 199 patients with
inoperable esophageal cancer. The algorithm computes
EQ-5 D utility values based on the UK tariff. The QLQ-
C30 algorithm by Versteegh et al. [8] was developed and
tested on pooled data from two clinical trials for patients
with multiple myeloma (pooled N = 723) and patients
with aggressive non-Hodgkin’s lymphoma (pooled N =
789). It computes EQ-5 D utility values based on the
Dutch tariff.

All models used in this study were thus taken from
other studies. Despite their use to investigate our meth-
odological point, generalizability of mapping functions
between different types of cancer or arthritis is an
empirical matter that still needs thorough investigation.

Analysis

First we determine if the mapping algorithms estimated
on a relatively healthy patient sample overestimate uti-
lity values of patients in poor health. As the EQ-5 D is
absent by definition, we need to specify a threshold
value on the condition specific measure for which we
would expect a regular mapping algorithm to overpre-
dict utility values to be able to anticipate whether a
mapping algorithm is expected to be inaccurate in a cer-
tain population. Then we develop a mapping algorithm
for that population. Six steps are described below, aimed
at systematically exploring the topic.

Step one. Each published algorithm used here was
found in its original article to be successful at predicting
mean EQ-5 D values. The same diagnostics have also
been applied to the test model and indicate this model is
successful at predicting mean EQ-5 D values. However, a
successful prediction of a mean EQ-5 D utility value in a
sample with a relatively high mean value does not guar-
antee a successful prediction in a sample with a much
lower mean EQ-5 D value. Therefore we compare the
predicted values are compared to the observed values
over the range of observed EQ-5 D values.

Step two. It has been suggested that reporting a level
‘3" answer on EQ-5 D and the large utility decrement
associated with it in the EQ-5 D country tariff is a cause
of overprediction [3]. Using the UK tariff [14] an EQ-5
D utility value of .52 is the lowest obtainable value with-
out a level 3 answer (state 22222), and 0.56 is the high-
est obtainable value with a level 3 answer (state 11311),
which is respectively 0.57 and 0.64 for the Dutch tariff.
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Table 2 Mapping algorithm specifications

Measure
HAQ

Algorithms

EQ-5 D index (UK tariff) = .80 + (h1_2*-15) + (h4_1*-08) + (h4_2*-12) + (h4_3* -59) + (h6*-.15) + (h7_1*-04) + (h7_2*-08)
+ (h8*-10) + (h9*.12) + (h13* -.14) + (h16*.07) + (h23*-.05) + (h24_1*-05) + (h24_2*-11) + (h26_2*-14) + (h26_3*-13) +
(h27_2*-08) + (h27_3*-20) + (h30_1*-05) + (h31_1*-07) + (h31_2*-08) + (h32*.09)

EQ-5 D index (Dutch tariff) = 0,858 + (hag1* -0,027) + (hag2*-0,035) + (hag3*-0,025) + (hag4*-0,033) + (hag5*-0,001)
+ (hag6*-0,035) + (hag7*-0,031) + (hag8*-0,057)

EQ-5 D index (UK tariff) = .2376 + (gI*.0016) + (pf*.0004) + (rf*.0022) + (ef*.0028) + (cf*.0009) + (sf*.0002) + (fa*-0021)
+ (nNv*.0005) + (pa*-.0024) + (dysp*.0004) + (sleep*.00004) + (eat*.0003) + (obsti*.0001) + (diarr*-.0003) + (finan*-.0006).
EQ-5 D index (Dutch tariff) = 0.985 = (1*-.037) + (2*-.025) + (3*-.059) + (4*-.033) + (5*-.134) + (6_level2*-033) +
(6_level3*-.067) + (6_leveld4*-180) + (7_level2*-013) + (7_level3*-037) + (7_level4*-012) + (9_level2*-065) + (9_level3*-
053) + (9_leveld*-189) + (16_level2*-038) + (16_level3*-.045) + (16_leveld*-.126) + (23_level2*-028) + (23_level3*-049)

Bansback (2006)"

Test model2*
QLQ-C30  McKenzie (2009)®

Versteegh
(in press)4

+ (23_leveld*-456) + (24_level2*-053) + (24_level3*-.140) + (24_leveld*-232) + (27_level2*-027) + (27_level3*-091) +

(27_level4*-110).

' HAQ items as dummy variables: h1 = dressing & grooming; h4 = arising; h6-7 = eating; h8-9 = walking; h13-16 = aids or devices; h23-24 = hygiene; h26 =
reach; h27-28 = grip; h30-32 = activities. (e.g. h1_2 = haq item one, answer level two).

2 HAQ sum scores: haq1 = dressing & grooming; haq2 = arising; haq3 = eating; hag4 = walking; hag5 = hygiene; haqé = reach; haq 7 = grip; hag8 = activities.

3 QLQ-C30 sum scores: gl = quality of life; pf = physical functioning; rf = role functioning; ef = emotional functioning; cf = cognitive functioning; sf = social
functioning; fa = fatigue; nv = nausea & vomiting; pa = pain; dysp = dyspnea; sleep = sleeping; eat = eating; obst = obstipation; diarr = diarrhea; finan = financial

difficulties.

4 QLQ-C30 items as dummy variables: 1 to 5 = dichotomous items; 6 to 27 = four level items.

* Not tested on external data-set.

These values will be used to interpret the distribution of
utility values in the three samples.

Step three. The frequently observed bimodal distribu-
tion of utility values in patient samples has been asso-
ciated with ‘N3-term’ [9] and the bimodal pattern has
been presented by others as a specific feature of the
EQ-5 D [21]. The N3 term is a model feature of the UK
and Dutch EQ-5 D country tariff and adds an extra uti-
lity decrement if any dimension on the EQ-5 D scores a
‘3’, representing extreme problems. However, it is
hypothesized here that the ‘N3’ in itself does not cause a
bimodal distribution. To test this, a random set of EQ-5
D cases is generated (N = 300) with an equal distribu-
tion of answer categories across the 5 domains.

Step four. Step one and two investigate whether the
utility values of patients who report ‘extreme problems’
on at least one of the EQ-5 D dimensions are overpre-
dicted. The next step is to investigate which QLQ-C30
and HAQ value is associated with level ‘3’ answers on
the EQ-5 D. The use of this exercise is to identify scores
on the condition specific measure that are related to a
possible cause of overprediction in mapped utility
values: at those scores standard mapping algorithms
might be inaccurate. As the QLQ-C30 provides no over-
all score, the functioning scale scores are used, since
these have the highest correlation with EQ-5 D scores
[22]. For the HAQ, the HAQ-DI value (which combines
all items) is used.

Step five. The next step is exploring the performance of
a separate algorithm for use on patients in poor health.
An alternative algorithm will be developed on a sample
in poor health, in this case on a within sample selection
of patients which are in poor health as determined by the
cut-off point identified in step 4. The utility value of the

EQ-5 D, using the UK tariff will be regressed on the dis-
ease specific questionnaires. In the cancer population the
algorithm will be developed on the multiple myeloma
sample and tested on the non-Hodgkin’s sample. A vari-
ety of model specifications are estimated using OLS. All
algorithms are applied at the individual level. Mean utility
values are used to compare predicted and observed
values.

Step six. Typically mapping algorithms are used to
predict the mean utility value of a population that is in
moderate to good health. In step 5 we specify a separate
algorithm for patients in poor health which may reduce
overprediction of utility values for patients in poor
health. If only a part of the patient population is in poor
health, a second algorithm is needed to be able to esti-
mate the mean utility value of the entire sample. Thus
computing utilities with the ‘low utility’ algorithm and a
separate algorithm for patients in relatively good health
may reduce prediction errors for a ‘typical’ sample
where the majority of respondents are in moderate to
good health. Such an approach would require two algo-
rithms: one for the part of the population which is in
poor health, as determined by a score under a cut-off
point on the condition specific measure, and one for the
population in better health, determined by a score
higher than the cut-off point specified under step 4, as
sketched in Figure 1. The ‘low utility’ algorithm esti-
mated in step five will be complemented by a ‘high’ uti-
lity algorithm and tested on the non-Hodgkin’s sample.

Results

All mapping algorithms applied here suffer from over-
prediction at the lower end of the scale, where predicted
values are higher than observed values for observed
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Hypothetical use of two separate algorithms
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Figure 1 Hypothetical use of two separate algorithms.

EQ-5 D utility values below =.5. Figure 2 and 3 compare
predicted and observed EQ-5 D utility values, and are
representative for the other mapping algorithms investi-
gated in this study.

Step one. Figure 2 and 3 indicate that overprediction
begins to occur around EQ-5 D utility value =.5. As is
mentioned in the method section: the utility value of =.5
is related to the scoring ‘extreme problems’ on any EQ-
5 D dimension. Patients that have one or more dimen-
sions at level 3 have a maximum observed EQ-5Dyxk tarifr
score of 0.56 in the MM and NH samples and of 0.43 in
the Arthritis sample. Patients that have no dimensions
at level ‘3’ have a minimum observed EQ-5Dyk taritr
score of 0.52 in all samples (state 22222). A utility value
of 0.52 and lower guarantees the presence of at least
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one level 3 answer in the UK tariff. Scores higher than
0.52 but below 0.57 do not guarantee the absence of at
least one level 3 answer. Interestingly enough Figure 3
shows overprediction to occur at a slightly higher value,
but not at the expected 11311 score with utility value
0.64. Upon inspection the highest observed Dutch utility
value for a state with a ‘3’ is 0.55, for state 11321, thus
the graph shows overprediction to start at that state.

Step two. Minimum and maximum EQ-5 D scores of
patients with or without at least one dimension at level
3 on the EQ-5 D inform our interpretation of Figure 4
and 5, which indicate bimodal distributions for MM and
NH samples. A patient with a ‘level 3’ answer on EQ-5
D belongs to the left side ‘poor health’ distribution with
a lower mean and less frequent observations than a
patient without a ‘level 3" answer. The area around a uti-
lity value of .5 can fall under either distribution, as indi-
cated by the overlap in minimum and maximum values
for cases with and without level 3 answers mentioned in
step one.

Step three. Figure 6 shows the distribution of utility
values for the randomly generated sample. The utility
values have a normal distribution, suggesting that the
bimodal distribution is not solely caused by the ‘N3’
term. The random sample (N = 300) had 163 unique
health states. The 34 most frequent health states
account for 36% of the observations, which is in stark
contrast to the other samples. The NH sample (pooled
N = 783) had 78 unique health states of which six states
accounted for 53.5% of all observations. The MM

1.
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0,6 .

0,4 -

W
0,

NI wlﬂ'!l"l

EQ-5D index

-0,2

0,4 1

0,6

McKenzie prediction overvalues states under .5 in NH sample

Individual patients

Figure 2 McKenzie prediction overvalues states under 0.5 in NH sample.
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Test model prediction overvalues states lower than .5 in
Arthritis sample
1,0 -
0,8 -
0,6
3 04
°
£ ——Observed
a 021 .
0 —— Predicted
g 00
0,2
0,4 -
-0,6 -
Individual patients
Note how the intercept of .8 limits the upper predictions
Figure 3 Test model prediction overvalues states under 0.5 in arthritis sample.
Population: Non-Hodgkin's Lymphoma
200
150
Frequency ]
100
50 B
Mean =0.68
Std. Dev. =0.31
N =783
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-0.50 -0.25 0.00 0.25 0.50 0.75 1.00
EQ-5D value
Figure 4 Bimodal distribution of utility values in cancer population.
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Population: Arthritis
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Figure 5 Bimodal distribution of utility values in arthritis
population.

sample (pooled N = 716) had 59 unique states of which
seven states accounted for 62.1% of observations. The
Arthritis sample (N = 488) had 49 unique states of
which seven states accounted for 64% of the data. The
combination of the EQ-5 D country tariff and distribu-
tion of responses across severity levels seem to be the
cause of the bimodal distribution of EQ-5 D utility

Population: Random generated sample

40

30

Frequency

20

Mean =0.15
Std. Dev. =0.30
N =300

0 T T T T
-0.50 -0.25 0.00 0.25 0.50 0.75

EQ-5D value

Figure 6 Normal distribution of utility values despite ‘N3-
decrement’.
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values. Few people have level ‘3" answers, many have
level 1 or 2 answers and only a small amount of states
cover most of the observations.

Step four. Mapping algorithms overpredict utility
values under 0.5, which are for patients with ‘extreme
problems’ on at least one of the five EQ-5 D dimen-
sions. This means that mapped utility values are inaccu-
rate for those patients with scores on the condition-
specific measure that are associated with an EQ-5 D
utility value below 0.5. However, scores on the HAQ
and QLQ-C30 do not provide a straightforward indica-
tion of the accuracy of the use of a mapping algorithm.
For example, a patient average on the QLQ-C30 func-
tioning scales of 70 could belong to an EQ-5 D utility
value between as low as .21 or as high as 1. However,
Figure 7 shows that at least half of the patients with an
average value of the QLQ-C30 functioning scale lower
than 55 have level 3 answers on the EQ-5 D. Although
it is a somewhat arbitrary cut-off point, an average of 45
on the functioning scales is a clear indication of the
expected overprediction of a mapping algorithm, for at
that value approximately 86% of patients in these sam-
ples have at least one level 3 response.

The HAQ-DI values faced similar problems: a HAQ-
DI value of 1.5 (moderate to severe disability) can be
associated with an EQ-5 D utility value as low as .21 to
.3 or as high as .71 to .8. Figure 8 does indicate that at
HAQ-DI values <1.6, over 50% of patients have at least
one level 3 response on the EQ-5 D. A HAQ-DI > 2.0 is
a clear indication of the expected overprediction of a
regular mapping algorithm, for at that value, approxi-
mately 72% of patients in this sample has at least one
level 3 response.

Population: Multiple Myeloma

Number of level 3
answers on the EQ-

100,0%-]
0
|kl
2
K]
80,0%"

Frequency
m
2
<
B
1

40,0%7

20,0%

.00 10,00 20,00 30,00 40,00 50,00 60,00 70,00 80,00 90,00 100,00
QLQ-C30 average of functioning scales

Figure 7 Number of level 3 answers on EQ-5D can inform
decision on appropriateness of mapping function.




Versteegh et al. Health and Quality of Life Outcomes 2010, 8:141
http://www.hglo.com/content/8/1/141

Population: Arthritis

Number of level 3
answers on the EQ-5D
100,0% 0
K]

2

K]

80,0%"

Frequency
=
3
<]
B
1

,00 50 1,00 1,50 2,00 2,50 3,00
HAQ-DI

Figure 8 Number of level 3 answers on EQ-5 D can inform
decision on appropriateness of mapping function.

Step five. The within sample population of cases in
poor health (QLQ-C30 <45, HAQ-DI > 2.0) was rela-
tively small (N = 18 Arthritis sample, N = 25 at t = 0
NH-sample, N = 40 at t = 0 MM-sample). Within those
subsamples, EQ-5 D was regressed on QLQ-C30 and
HAQ using a variety of regression model specifications.
The mapping model was developed on the MM-sample,
and tested on the NH-sample. The QLQ mapping algo-
rithm contained 5 items after backwise selection, and
included items as categorical variables. The mapping
algorithm was applied on the NH sample for patients
with QLQ average on the functioning scales < 45. In
comparison to the standard mapping algorithms, the
utility model for patients in poor health outperforms the
model from the literature (Table 3) for this selection of
the sample and reduces root mean square error by .06
in the first 4 timepoints. As can be seen from the maxi-
mum score, 1 individual did not seem to have filled in
the EQ-5 D correctly and had a utility value of 1 (but a
low score of 25 on the EQ-5 D visual analogue scale). A
similar pattern was observed for the last four timepoints,
but not deemed trustworthy due to small sample size (N
< 8 for the last 4 timepoints of the QLQ-C30 follow up
data). The predicted values showed less prediction error
than the standard mapping algorithms, but still did not
accurately predict mean utility samples in this selection
of the sample with root mean squared error of 0.18.

For the REACH study, only a development dataset was
available but for both cut-off points (HAQ-DI > 1.6 and
HAQ-DI >2.0) the regression model was underpowered
with no significant predictor variables due to the small
sample size and low correlations between HAQ sum
scores and EQ-5 D utilities. Step six was performed
with QLQ-C30 models only.
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Step six. The ‘high’ and ‘low’ utility algorithms, pre-
dicting UK EQ-5 D utilities are presented in Table 4.
The low utility model in step five was supplemented
with a high utility model developed on patients with an
average sum score on the functioning scales of the
QLQ-C30 >45. Application of the algorithm in the non-
Hodgkin’s sample was similar to the development:
patients who were in poor health got assigned the utility
value as predicted from the ‘low utility’ model and the
rest got assigned the utility value as predicted from the
‘high utility’ model. The combined variable of predicted
values had a lower root mean square error (0.02 lower
on average) and a larger range of predicted values than
the other QLQ-C30 models discussed in this paper.
This suggests a modest improvement and indeed led to
a slightly better estimate of the mean utility values
(Table 5). Due to data restrictions like few observations
of poor health states and the model specifications (items
treated as categorical variables) the uncertainty around
the parameter estimates of the low utility model was
almost three times higher than the uncertainty around
the parameter estimates of the high utility model.

Discussion

This paper explored causes of EQ-5 D utility values
for patients in poor health when mapping from a non-
preference-based measure, and investigated a possible
solution to the problem. We examined the association
between the cause of the overestimation and values on
the condition specific questionnaire at which overpre-
diction occurs. Our findings suggest that the main cause
of overestimation is a combination of the large decre-
ment in utility values in the UK and Dutch EQ-5 D tar-
iffs for having one or more dimensions at level ‘3’, along
with few observed responses at level ‘3’. We argue that
this, alongside the large number of EQ-5 D responses at
the least severe level, leads to a bimodal distribution of
the utility data. A result is that the most linear predic-
tion models can not adequately describe low utility
values. We found that the values on the condition speci-
fic questionnaire can help inform decisions about the
expected errors and hence accuracy of standard map-
ping algorithms, and that the use of a separate mapping
algorithm specified for patients in poor health reduces
the amount of overprediction for these patients. Com-
bining such a function with a ‘high utility’ algorithm
leads to a modest improvement of predictions.

Our findings, in accordance with the literature, sug-
gest that the =.5 value of the EQ-5Dy tasifr is the point
at which mapping algorithms start to overpredict utility
values. The reason it is the ~.5 is due to the fact that
values under ~.5 belong to patients who have extreme
problems on at least one dimension of EQ-5 D. As the
purpose of mapping algorithms is to predict EQ-5 D
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Table 3 Predicted and observed values in N-H population with QLQ-C30 < 45

Timepoint N Minimum Maximum Mean Std. Deviation
Baseline Observed EQ-5D 25 -36 1,00 ,18 39
Predicted McKenzie & Van der Pol 24 -14 56 ,25 15
Predicted ‘low’ 25 -34 54 14 22
T=1 Observed EQ-5D 17 -43 64 ,16 26
Predicted McKenzie & Van der Pol 17 -01 62 32 17
Predicted ‘low’ 17 -07 29 14 1
T=2 Observed EQ-5D 16 -33 38 ,10 18
Predicted McKenzie & Van der Pol 16 16 56 32 12
Predicted ‘low’ 16 -03 41 ,16 1
T=3 Observed EQ-5D 13 -24 31 ,07 17
Predicted McKenzie & Van der Pol 13 -01 55 ,31 14
Predicted ‘low’ 13 -17 42 ,18 17

values when EQ-5 D was not included in the trial, such
a value is not informative for the application of mapping
algorithms. Here we explored the use of condition speci-
fic measures (that we are mapping from) to indicate the
expected accuracy of a standard mapping algorithm. An
alternative mapping algorithm can then be developed
for use in patients in poor health. We found that the
~.5 utility value itself is not a very useful measure of
association with QLQ-C30 or HAQ-DI values, since
there is not a one-to-one relationship between measures
meaning that a large range of QLQ-C30 and HAQ
scores are associated with the =.5 EQ-5 D value. Since
scoring a ‘3’ on the descriptive system of EQ-5 D is
related to the problem of overprediction, we took an
alternative approach using the scores on the condition-
specific measure that correspond to having at least one
level ‘3’ response. Below a QLQ-C30 average of the
functioning scale of 55, about half of the patients scores
level 3 answers on the EQ-5 D, as do patients with
HAQ-DI > 1.6. At these scores, standard mapping algo-
rithms are likely to overpredict utility values. More con-
servative and somewhat arbitrary cut-off values we
determined are > 2.0 for HAQ-DI and < 45 for the aver-
age of the QLQ-C30 functional scales. These cut-off
points represent very severe health problems: 45 for
the QLQ-C30 is associated with severe cases like post-
radiotherapy patients with metastatic and/or cardio-
respiratory disease [23]; a HAQ-DI value under 2.0
represents severe to very severe RA [18]. At these more
conservative values, a standard mapping algorithm is
likely to be inaccurate.

A separate utility mapping algorithm estimated on a
sample with poor health status is far better at predicting
utility values for patients in poor health, when it is pos-
sible to estimate such a function. However, using cate-
gorical variables introduced problems with perfect
colinearity in the low utility model, and the HAQ sam-
ple did not allow the estimation of a low utility model

due to poorer correlation with EQ-5 D and smaller sam-
ple size than QLQ-C30. A model based on sum scores
did not suffer from these restrictions but introduced lar-
ger prediction errors. The result is a model for low utili-
ties that only uses 5 items of the QLQ-C30 as predictor
variables. Item 3 (trouble taking a short walk), 4 (need
to stay in bed or a chair), 5 (need help with eating, dres-
sing, washing or using the toilet) 9 (pain) and 21 (feeling
tense) together represent physical functioning, emotional
functioning and pain. Consequently other quality of life
drivers such as role functioning or fatigue are not repre-
sented which may lead to problems when applying the
function in other cancer types. Furthermore, OLS mod-
els used in all mapping algorithms reported here are
more precise around mean values than for extremes,
which results also in underprediction for utility values
near to 1, most notably when regressing EQ-5 D on
HAQ. Thus estimating and applying mapping algo-
rithms on datasets with large deviations in health status
is likely to be problematic. The extent to which a devia-
tion can be considered ‘large’ is difficult to assess, since
it depends on how a change on the scale of the ques-
tionnaire relates to a change on the EQ-5 D index
values.

Cut-off points like the ones specified in this study can
be used to inform whether a regular mapping algorithm
from the literature would suffice or whether a ‘low uti-
lity algorithm’ is better at assessing the quality of life for
those patients. Cut-off points can indicate whether there
are patients in poor health and therefore whether pre-
dicted utility values are likely to suffer from overpredic-
tion if only a standard mapping algorithm has been
used. Cut-off points can therefore inform users and pol-
icy makers whether mapped estimates should be treated
with great caution. A weakness of the approach may be
that there is no clear cut relation between the break
point of utility values in the distribution and values on
the condition specific measures. Besides, prediction
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Table 4 Coefficients of the separate utility algorithms

Unstandardized Coefficients P
Model: Low utilities Coeff. Std. Error
[tems (Constant) 0,773 0,13 0,00
3 -0,117 0,07 0,01
4 -0,244 0,07 0,00
5 -0,124 0,07 0,08
9_dummy1 -0,135 0,09 0,14
9_dummy?2 -0,053 0,10 0,60
9_dummys3 -0,274 0,12 0,02
21_dummy1 -0,181 0,09 0,05
21_dummy?2 -0,144 0,09 013
21_dummy3 -0,358 015 0,02
Model: high utilities Unstandardized Coefficients p
Coeff Std. Error
[tems (Constant) 0,970 0,01 0,00
1 -0,065 0,02 0,00
2 -0,050 0,01 0,00
3 -0,072 0,02 0,00
4 -0,028 0,02 0,16
5 -0,199 0,03 0,00
9_dummy! -0,080 0,02 0,00
9_dummy?2 -0,095 0,02 0,00
9_dummys3 -0,233 0,05 0,00
11_dummy 0,001 0,01 0,94
11_dummy?2 -0,015 0,02 0,46
11_dummy3 -0,019 0,03 0,56
15_dummy1 -0,027 0,02 0,22
15_dummy?2 -0,158 0,05 0,00
15_dummy3 -0,070 0,12 0,57
19_dummy -0,029 0,02 0,05
19_dummy2 -0,073 0,02 0,00
19_dummy3 -0,167 0,05 0,00
23_dummy1 -0,028 0,01 0,02
23_dummy?2 -0,062 0,03 0,03
23_dummy3 -0,563 013 0,00
27_dummy1 -0,055 0,01 0,00
27_dummy?2 -0,164 0,02 0,00
27_dummys3 -0,248 0,04 0,00

errors might be reduced even more if there were several
mapping functions for each ‘severity group’. However,
the relation between the condition specific measure and
the preference-based measure may not be clear cut
enough to identify more sub-groups.

Although overprediction proved to be less of a pro-
blem for patients in poor health with our combined pre-
diction model, the largest part of the sample is not in
very poor health. This explains why predictions of the
mean, as presented in Table 5 do not show much
improvement compared to the McKenzie model. How-
ever, predicted EQ-5 D values do not capture the full
range of observed EQ-5 D values due to overprediction.
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As a consequence, they have ‘tighter’ confidence inter-
vals around the QALY estimates as presented in Table 6
(survival is hypothetical). In probabilistic sensitivity ana-
lysis this results in less uncertainty around the estimate
of cost per QALY, but that is an incorrect representa-
tion of reality.

In addition to the tighter confidence intervals, using
mapped utility values may result in an underestimation
of the utility-gain between time intervals. As the utility
values of patients in poor health are systematically over-
predicted, individuals who in reality would improve
from poor health to better health (i.e. from a value <0.5
to a value >0.5) would have an underestimated utility
gain when using mapped EQ-5 D utilities.

A main point of concern in any effort to map onto a
preference-based questionnaire is generalizability of the
results. As mentioned earlier, it must be stressed that
although the cut-off points presented here are empiri-
cally supported by our study, they cannot be considered
transferable or generalizable to other types of cancer or
arthritis samples prior to thorough empirical testing in
different datasets.

The issue of generalizability also applies to the pre-
sented methodology. This study focussed on mapping
onto EQ-5 D for patients in poor health. The methodol-
ogy proposed here only applies to mapping onto EQ-5
D using the UK or the Dutch country tariffs. We
observed that individuals who report ‘extreme problems’
on one of the five EQ-5 D dimensions receive overesti-
mated utility values from published mapping functions.
Our suggestion is that this is caused by the large utility
decrement applied to scoring ‘extreme problems’ in the
UK and Dutch EQ-5 D country tariff, combined with
only a few observations of ‘extreme problems’. However,
other EQ-5 D country tariffs may not have large utility
decrements for all ‘extreme problems’ scores. For
instance, the total decrement for scoring 13111 (extreme
problems’ on the self-care dimension of EQ-5D) has a
total utility decrement of 0.564 in the UK tariff and
0.254 in the Japanese tariff. These differences in prefer-
ences between populations may be of influence on the
methodology used to identify the part of the population
which is in poor health and where increased prediction
errors are observed. However, if those patients can be
identified, specifying a separate mapping function for
that part of the populations is still a suggested option to
reduce prediction error.

We also investigated the option of combining the
application of a low and high utility models, to see if the
improvement found for low utility values would contri-
bute to a better estimate of mean EQ-5 D utility values
in a sample where only a part of the patients is in poor
health. The model led to a modest improvement in root
mean square error and range of the values. The range of
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Table 5 Comparison of algorithms in N-H population
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Time point N Minimum Maximum Mean Std. Deviation
Baseline Observed EQ-5D 117 -36 1,00 ,60 37
Predicted McKenzie & Van der Pol 106 -14 1,06 ,61 27
Predicted Combined 108 -34 97 ,60 32
T=1 Observed EQ-5D 124 -43 1,00 ,64 33
Predicted McKenzie & Van der Pol 115 -,01 1,03 ,66 24
Predicted Combined 120 -07 97 ,63 25
T=2 Observed EQ-5D 116 -33 1,00 ,67 30
Predicted McKenzie & Van der Pol 11 16 1,03 ,66 21
Predicted Combined 111 -03 97 ,66 25
T=3 Observed EQ-5D 103 -24 1,00 ,65 31
Predicted McKenzie & Van der Pol 96 -01 1,03 ,62 23
Predicted Combined 99 -17 97 ,63 25
T=4 Observed EQ-5D 101 -43 1,00 ,72 32
Predicted McKenzie & Van der Pol 94 03 1,05 ,73 23
Predicted Combined 95 -17 98 71 24
T=5 Observed EQ-5D 87 518 1,00 ,75 24
Predicted McKenzie & Van der Pol 82 511 1,05 ,75 23
Predicted Combined 84 -13 98 74 21
T=6 Observed EQ-5D 76 -59 1,00 73 32
Predicted McKenzie & Van der Pol 68 05 1,06 77 23
Predicted Combined 71 -13 97 ,76 22
T=7 Observed EQ-5D 59 ,06 1,00 77 21
Predicted McKenzie & Van der Pol 59 ,00 1,04 ,78 22
Predicted Combined 59 -13 98 ,78 20

the values is important, as that allows more statistical
sensitivity. Further research is needed to determine if
specifying two functions and combining them is to be
favoured over other approaches. For instance, the pro-
blem mentioned above about the limited number of
items available due to collinearity may be solved by
using a larger dataset which provides more accurate pre-
dictions for summed scores. The approach could also be
undertaken using regression techniques such as the pro-
bit model and a two-part model and this is an area for
future research. An obvious attempt would be to raise
variables to a power to allow non-linearity, but a recent
study still reported overprediction under a utility value
of around .6 for a model with significant second order
predictors [24]. Alternatively, stepped linear regression
with a specified break-point may allow the utility

Table 6 Hypothetical QALY confidence intervals

T=0 Utility Survival' QALY QALY 95%

(SD) (SD) ca
Observed 0,60 (037) 5 297 (18) 264 -331
McKenzie 061 (0,27) 5 306(13) 280-332
Predicted 0,60 (0,32) 5 297 (16) 267 -328
Combined

1 Hypothetical figure.

function to ‘curve’ according to observed values, but
specifying such a breakpoint is not clear cut as is shown
in this study.

Conclusion

As the use of mapping in cost-effectiveness analyses of
medical interventions is becoming more frequent, guide-
lines on the appropriateness of using mapping and spe-
cific mapping algorithms are needed. We investigated
the often observed problem of overprediction in map-
ping and analysed the use of cut-off scores for the con-
dition specific measures QLQ-C30 and HAQ-DI to
indicate when the use of a separate mapping algorithm
for patients in poor health is the favoured approach.
Overprediction of utility values for patients in poor
health can be greatly reduced by predicting the utility
values of these patients using a separate mapping algo-
rithm specified and estimated specifically for these
patients, when deemed necessary.
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