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Abstract
Background: Cost utility analysis (CUA) using SF-36/SF-12 data has been facilitated by the
development of several preference-based algorithms. The purpose of this study was to illustrate
how decision-making could be affected by the choice of preference-based algorithms for the SF-36
and SF-12, and provide some guidance on selecting an appropriate algorithm.

Methods: Two sets of data were used: (1) a clinical trial of adult asthma patients; and (2) a
longitudinal study of post-stroke patients. Incremental costs were assumed to be $2000 per year
over standard treatment, and QALY gains realized over a 1-year period. Ten published algorithms
were identified, denoted by first author: Brazier (SF-36), Brazier (SF-12), Shmueli, Fryback,
Lundberg, Nichol, Franks (3 algorithms), and Lawrence. Incremental cost-utility ratios (ICURs) for
each algorithm, stated in dollars per quality-adjusted life year ($/QALY), were ranked and
compared between datasets.

Results: In the asthma patients, estimated ICURs ranged from Lawrence's SF-12 algorithm at
$30,769/QALY (95% CI: 26,316 to 36,697) to Brazier's SF-36 algorithm at $63,492/QALY (95% CI:
48,780 to 83,333). ICURs for the stroke cohort varied slightly more dramatically. The MEPS-based
algorithm by Franks et al. provided the lowest ICUR at $27,972/QALY (95% CI: 20,942 to 41,667).
The Fryback and Shmueli algorithms provided ICURs that were greater than $50,000/QALY and
did not have confidence intervals that overlapped with most of the other algorithms. The ICUR-
based ranking of algorithms was strongly correlated between the asthma and stroke datasets (r =
0.60).

Conclusion: SF-36/SF-12 preference-based algorithms produced a wide range of ICURs that could
potentially lead to different reimbursement decisions. Brazier's SF-36 and SF-12 algorithms have a
strong methodological and theoretical basis and tended to generate relatively higher ICUR
estimates, considerations that support a preference for these algorithms over the alternatives. The
"second-generation" algorithms developed from scores mapped from other indirect preference-
based measures tended to generate lower ICURs that would promote greater adoption of new
technology. There remains a need for an SF-36/SF-12 preference-based algorithm based on the US
general population that has strong theoretical and methodological foundations.
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Background
Health-related quality of life (HRQL) measures have
many applications, including the measurement of popu-
lation health status and outcomes of medical interven-
tions that subsequently can be applied to economic
evaluations of health care interventions. One such
method of economic evaluation, cost utility analysis
(CUA), is a special form of cost effectiveness analysis that
evaluates incremental costs and effects of an intervention
by assessing health effects using quality-adjusted life years
(QALYs) [1]. QALYs incorporate both length of life and
quality of life into a single metric, and are calculated by
summing the time periods individuals spend in different
health states, weighted by the qualities of the health states
[2]. Because new therapies are typically more expensive
than standard therapies, CUA has gained prominence as a
method to inform decision makers who seek to compare
the tradeoff in incremental costs and gains in health con-
ferred by new treatment choices within and across disease
states.

Optimally, CUA is used to guide the allocation of
resources on a societal level. The Panel on Cost Effective-
ness in Health and Medicine recommended that commu-
nity preferences for health states collected from a
representative sample of the US general population
should be "the most appropriate ones for use in a Refer-
ence Case analysis" for US decision makers [2]. Such an
approach is facilitated by indirect preference-based
generic measures of health-related quality of life (HRQL)
such as the Quality of Well-Being Scale [3], Health Utili-
ties Index [4,5], and EQ-5D [6,7], as opposed to elicita-
tion of preferences directly from patients using techniques
such as the standard gamble, rating scale, and the time
trade-off. Indirect preference-based HRQL measures typi-
cally generate index-based single summary scores for
health states described by the instrument's classification
system using an algorithm based on preferences of the
community or general population.

An important development in health services research has
been the emergence of algorithms that generate single
preference-based summary scores based on items, domain
scores, or summary scores from the Short Form 36 (SF-36)
[8] and SF-12, a 12-item subset of the SF-36 [9]. While
many SF-12 and SF-36 datasets are available due to the
widespread use of this family of health assessment meas-
ures in clinical trials and population health surveys, their
value for application to economic evaluations has been
previously limited due to an absence of a scoring algo-
rithm that could generate QALYs from SF-12 and SF-36
response sets. The preference-based algorithms provide an
opportunity to use SF-36 and SF-12 data in CUA. As of
2004, 10 published algorithms were identified in the lit-
erature that were based on SF-36 or SF-12 items, subscale

scores, or summary scores [10-18]. Each preference-based
algorithm is unique, derived from different modeling
approaches, items/domains, data and/or sources of pref-
erences. Several of these algorithms have been compared
in studies, and found to differ from one another and from
valuations directly elicited from patients [19-22]. Studies
have used some of the algorithms to conduct CUA [23-
27], which may be used to inform health care resource
allocation. Although the algorithms are known to pro-
duce different results, their impact on incremental cost-
utility ratios (ICURs) and related decision-making in
health care have not been clearly demonstrated.

The purpose of this study was to examine how choice of
algorithm for the SF-36/SF-12 might affect decision-mak-
ing. The specific objectives for the study were to calculate
ICURs by applying each algorithm to data from 2 different
studies that included longitudinal assessments of the SF-
36, to compare the ranking of each algorithm-based ICUR
across conditions, and finally to interpret whether differ-
ences in ICURs generated by each algorithm had the
potential to affect decision making. There were two spe-
cific hypotheses. First, ICURs calculated from different
algorithms were expected to differ because preferences
derived from those algorithms had been found to be dif-
ferent [19]. Second, the rank ordering of ICURs was
expected to be similar between the conditions, stroke and
asthma, examined in the CUA simulations.

Methods
Data sources
To illustrate the outcomes of CUA using the different SF-
36 algorithms, data with empiric responses to the SF-36
from patients were used from two different sources and
conditions: (1) a clinical trial of adults with asthma [19];
and (2) a longitudinal study of health-related quality of
life (HRQL) after stroke [28]. The study of asthma patients
was a 12-month randomized controlled trial conducted in
inhaled corticosteroid naïve adult patients with mild per-
sistent to moderate persistent asthma that compared two
inhaled corticosteroid treatments, triamcinolone aceto-
nide hydrofluoroalkane and fluticasone propionate.
Patient included in this trial were ≥ 18 years old, had had
a forced expiratory volume in 1 second ≥ 60% of their pre-
dicted value after withholding inhaled β-agonists, and
had had airway reversibility of ≥ 15% following the
administration of an inhaled β-agonist. For the purpose of
this analysis, responses to the SF-36 at baseline and 12
months were used.

The second source of data was a natural history of HRQL
after stroke. Stroke patients who were hospitalized with a
confirmed ischemic stroke and consented to participate
were included. Patients were excluded if they were ≤ 18
years old, could not comprehend English-based
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questionnaire, lived > 150 kilometers from Edmonton,
Alberta, had hemorrhagic or lower brain stem stroke,
coma, global or Wernicke's aphasia, or life expectancy was
less than 6 months for any medical reason. Patients were
enrolled in the study within two weeks of stroke and no
later than 3 weeks after stroke. Health status measures,
including the SF-36, were self-assessed by patients. For
this analysis, responses to the SF-36 at baseline and 6
months were used. Both the stroke and asthma studies
used version 1 of the SF-36.

Measures
The SF-36 has been traditionally described as a psycho-
metrically-derived generic health status profile, with 8
subscales and two summary scores, the physical compo-
nent summary (PCS-36) score and the mental component
summary (MCS-36) score. The eight domains include
physical functioning (PF), role limitations-physical (RP),
bodily pain (BP), general health (GH), mental health
(MH), role limitations-emotional (RE), vitality (VT), and
social functioning (SF). The SF-12 is a shorter, 12-item
version of the SF-36 that does not generate domain scores
but provides summary scores, the PCS-12 and MCS-12,
that are highly predictive of the PCS-36 and MCS-36 [9].
Scores of the 8 subscales range from 0 to 100. The sum-
mary scores (i.e. PCS-36, MCS-36) have a mean score of
50 and a standard deviation of 10. Similarly, the PCS-12
and MCS-12 summary scores have a mean of 50 and a
standard deviation of 10.

Preference-Based Algorithms for SF-36 and SF-12
Nine publications that derived 10 unique preference-
based algorithms for the SF-36 or SF-12 were identified
(Table 1) [10-18]. Four algorithms were identified that

mapped scores for the SF-36, and 6 algorithms mapped
scores for the SF-12. The mapping approach was described
as 1st generation if the algorithm was derived from directly
elicited preferences, and denoted as 2nd generation map-
ping if the SF-12/SF-36 algorithm was based upon scores
from an indirect preference-based HRQL measure, such as
the EQ-5D. Note that these algorithms relate to the most
recently advocated algorithms, as several authors pub-
lished earlier algorithms and subsequently published
updates (e.g. Shmueli) [16]. For brevity, each published
algorithm is identified by the name of the first author.

Brazier and colleagues constructed an econometric model
for predicting health state valuations by first revising the
SF-36 into a health status measure with 6 domains called
the SF-6D [10]. Using a variant on the standard gamble,
249 health states defined by the SF-6D were valued by a
representative sample of the UK general population. Ordi-
nary least squares (OLS) models were estimated to predict
all 18,000 SF-6D health states. The Brazier (SF-36) algo-
rithm used for the present study was based on the parsi-
monious consistent model, the preferred specification for
model 10. The same data and a similar approach was used
to estimate an algorithm based on the SF-12 [17].

Fryback and colleagues predicted Quality of Well-being
Index (QWB) scores from SF-36 domain scores using data
collected from the Beaver Dam Health Outcomes Study
[12]. A six-variable regression model with three main
effects (PF, MH, and BP) and three interaction terms
(GH*RP, PF*BP, and MH*BP) is used to estimate
preferences.

Table 1: Summary of SF-12/SF-36 preference-based algorithms

Theoretical Range*

Algorithm Minimum Maximum Original source of Preferences Source of value 
(country)

Source of sample 
(country)

Sample Size

Brazier (SF-12) 0.35 1.00 1st generation – SG UK UK 836
Lundberg (SF-12) 0.27 0.97 1st generation – VAS Sweden Sweden 4,180
Franks (SF-12) -0.24 0.92 2nd generation – EQ-5D UK US 240
Franks (SF-12) -0.09 0.96 2nd generation – HUI3 Canada US 240
Franks (SF-12) -0.07 0.98 2nd generation – EQ-5D UK US 12,998
Lawrence (SF-12) 0.15 1.01 2nd generation – EQ-5D UK US 14,580
Shmueli (SF-36) 0.23 1.00 1st generation – VAS Israel Israel 2,505
Brazier (SF-36) 0.30 1.00 1st generation – SG UK UK 836
Fryback (SF-36) 0.59 0.84 2nd generation – QWB US US 1,356
Nichol (SF-36) 0.24 1.05 2nd generation – HUI2 Canada US 6,921

*Maximum and minimum scores are based on best and worst responses to all items on the SF-36 and SF-12. For the Lundberg algorithm, minimum 
obtained is based on male, ≥ 80 years of age, while maximum is based on female, <30 years of age. For the Nichol algorithm, the minimum is based 
on 100 years of age, while maximum is based on 0 years of age.
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Nichol and colleagues mapped the SF-36 to the prefer-
ence-based Health Utility Index Mark 2 (HUI2). They esti-
mated HUI2 scores from SF-36 domain scores and
sociodemographic variables from a sample of Southern
California Kaiser Permanente members [15]. The Nichol
method used OLS models, retaining statistically signifi-
cant parameter estimates that included all eight domains
of the SF-36 and age of the respondent.

Shmueli updated an examination of the relationship
between Visual Analog Scale (VAS) ratings and SF-36
domains provided in a population health survey in Israel
by predicting VAS values from SF-36 domains using linear
and non-linear regression models [16]. The model was
anchored such that scores of 100 on all 8 SF-36 domains
would result in a VAS score of 100. The present study used
the anchored algorithm that included statistically signifi-
cant coefficients for PF, MH, VT, and GH.

Franks and colleagues mapped the SF-12 to the EQ-5D
Index and HUI3 using a convenience sample of 240 low-
income, predominantly Latino and black patients visiting
a community health center in New York [11]. Two equa-
tions were separately developed that mapped the PCS-12
and MCS-12 onto EQ-5D and HUI3 scores using OLS
models. Described as a pilot, the authors observed that
the level of explained variance was consistent with the Fry-
back and Nichol studies (between 50–60%). Franks led a
second investigation, again mapping the SF-12 to EQ-5D
scores, using data from the Medical Expenditure Panel
Survey (MEPS) [18]. The algorithm based upon SF-12
responses that did not include demographic variables was
utilized for the present study. In a similar analysis, Law-
rence and colleagues predicted the EQ-5D scores from the

SF-12 using MEPS data [13]. A series of 2-variable, 3-vari-
able, and 6-variable models, based on functional varia-
tions on, and interactions between, the PCS-12 and MCS-
12 were developed. The 2-variable model was advocated
for its simplicity and predictive ability across a diverse set
of subgroups in the validation set.

Finally, Lundberg and colleagues investigated the rela-
tionship of preference-based measures and the SF-12
based on self-assessed HRQL from a random sample of
residents in Uppsala County of Sweden [14]. Linear
regression models were used to predict valuations from 11
of the 12 items on the SF-12 (excluding the global health
item), age, and gender. When using proportion explained
variance as a criterion, the reduced VAS-based model that
retained only significant coefficients was recommended,
with 50% of variance explained by the model.

Data analysis
Empiric data for stroke and asthma were used to ensure
that actual health state changes were represented. The
present analysis was based on patients who completed
both pre- and post- assessments and had no missing
items. After the scoring algorithms were applied to SF-36
responses using the 10 algorithms [10-18], the change in
utility was transformed into QALYs, with the assumption
that the incremental gain/lose in health state utility was
realized for a 1-year period. QALYs were calculated using
the area under the curve (AUC) approach. We assumed
incremental costs associated with the intervention were
$2000 per year greater than standard treatment in both
the stroke and asthma patients. Such costs over standard
treatment were considered reasonable approximations for
the costs of an innovative treatment in asthma and stroke,

Table 2: Demographics Characteristics and SF-36 Scores

Asthma Patients (n = 220) Stroke Patients (n = 81)
Baseline Assessment Final Assessment Baseline Assessment Final Assessment

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Age 39.1 (12.6) 67.4 (14.4)
Female (%) 55 49
GH 59.4 (18.8) 69.4‡ (19.0) 54.4 (18.4) 56.8 (22.2)
BP 66.4 (23.2) 75.5‡ (21.8) 62.3 (27.4) 68.8 (30.8)
PF 63.1 (21.9) 81.3‡ (21.4) 17.8 (25.9) 41.6‡ (33.0)
RE 63.3 (41.4) 79.6‡ (34.5) 47.3 (44.7) 68.3† (44.1)
RP 38.1 (40.0) 73.3‡ (37.4) 8.3 (23.7) 32.1‡ (40.2)
MH 71.2 (17.9) 75.9‡ (16.6) 67.2 (19.2) 77.9‡ (17.2)
SF 72.6 (22.0) 83.1‡ (19.8) 42.7 (26.4) 60.8‡ (31.8)
VT 48.8 (20.7) 60.0‡ (21.6) 41.5 (17.8) 50.5† (22.8)
PCS 40.1 (9.0) 48.2‡ (9.1) 28.9 (8.52) 34.5‡ (12.8)
MCS 48.1 (11.1) 50.5† (10.3) 46.4 (11.2) 51.7† (10.8)

†p-value < 0.01; ‡p-value < 0.001, based on t-test for dependent samples
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and although distributions of costs could have been used
to further simulate a "realistic CUA", but would further
complicate the paper without contributing to the main
purpose of this study. The incremental cost utility ratio
(ICUR) between the intervention and control groups was
calculated by dividing incremental costs by gain in
QALYs. The algorithms were ranked based on ICURs for
each condition.

The pre/post domain and preference-based scores were
described for both study groups visit using means and
standard deviations. The 95% confidence intervals (CIs)
for ICURs were based on the CIs for the preference scores.
The pre/post change scores were evaluated with paired t-
tests. The rank order of the ICURs was compared between
the asthma and stroke groups using Spearman's correla-
tion coefficient (rs). P-values < 0.05 were considered sta-
tistically significant.

Results
Of the 304 patients enrolled in the asthma study, 220
(72.4%) completed both the baseline and final SF-36
assessment. The stroke study had 81 of 124 initial
respondents (65.3%) complete the SF-36 at baseline and
final follow-up. In comparison to the patients in the
asthma study, patients in the stroke study were older
(mean age 67.4 years vs. 39.1 years) and had much lower

mean average PF, RP, SF, and PCS scores (Table 2). Posi-
tive change was observed on all 8 domains of the SF-36 in
the asthma patients from the baseline to the end of the
study (all p-values < 0.01). Stroke patients showed trend
towards improvement on all 8 domains, with significant
improvement on all domains (p-values < 0.01) with the
exception of GH and BP (p-values > 0.05).

According to the preference-based summary scores, all
patients in both studies demonstrated statistically signifi-
cant improvement from baseline to the end of the study
(p-value < 0.001) (Table 3). In the asthma study, the
mean (SD) change in preference scores ranged from 0.063
(0.117) to 0.130 (0.159). In the stroke study, change
scores ranged between 0.055 (0.124) and 0.143 (0.215).

Table 4 shows the results from the two sets of CUA simu-
lations, and the rank order of the algorithms. As the incre-
mental cost of $2000 is held constant across the
algorithms, the differences in QALYs are mirrored by the
differences in ICURs. In the asthma patients, estimated
ICURs ranged from Lawrence's SF-12 algorithm  at
$30,769/QALY (95% CI: 26,316 to 36,697) to Brazier's
SF-36 algorithm at  $63,492 (95% CI: 48,780 to 83,333).
ICURs for the stroke cohort varied slightly more dramati-
cally. The MEPS-based algorithm by Franks et al. provided
the lowest ICUR at $27,972/QALY (95% CI: 20,942 to

Table 3: Preference-Based Scores for Asthma and Stroke Samples using SF-36 Algorithms

Baseline Assessment (Ti) Final Assessment (Tf) Difference (Tf-Ti) 95% CI

Asthma (n = 220) Mean (SD) Mean (SD) Mean (SD) Lower Upper
Brazier (SF-36, SG) 0.694 (0.101) 0.757 (0.113) 0.063‡ (0.117) 0.048 0.082
Brazier (SF-12, SG) 0.724 (0.116) 0.789 (0.119) 0.065‡ (0.125) 0.047 0.078
Fryback (SF-36, QWB) 0.655 (0.063) 0.721 (0.072) 0.066‡ (0.070) 0.057 0.075
Nichol (SF-36, HUI2) 0.765 (0.123) 0.840 (0.118) 0.075‡ (0.114) 0.060 0.090
Shmueli (SF-36, VAS) 0.683 (0.124) 0.766 (0.130) 0.084‡ (0.111) 0.069 0.098
Lundberg (SF-12, VAS) 0.667 (0.113) 0.759 (0.119) 0.091‡ (0.117) 0.076 0.107
Franks (SF-12, EQ-5D) 0.699 (0.181) 0.814 (0.152) 0.115‡ (0.169) 0.093 0.138
Franks (SF-12, HUI3) 0.643 (0.170) 0.764 (0.173) 0.121‡ (0.176) 0.098 0.144
Franks (SF-12, EQ-5D, MEPS) 0.667 (0.174) 0.797 (0.163) 0.129‡ (0.167) 0.107 0.151
Lawrence (SF-12, EQ-5D) 0.667 (0.158) 0.798 (0.159) 0.130‡ (0.159) 0.109 0.152

Stroke (n = 81)
Shmueli (SF-36, VAS) 0.602 (0.115) 0.656 (0.155) 0.055‡ (0.124) 0.027 0.082
Fryback (SF-36, QWB) 0.548 (0.060) 0.616 (0.100) 0.069‡ (0.094) 0.048 0.089
Lundberg (SF-12, VAS) 0.512 (0.108) 0.592 (0.155) 0.080‡ (0.156) 0.045 0.114
Brazier (SF-12, SG) 0.609 (0.099) 0.696 (0.145) 0.087‡ (0.152) 0.054 0.121
Nichol (SF-36, HUI2) 0.656 (0.110) 0.745 (0.147) 0.089‡ (0.143) 0.058 0.121
Brazier (SF-36, SG) 0.552 (0.087) 0.669 (0.139) 0.116‡ (0.137) 0.086 0.147
Franks (SF-12, HUI3) 0.482 (0.150) 0.615 (0.200) 0.133‡ (0.200) 0.089 0.177
Lawrence (SF-12, EQ-5D) 0.491 (0.132) 0.626 (0.204) 0.134‡ (0.194) 0.091 0.177
Franks (SF-12, EQ-5D) 0.478 (0.199) 0.618 (0.232) 0.139‡ (0.233) 0.088 0.191
Franks (SF-12, EQ-5D, MEPS) 0.472 (0.165) 0.615 (0.219) 0.143‡ (0.215) 0.096 0.191

‡p-value < 0.001, based on t-test for dependent samples
NB: algorithms are ordered from smallest to largest difference score for each condition
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41,667). The Fryback and Shmueli algorithms provided
ICURs that were greater $50,000/QALY and did not have
confidence intervals that overlapped with most of the
other algorithms. The rank order of algorithms based on
ICUR was similar across the two conditions, with rs = 0.60
(p-value < 0.10).

Discussion
The development of preference-based algorithms for the
SF-36 and SF-12 to facilitate CUA has fostered studies that
recognized these preference-based scores can differ from
each other and from directly elicited valuations in patients
with asthma, hypertension, lung transplantation, and
osteoporosis [19,20,29,30]. However, the extent to which
the differences might lead to different decisions on imple-
menting or reimbursing for a new technology has been
unclear. Using actual health states self-assessed by
patients and imputing what might be considered conserv-
ative costs for an innovative treatment, our analysis dem-
onstrated that ICURs based on the derivation algorithms
can vary dramatically. The 10 algorithms produced a wide
range of ICURs that varied more than 2-fold in magnitude
for the asthma cohort and almost 3-fold in the stroke
study.

Although guidelines or thresholds for decision making
based on cost per QALY are contentious, cost-effectiveness
thresholds that health care decision makers are willing to

accept in health care reimbursement decisions exist, if not
explicitly, then implicitly. Some guidance has been pub-
lished. The National Institute of Clinical Effectiveness
(NICE) in the UK has indicated they do not have an
explicit threshold [31], while a threshold of around
£20,000 to £30,000 per QALY gained (about $37,000 to
$55,000 in 2004 US dollars) [32,33] or slightly higher
[34] has been cited as the value used in making decisions.
Laupacis et al (1992) suggested that a treatment costing
less than $20,000/QALY could be considered very cost-
effective, a treatment costing between $20,000/QALY and
$100,000/QALY was judged acceptable, while a treatment
costing more than $100,000/QALY was deemed not likely
to be cost-effective [35]. Other studies have suggested that
$50,000/QALY provides a threshold for judging cost effec-
tiveness [36,37]. Although arbitrary criteria, the applica-
tion of any of the cited guidelines to the CUAs illustrated
in the present study convey that the choice of algorithm
can dictate whether the intervention is considered cost-
effective or unacceptable. The choice of algorithm could
determine whether a drug is considered for formulary list-
ing, particularly if an emphasis is placed on cost-effective-
ness as a criterion by the decision-making committee, as
is often done by publicly funded health care systems.

The CUA simulations illustrated how selection of a spe-
cific algorithm could lead to a different interpretation of
the cost-effectiveness of an intervention. In the asthma

Table 4: Ranking of SF-36/SF-12 Algorithm by Estimated Incremental Cost Utility Ratio

Incremental Cost 1 year QALYs Gained ICUR ($/QALY) [95% CI] Rank

Asthma
Lawrence (SF-12, EQ-5D) $2000 0.065 30 769 [26 316, 36 697] 1
Franks (SF-12, EQ-5D, MEPS) $2000 0.065 31 008 [26 490, 37 383] 2
Franks (SF-12, HUI3) $2000 0.061 33 058 [27 778, 40 816] 3
Franks (SF-12, EQ-5D) $2000 0.058 34 783 [28 986, 43 011] 4
Lundberg (SF-12, VAS) $2000 0.046 43 956 [37 383, 52 632] 5
Shmueli (SF-36, VAS) $2000 0.042 47 619 [40 816, 57 971] 6
Nichol (SF-36, HUI2) $2000 0.038 53 333 [44 444, 66 667] 7
Fryback (SF-36, QWB) $2000 0.033 60 606 [53 333, 70 175] 8
Brazier (SF-12, SG) $2000 0.033 61 538 [51 282, 85 106] 9
Brazier (SF-36, SG) $2000 0.032 63 492 [48 780, 83 333] 10

Stroke
Lawrence (SF-12, EQ-5D) $2000 0.067 29 851 [22 599, 43 956] 3
Franks (SF-12, EQ-5D, MEPS) $2000 0.072 27 972 [20 942, 41 667] 1
Franks (SF-12, HUI3) $2000 0.067 30 075 [22 599, 44 944] 4
Franks (SF-12, EQ-5D) $2000 0.070 28 777 [20 942, 45 455] 2
Lundberg (SF-12, VAS) $2000 0.040 50 000 [35 088, 88 889] 8
Shmueli (SF-36, VAS) $2000 0.028 72 727 [48 780, 148 148] 10
Nichol (SF-36, HUI2) $2000 0.045 44 944 [33 058, 68 966] 6
Fryback (SF-36, QWB) $2000 0.035 57 971 [44 944, 83 333] 9
Brazier (SF-12, SG) $2000 0.044 45 977 [33 058, 74 074] 7
Brazier (SF-36, SG) $2000 0.058 34 483 [27 211, 46 512] 5

NB: algorithms are ordered from lowest to highest ICUR in the asthma patients
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cohort, algorithms by Lawrence [13], and the three
equations by Franks [11,18] generated relatively smaller
ICURs close to a level that may be considered very cost-
effective, i.e. $20,000, with 95% confidence intervals that
did not bound the $50,000/QALY threshold. In contrast,
the Nichol, Fryback, and both Brazier methods produced
ICUR point estimates above $50,000/QALYs that would
be unacceptable by most guidelines. In stroke, the Law-
rence and Franks methods again generated ICURs that
would indicate the technology of interest was relatively
cost-effective, at $30,000/QALY or less, while the algo-
rithms by Shmueli [16] and Fryback [12] produced ICURs
over $50,000/QALY. In examining the robustness of the
results, all algorithms produced ICURs below $20,000/
QALY when incremental costs for the hypothetical inter-
vention are reduced to less than $500, but algorithm
selection becomes critical as incremental costs increase
and thresholds such as $20,000/QALYs or $50,000/QALY
are crossed.

Changes in the rank order of algorithms between condi-
tions can be explained, not only by differences in the pref-
erence-based weighting assigned to each of the domain/
summary scores, but several additional factors. There are
differences in the SF-36 items or subscales retained by
some of the methods. For instance, Brazier's SF-6D based
on the SF-36 does not include GH, while the score gener-
ated by the Shmueli algorithm is largely influenced by the
GH domain. The responsiveness/sensitivity of algorithms
appears to be somewhat related to the scale range. It was
not surprising that Fryback's method produced relatively
larger ICURs that implied the intervention was less cost
effective, as Fryback's method had a much smaller range
of scale relative to the other algorithms (Table 1). Algo-
rithms that incorporate demographic characteristics, such
as the Nichol and Lundberg methods, provide estimates
that are influenced by age of the cohort and could contrib-
ute to changes in their rank order.

In order to provide some guidance in the selection of pref-
erence-based algorithms for the SF-36 and SF-12 the algo-
rithms were appraised in the context of their theoretical
and methodological foundations, source of community-
based preferences, and their relative potential to enhance
or deter the uptake of new technology. The study results
clearly illustrated that choice of algorithm can affect the
estimated ICUR, and that there was a tendency for the Fry-
back and Shmueli methods to generate higher estimates
of ICURs relative to the other algorithms. From a third-
party payer perspective, algorithms generating higher
ICURs would appeal to third-party reimbursement deci-
sion makers with short-term budget constraints, as algo-
rithms that generate higher ICURs provide less
encouraging evidence in the adoption of new technology
when considered in the context of the $/QALY bench-

marks previously discussed. The Panel on Cost Effective-
ness of Health and Medicine [2] recommended that
preference-based measures have a theoretical basis and
represent community-based preferences. The Brazier algo-
rithms are arguably most favorable on a theoretical basis.
Only the Brazier, Lundberg, and Shmueli algorithms were
based on preferences directly elicited from the general
populace, i.e. first generation. The Lawrence, Franks,
Nichol, and Fryback methods mapped the SF-12/SF-36
onto scores obtained from indirect utility-based meas-
ures, e.g. EQ-5D, HUI2, to derive what we termed "second
generation" preference-based algorithms. Such an
approach is limited by differences in the descriptive sys-
tems [17]. Interestingly, algorithms derived from directly
elicited valuations of health states (i.e. first-generation
mapping) tended to generate smaller magnitudes of
change compared to the algorithms that mapped the SF-
36/12 using other indirect utility measures (i.e. second-
generation mapping). One explanation for the second-
generation algorithms producing larger change scores is
that several of them were derived from the utility scores of
the HUI3 and EQ-5D, which have broader scale ranges
compared to the SF-6D [38].

A further consideration is the theoretical foundation for
the elicitation technique used in the valuation study. Only
Brazier employed methodology using the SG technique
for first-generation mapping. The SG has the most appeal
in economic theory due to its foundations in Expected
Utility Theory (EUT), although it has been suggested that
the axioms of EUT are empirically flawed [39], and
requires the respondent possess a rudimentary under-
standing of probabilities. Scores generated by Lundberg,
Shmueli, and Fryback methods were based on first or sec-
ond generation mapping of the SF-12/SF-36 onto scores
from rating scales. Rating scales have been criticized for
lack of theoretical basis in economics [39,40], as a rating
scale is not a choice-based technique and its ability to rep-
resent preferences on a cardinal scale is debatable. In con-
trast, the TTO and SG are choice-based techniques that
generate utilities [2]. Lundberg utilized a variant of the
TTO in addition to the VAS, but the complexity of the TTO
task does not lend itself to a mail survey design. Lundberg
observed that the TTO models did not perform as well as
the VAS. Most of the algorithms were developed using
self-assessed preferences for health status from a general
population where severe states are rare, rather increasing
the representation of more severe health states by statisti-
cal design, as done by Brazier [10,17] and by other devel-
opers of preference-based measures [4,7].

Given that HRQL may be valued differently between
countries [41], an algorithm based on the preferences of a
representative sample of the general population for the
country of interest would be most desirable for resource
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allocation decision-making on the societal level, e.g.
when the payer is the national ministry of health. The
algorithms for the SF-36 find their preference-based ori-
gins from a diverse range of national sources. The algo-
rithm by Shmueli was based on valuations obtained from
representative samples of the Israeli Jewish population
[16], while Lundberg's algorithm was based on valuations
from the Sweden populace [14]. Brazier's utilities for
health states were elicited from respondents in the United
Kingdom [10]. The preferences for algorithms derived by
Franks (EQ-5D) [11] and Lawrence [13] were mapped
from the EQ-5D scoring function derived from the general
population in the United Kingdom [7]. Fryback [12]
mapped scores from the QWB that were based on com-
munity-based preferences from San Diego, California,
USA [3]. The Nichol [11,15] and Franks [11] algorithms
were mapped from the utility-based scores of the HUI2
and HUI3 systems, respectively, that were originally elic-
ited from respondents in Ontario, Canada [4,5]. Nichol
and Lundberg algorithms may not be considered as repre-
senting general population values because they include
demographic variables such as age and/or gender. At
present, only the Fryback algorithm has preferences origi-
nating from a community in the US, albeit a second gen-
eration mapping of those preferences.

Among the algorithms presently available, Brazier's algo-
rithms for the SF-12 and SF-36 appear to be most favora-
ble because of their methodological and theoretical basis.
From the perspective of the third party reimbursement
decision maker, the Brazier algorithms are not among
those that tend to encourage adoption of new technology,
tending to provide relatively higher estimates of ICUR. For
those decision-makers, those algorithms would appear to
be more fiscally conservative in the sense that they would
not promote the adoption new technology any more than
the other methods according to the results of this study.
Although similar estimates are obtained using the Brazier
SF-36 and SF-12 algorithms [17], it would be preferable to
utilize the Brazier SF-36 algorithm rather than the SF-12-
based algorithm if responses to the SF-36 are available
because of the richer information afforded by the descrip-
tive system. If alternative algorithms are used for CUA, it
may be suggested to test robustness of conclusions by sen-
sitivity analysis using Brazier's SF-36 or SF-12-based algo-
rithms. At present, no SF-36/SF-12 algorithm has been
published based on the first generation preferences of the
US general population. As there is evidence to support
health states valuations by the general US population dif-
fer from other countries[41], this represents an opportu-
nity for future research leading to the development of an
algorithm specific to the US as well as for other countries.

Note that there are several limitations and assumptions to
the CUAs simulated in this paper. The primary purpose

was to determine whether choice of preference-based
algorithm applied to SF-36/SF-12 data has the potential to
change the conclusion of a CUA; hence, aspects of the
CUA not central to the purpose were simplified. For exam-
ple, incremental costs were assumed to be constant,
whereas in reality, considerable cost variance would be
observed across patients. CUAs were performed in two
patient populations, i.e., asthma patients and stroke
patients, rather than using a single data set, to enhance the
generalizability of the results. The rank order of the algo-
rithms is limited to the datasets examined in this study,
however, and comparisons of the algorithms across more
diseases/conditions and persons with different demo-
graphic characteristics may provide stronger evidence of
the rank order "stability". Change scores and thus ICUR
estimates depend on baseline health status and the impact
of an intervention on the various domains of health as
captured by changes in responses to the SF-12/SF-36
items. Note that baseline domain scores for asthma and
stroke cohorts were lower than US-based population
norms. Several algorithm developers provide caveats for
the application of their algorithm, including concerns
about profiles severely limited by ceiling or floor effects
[12], and inconsistent estimates and overprediction of
poorest health states [10]. For instance, the descriptive
system of the SF-6D is more concentrated at the milder
end of health problems relative to the EQ-5D [42]. These
concerns may be particularly relevant to the stroke cohort,
where floor effects were observed.

Conclusion
In summary, SF-36/SF-12 preference-based algorithms
tend to generate a wide range of ICURs that can poten-
tially lead to different reimbursement decisions. Brazier's
algorithms for the SF-36 and SF-12 had an arguably
stronger methodological and theoretical basis, and
tended to produce higher ICURs. For decision-makers
who consider cost-effectiveness in the decision to reim-
burse for a new medical technology, selection of an algo-
rithm that generates relatively higher ICURs would
provide less convincing evidence of the cost-effectiveness
of a new technology and consequently, its uptake. The
"second-generation" algorithms mapped from other indi-
rect preference-based measures tended to produce lower
ICURs. When an alternative algorithm is selected, sensitiv-
ity analysis is recommended using the Brazier SF-12/SF-36
algorithm in order to examine the robustness of CUA.
There remains a need for an SF-36/SF-12 algorithm devel-
oped from U.S.-based general population preferences
with strong methodological and theoretical foundations.
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