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Abstract

Background: A recent epidemiological study demonstrated a reduced risk of lung cancer mortality in breast
cancer patients using antiestrogens. These and other data implicate a role for estrogens in lung cancer, particularly
nonsmall cell lung cancer (NSCLC). Approximately 61% of human NSCLC tumors express nuclear estrogen receptor
b (ERb); however, the role of ERb and estrogens in NSCLC is likely to be multifactorial. Here we tested the
hypothesis that proteins interacting with ERb in human lung adenocarcinoma cells that respond proliferatively to
estradiol (E2) are distinct from those in non-E2-responsive cells.

Methods: FLAG affinity purification of FLAG-ERb-interacting proteins was used to isolate ERb-interacting proteins in
whole cell extracts from E2 proliferative H1793 and non-E2-proliferative A549 lung adenocarcinoma cell lines.
Following trypsin digestion, proteins were identified using liquid chromatography electrospray ionization tandem
mass spectrometry (LC-MS/MS). Proteomic data were analyzed using Ingenuity Pathway Analysis. Select results
were confirmed by coimmunoprecipitation.

Results: LC-MS/MS identified 27 non-redundant ERb-interacting proteins. ERb-interacting proteins included hsp70,
hsp60, vimentin, histones and calmodulin. Ingenuity Pathway Analysis of the ERb-interacting proteins revealed
differences in molecular and functional networks between H1793 and A549 lung adenocarcinoma cells.
Coimmunoprecipitation experiments in these and other lung adenocarcinoma cells confirmed that ERb and EGFR
interact in a gender-dependent manner and in response to E2 or EGF. BRCA1 interacted with ERb in A549 cell lines
and in human lung adenocarcinoma tumors, but not normal lung tissue.

Conclusion: Our results identify specific differences in ERb-interacting proteins in lung adenocarcinoma cells
corresponding to ligand-dependent differences in estrogenic responses.

Background
A recent epidemiological study reported reduced risk of
lung cancer mortality in breast cancer patients using
antiestrogens, suggesting further study is needed to
examine the potential of antiestrogens to reduce lung
cancer risk [1]. The role of estrogens in lung cancer
initiation and disease progression remains unclear; how-
ever, estrogens are known to induce differentiation and

maturation of normal lung tissue [2,3]. Some epidemio-
logic data indicate that women have a higher risk of
lung adenocarcinoma, a type of non-small cell lung can-
cer (NSCLC), compared to men [4,5]. A positive correla-
tion between post-menopausal estrogen replacement
therapy, smoking, and lung adenocarcinoma was
reported in one study [6]. The mechanisms underlying
the apparent role of gender and estrogens in NSCLC is
not yet understood [7]. Local estrogen production may
play a role since NSCLC carcinomas had higher estra-
diol (E2) concentrations compared to the corresponding
non-neoplastic lung tissues from the same patient,
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regardless of gender [8]. E2 concentrations correlated
with aromatase (CYP19A1) mRNA, but not with estro-
gen receptor a or b (ERa or ERb) staining [8]. E2 con-
centration was positively associated with tumor size and
Ki-67 staining in ERb-positive NSCLC tumors from
male patients but not postmenopausal female patients
[8]. Likewise, cytosolic ERb was a prognostic indicator
of reduced survival in male, but not female NSCLC
tumors [9]. Aromatase and ERb expression were corre-
lated, reflecting a more differentiated and less invasive
phenotype [10].
Estrogens may contribute to lung tumorigenesis

through mechanisms involving genomic, membrane-
initiated, and mitochondrial ER-regulated activities. ERs
bind directly to estrogen response elements (EREs) or
interact with other DNA-bound transcription factors, e.
g., AP-1, Sp1, and NF-�B, via a “tethering mechanism”
[11,12]. These interactions recruit coregulators and
either activate or suppress gene transcription in a
ligand- and gene- specific manner (reviewed in [13]). A
second mechanism by which estrogens regulate cell
function is by a membrane-initiated, ‘pre-genomic’ or
‘nongenomic’ signaling pathway involving activation of
intracellular protein kinases, e.g., PI3K, MAPK, JNK,
within minutes of treatment. These rapid signaling
events are mediated through plasma membrane-asso-
ciated ERa and/or GPR30/GPER [14] and involve cross-
talk with other plasma membrane receptors, e.g., EGFR
and IGF-R [12,15-17]. ERb is in mitochondria of
NSCLC cells [18-21]. ERb interacts with proapoptotic
Bad in a ligand-independent manner protecting NSCLC
cells from apoptosis-inducing agents, e.g., cisplatin [20].
These data indicate that downregulating ERb may be
beneficial in NSCLC.
Both ERa and ERb are expressed in normal lung tis-

sue and in lung adenocarcinomas [18,21-25]. ERb is
the predominant ER subtype in adult human lung and
ERb expression is higher in lung adenocarcinoma than
in normal lung tissue [26-28]. Interestingly, men with
ERb-positive tumors had a significant reduction in
mortality compared with those with ERb-negative
tumors; whereas women with ERb-positive tumors
exhibited increased mortality [29]. Studies from our
lab showed that E2 did not stimulate estrogenic
responses, including proliferation, in normal lung
bronchial epithelial cells [18], but stimulated prolifera-
tion of lung adenocarcinoma cell lines from females,
but not males, through genomic ER regulation [22]. E2
had no effect on the intracellular distribution of ERb
and showed no gender difference [18]. Since the bio-
chemical function of ERb in lung adenocarcinoma is
unknown, the identification of ERb interacting proteins
is essential to dissect ERb’s role in the lung cancer
progression.

Since ERb’s discovery in 1996 [30], 47 proteins have
been reported to interact with ERb including DP97
DEAD-box RNA helicase [31], SHP [32], BCAS2 [33],
the p160 coactivator SRC-1/NCOA1 [34], and other cor-
egulators (reviewed in [13]),. Additional proteins that
interact with ERb in the cytoplasm including STAT 1, 3
and 5 [35,36], calmodulins 1, 2 and 3 [37], and AKT
[38]. ERb interacts with Bad in mitochondria [20]. Sur-
prisingly, to the best of our knowledge, no one has ana-
lyzed ERb-interacting proteins using a proteomics
approach in NSCLC cells derived from female versus
male patients.
The goal of the present study was to identify ERb-

interacting proteins in lung adenocarcinoma cells and
how E2 affects the identity of ERb-interacting proteins.
Here we describe the identification of ERb-interacting
proteins using immunoaffinity precipitation followed by
mass spectrometry analysis and characterization of ERb-
interacting proteins. Identification of ERb-interacting
proteins may lead to new understandings of the role of
ERb in lung cancer.

Materials and methods
Antibodies
Antibodies (ab) were purchased as follows: ERb (H-150),
EGFR (1005), and HDAC (H-51)from Santa Cruz Bio-
technology; ERb (06-629), calmodulin (05-173), and
BRCA1 (07-434) from Millipore; FLAG, b-actin (ACTB)
from Sigma, a-tubulin (Ab-2) and EGFR (Ab-13) from
Thermo-Fisher Scientific.

Cell lines and treatment
NCI-H1793, A549, NCI-H1792, and NCI-H1944 were
purchased from ATCC and maintained as previously
described [22]. Prior to treatment, cells were placed in
phenol red-free media supplemented with 5% dextran-
coated, charcoal-stripped FBS (DCC-FBS) for 72 h. Cells
were treated with ethanol (EtOH, a vehicle control), 10
nM E2, 100 nM 4-OHT, 10 ng/ml EGF or combination
for 1 h prior to harvest. Whole cell extracts (WCE)
were prepared in NP-40 IP buffer containing 50 mM
Tris, 150 mM NaCl, 0.5% NP-40, 1 mM EDTA and pro-
tease and phosphatase inhibitors added fresh prior to
harvest.

Sources of patient samples
8 samples of normal (N) or tumor (T) lung tissue from
NSCLC patients were supplied by Fox Chase Cancer
Center https://studies.fccc.edu. The gender distribution
of the samples was 4 women and 4 men. The median
age was 67.5 years for women and 69.5 years for men.
NSCLC tumors were adenocarcinomas, stages 1 A or B
with grade types poorly, moderate or well differentiated
(Table 1).
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Affinity purification of rhFLAG-ERb interacting proteins
1 mg of WCE from H1793 and A549 was preincubated
with 355 fmol rhFLAG-ERb [39] for 1 h at 4°C and then
incubated with EZview™ Red ANTI- FLAG-M2 affinity
beads (Sigma) overnight at 4°C with rotation. The beads
were sedimented, rinsed with 500 μl of ice cold TBS
buffer (50 mM Tris-HCl, pH 7.4; 150 mM NaCl, 1 mM
EDTA, 0.5% NP-40) three times. FLAG-ERb and its
associated proteins were eluted with 6 M urea and iden-
tified by mass spectrometry (Additional file 1, Figure
S1). For validation of the specificity and efficiency of
ERb interaction with ANTI- FLAG-M2 affinity beads,
10 μl of the eluted protein complex was resolved on
10% SDS gels and transferred to PVDF membranes that
were probed with anti-ERb H150 antibody (Santa Cruz)
(Additional file 2, Figure S2). A band of ~ 60 kDa corre-
sponding to the long form of ERb1 was identified in the
ethanol (EtOH, vehicle control) and E2- treated H1793-
and A549-rhFLAG-ERb pull-down lanes but not in the
lanes without added FLAG-ERb. A lower MW band in
the A549 samples is nonspecific, perhaps IgG (Addi-
tional file 2, Figure S2). The efficiency of FLAG-ERb
elution was 79.4 ± 4.4% (Additional file 2, Figure S2).

Protein Identification by LC-MS/MS
Protein samples from immunoprecipitation were dried by
speedvac and dissolved with 8 M urea in 50 mM
NH4HCO3 (pH 8). The samples were reduced with
dithiothreitol, alkylated with iodoacetamide, diluted with
50 mM NH4HCO3 and digested with sequencing grade
modified trypsin (Promega, Madison, WI) at 37°C over-
night. The digests were desalted with C18 spin column
(Pierce, Rockford, IL), concentrated by speedvac, loaded
on to a C18 nanoAcquity UPLC Trap column (Waters,
Milford, MA), and then peptides in the samples were
separated with a C18 nanoAcquity UPLC capillary col-
umn (Waters) with an acetonitrile and 0.1% formic acid
gradient by a nanoAcquity LC system from Waters. The
eluted peptides were directed to a LTQ Orbitrap XL
mass spectrometer (Thermo Fisher Scientific, San Jose,
CA) via a Triversa Nanomate system from Advion

Biosciences (Ithaca, NY) and MS/MS spectra of the pep-
tides were acquired by data dependent scan with mass
resolution of 100,000 and 7,500 in MS and MS/MS mode
respectively. The database search was performed by Pro-
teome Discoverer 1.2 from Thermo Fisher Scientific with
Sequest algorithm and the most current version of Swis-
sProt database (Feb 8, 2011). High confident peptide
matches of at least two different peptides are required for
positive protein identification and XCorr scores > 1.9, 2.3
and 2.6 were considered high confident peptide matches
for charge state 2, 3, and 4 of precursor ions respectively.

Protein pathway analysis
Proteomic data were analyzed using Ingenuity Pathway
Analysis (IPA) http://www.ingenuity.com. Networks
were generated using gene identifiers that were
uploaded into IPA.

Co-immunoprecipitation and western blot
300 μg of WCE, cytoplasmic or nuclear extracts (CE or
NE) were preincubated with rhFLAG-ERb and then added
to EZview™ Red ANTI- FLAG-M2 affinity beads using
immunoprecipitation protocol. For analysis of endogenous
ERb, 300 μg WCE or 100 μg of CE and NE were preincu-
bated with ERb ab (06-629) overnight at 4°C and then
added to ChIP-grade Protein G agarose beads (Cell Signal-
ing). Proteins were eluted with Laemelli buffer and boiled.
1/2 of the volume of the eluted proteins was separated on
10% SDS gels and transferred to PVDF membranes. 30 μg
of the starting WCE, CE or NE served as an input control.
Super Signal West Pico Chemiluminescent Substrate
(Pierce) was used to detect protein bands on Kodak Bio-
MaxML film or a Carestream Imager. Un-Scan-It 6.1 for
Windows (Silk Scientific) was used to digitalize and ana-
lyze the relative amounts of protein, based on pixel den-
sity, in the film immunoblot bands. Carestream molecular
imaging software was used to analyze digital images.

Immunofluorescence Staining
The H1793, H1792, H1944 and A549 cells were grown
on coverslips. Before fixation, the cells were incubated

Table 1 Characteristics of human lung tumor samples

Samples Tumor Specimen Gender Age Race Grade Stage Diagnosis

1 1001216 F 70 White well differentiated 1A Adenocarcinoma

2 1002745 F 56 White poorly differentiated 1A Adenocarcinoma

3 1002940 F 81 White moderately differentiated 1B Adenocarcinoma

4 1002800 F 63 White poorly differentiated 1B Adenocarcinoma

5 1003775 M 65 White poorly differentiated 1A Adenocarcinoma

6 1003735 M 68 White moderately differentiated 1B Adenocarcinoma

7 1001746 M 80 White moderately differentiated 1 Adenocarcinoma

8 1004066 M 65 White moderately differentiated 1B Adenocarcinoma

Human lung tumor samples were purchased from Fox Chase Cancer Center.
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in phenol red-free media supplemented with 5% DCC-
FBS for 72 h and treated with 10 nM E2, 10 ng/ml EGF
or combination for 1 h. Cells were washed with PBS,
fixed with cold methanol:acetone (1:1) for 5 min, and
washed twice with cold PBS. After blocking with 1%
goat serum and 0.3% Triton X-100 in PBS for 30 min,
primary antibodies (anti-mouse EGFR Ab-13 and anti-
rabbit ERb (06-629) were added at a 1:300 and 1:1000
dilution, respectively, for a 1 h incubation. The second-
ary anti-mouse antibody was labeled with Zenon Alexa
Fluor 488 (green color) and the secondary anti-rabbit
antibody was labeled with Zenon Alexa Fluor 594 (red
color), both from Molecular Probes. Cells were then
incubated with ProLong Gold antifade reagent with 4’,6-
diamidino-2-phenylindole (Molecular Probes). Images
were captured using a Zeiss Axiovert 200 inverted
microscope with a 63× objective lens using AxioVision
Release 4.3 software.

Results and Discussion
Identification of ERb interacting proteins by LC-MS/MS
mass spectrometry analysis
A functional proteomic approach, summarized in
Additional file 1, Figure S1, was used to identify pro-
teins interacting with ERb in two representative lung
adenocarcinoma cell lines: H1793 and A549, derived
from a female and male patient respectively. In brief,
H1793 and A549 cells were incubated in phenol red-
free medium in 5% charcoal-stripped serum for 3 days
and then treated with EtOH or 10 nM E2 for 1 h.
Whole cell extracts (WCE) were incubated with par-
tially purified, baculovirus-expressed recombinant
FLAG-ERb1. We acknowledge that additional ERb-
interacting proteins might have been identified if we
had overexpressed FLAG-ERb in the cells, treated the
cells with EtOH versus E2 and done the IP from these
transfected cells. Reasons that we did not do the
experiment this way include differences in transfection
efficiency between the two cell lines and a concern as
to how ERb overexpression would affect endogenous
protein expression in the cell lines. The specificity of
FLAG affinity capture and elution of the FLAG-ERb
protein was demonstrated by western blot (Additional
file 2, Figure S2). The lower MW band recognized by
the ERb H150 antibody in the A549 WCE was non-
specific.
The eluted FLAG-ERb-protein complexes were sub-

jected to trypsin digestion followed by analysis by liquid
chromatography tandem mass spectrometry (LC-MS/
MS). Biological replicates were performed to assess
reproducibility. A summary of the results is shown in
Venn diagrams (Figure 1). Twenty-seven individual pro-
teins interacting with ERb were identified in WCE from
A549 and H1793 cells (Additional file 3, Table S1).

Recently, an LC-MS/MS approach identified 264 and
303 nuclear proteins associated with TAP-tagged ERa
[40] and TAP-tagged ERb [41] in MCF-7 breast cancer
cells. We compared those data with our list of ERb-
associated proteins and found 6 common ERb interact-
ing proteins. We also found 9 proteins in our ERb data
set and that were previously reported to be ERa inter-
acting proteins [40]. Common proteins to our ERb
interacting proteins data set and the ERa- and ERb-
associated proteins in MCF-7 cells include histones, cal-
modulin, hsp60, hsp70, b-actin (ACTB), and vimentin
(Table 2). For EtOH- and E2- treated H1793 cells, 15
and 17 proteins were identified, respectively, with 6 pro-
teins in common including hsp60 and histone H2A (Fig-
ure 1B, Table 2, Additional file 4, Table S2). For 4-
OHT- treated H1793 cells, 10 proteins were identified,
with 4 proteins in common with EtOH or E2-treated
cells including hsp60, 40S ribosome, and tubulin.
Unique 4-OHT/ERb interacting proteins include g-actin,
14-3-3ε protein and hsp90 (Additional file 5, Table S3).
For EtOH- and E2- treated A549 cells, 12 proteins were
identified in each treatment with 9 proteins in common
including tropomyosin, histone H4A, hsp60, and calmo-
dulin (Figure 1B, Table 2, Additional file 6, Table S4).
Five ERb-interacting proteins, i.e., b-actin, hsp60, myo-
sin9, RPS3, and tubulin beta-2, were detected in both
H1793 and A549 cells with EtOH and E2 treatment
(Additional file 6, Table S4). Interestingly, E2 stimulates
hsp60 expression and hsp60 plays a role in mitochon-
drial protein import and macromolecular assembly [42].
Others have established a role for ERb in mitochondrial
function [43-46].

Figure 1 Identification of ERb-interacting proteins in lung
adenocarcinoma cells. The Venn Diagrams indicate number of the
common and unique proteins identified by LC-MS/MS mass
spectrometry in H1793 and A549 lung adenocarcinoma cell lines.
The identity of these ERb-interacting proteins is provided in
Additional file 4, Table S2.
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Table 2 Identification of ERb-interacting proteins in H1793 and A549 cells by LC-MS/MS

Cell line/treatment
Protein name

gene name HPRD Tarallo et al [40]

ERb ERa ERb ERa

H1793, EtOH

1 Tubulin beta-2A chain TUBB2A

2 Myosin-9 MYH9 +

3 b-actin ACTB + +

4 Tubulin alpha-3C/D chain TUBA3C

5 Vimentin VIM +

6 ERb ESR2 + +

7 Heat shock 70 kDa (Hsp70) HSPA8 + + +

8 Histone H2A type 1-H HIST1H2

9 Heat shock 60 kDa (Hsp60) HSPD1 +

10 Putative annexin A2-like protein ANX2P2

11 40S ribosomal protein S3 RPS3 +

12 Protein arginine N-methyltransferase 5 PRMT5 +

13 Calmodulin CALM + +

14 Histone H4 HIST1H4A +

15 GTP-binding nuclear protein RAN

H1793, E2

1 b-actin ACTB + +

2 Myosin-9 MYH9 +

3 Tubulin beta-2A chain TUBB2A

4 Tubulin alpha-3C/D chain TUBA3C +

5 Tropomyosin alpha-4 chain TPM3

6 60 kDa heat shock protein HSPD1 +

7 Histone H2A type 1-H HIST1H2 +

8 Heat shock 70 kDa protein 1-like HSPA8 + +

9 Vimentin VIM +

10 Nucleolin NCL +

11 Tropomyosin alpha-3 chain TPM3

12 Nucleophosmin NPM1 +

13 Myosin-VI MYO6 +

14 Plectin PLEC

15 40S ribosomal protein S3 RPC3 +

16 60S ribosomal protein RPL8 +

17 Heterogeneous nuclear ribonucleoproteins A2/B1 HNRNPA2

A549, EtOH

1 Tubulin beta-2A chain TUBB2A

2 Actin ACTB +

3 Tubulin alpha-3C/D chain TUBA3C +

4 Heat shock 70 kDa protein HSPA8 + + +

5 60 kDa heat shock protein HSPD1 +

6 Histone H2A type 1-H HIST1H2 +

7 40S ribosomal protein S3 RPC3 +

8 Histone H4 HIST1H2A +

9 Tropomyosin alpha-1 chain TPM1

10 Myosin-9 MYH9
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Bioinformatic analysis of ERb-interacting proteins
The proteomic data was analyzed using IPA to identify
cellular distribution, canonical pathways, and functional
groupings.

Subcellular distribution of ERb interacting proteins
First, the cellular localization of all identified ERb-inter-
acting proteins was examined using IPA (Figure 2A).
IPA revealed most ERb-interacting proteins are cyto-
plasmic (59-84%, respectively) with ~ 8-27% localized in
the nucleus (Figure 2A). There is a clear distinction in
subcellular localization in ERb-interacting proteins
between H1793 and A549 cells. More ERb-interacting
proteins were nuclear-localized in H1793 than in A549
cells. E2 increased the number of ERb-interacting cyto-
plasmic proteins in both cell lines cells (Figure 2).

Bioinformatic analysis of ERb-interacting proteins
IPA was used to assign identified ERb-interacting pro-
teins into different molecular and functional classes
based on biological evidence from the IPA literature
database.
IPA of ERb interacting proteins identified by LC-MS/

MS revealed “cellular movement” and “cell morphology”
as the most representative molecular functional classes
in EtOH- and E2-treated H1793 and A549 cells (Figure
2B). In addition, the “cellular assembly and organization”
functional class was noted in EtOH- and E2-treated
H1793 cells and in the EtOH-treated A549 cells. Pro-
teins in the “cell-to-cell signaling and interaction” func-
tional class were detected in EtOH-treated cells.

Interestingly, and in agreement with estrogen’s roles in
cellular functions in other cell types [47] and in these
cell lines [18,21,22,39], in E2-treated H1793 and A549
cells, the functional class of cellular assembly and orga-
nization was noted (Figure 2B). The major differences in
categorization of the ERb-interacting proteins in H1793
versus A549 cells was the presence of the “cell cycle”
class in EtOH- and E2- treated in A549 cells and “cell
death” class in E2-treated A549 cells, but not in H1793
cells. Interestingly, the ERb-interacting proteins from
EtOH-treated H1793 cells were included in the “DNA
replication, recombination and repair” class including
MYH9 (organization of single fibers), VIM (morphology
of nuclear matrix), and RAN (assembly nuclear envel-
ope) proteins https://analysis.ingenuity.com/ (Figure 2B).
In addition, MALDI-TOF mass spectrometry analyses
(data not shown) identified another ERb interacting pro-
tein with DNA repair function [48,49]: BRCA1 (4
sequenced peptides that match the full length protein,
but with a low score 3.1. These DNA repair proteins
(MYH9, VIM, RAN, and BRCA1) were selected for
bioinformatic characterization (Additional file 7, Figure
S3). IPA was performed on this protein set to identify
associated functional network(s). The top representative
function was cancer-related network with a score of 18.
As expected, IPA identified “cancer and genetic disor-

ders related proteins” in the ERb-interacting proteins
(Figure 2C). Table 3 summarizes the IPA correlation of
the identified ERb-interacting proteins with cancer,
including lung cancer. Notably, 13 proteins were linked
to tumorigenesis, e.g., EEF1A1, hsp70, RAN, vimentin,

Table 2 Identification of ERb?β?-interacting proteins in H1793 and A549 cells by LC-MS/MS (Continued)

11 Calmodulin CALM +

12 Myosin regulatory light chain 12A MYL12A

A549, E2

1 Tubulin beta-2A chain TUBB2A

2 Actin ACTB +

3 Tubulin alpha-3C/D chain TUBA3C +

4 Heat shock 70 kDa protein HSPA8 + +

5 Myosin-9 MYH9 +

6 40S ribosomal protein S3 RPC3 +

7 60 kDa heat shock protein HSPD1 +

8 Histone H4 HIST1H2A +

9 Elongation factor 1-alpha 1 EEF1A1 +

10 Calmodulin CALM +

11 Tropomyosin alpha-1 chain TPM1

12 40S ribosomal protein S23 RPC23

H1793 and A549 cells were treated for 1 h with EtOH (vehicle) or 10 nM E2 and FLAG-ERb-interacting proteins were immunocaptured, eluted, and trypsin-
digested as described in Additional file 1, Figure S1. Trypsin-digested eluates were subjected to LC-MS/MS peptide identification (see Additional file 4, Table S2).
Proteins are listed from highest to lowest score within each cell line/treatment group. The literature citations for previous identification of these proteins as
interacting with ERb and ERa are provided from the Human Protein Reference Database (HPRD, www.hprd.org) databases and Tarallo et al. [40].
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and b-actin. The proteins associated with NSCLC
include EEF1A1 and vimentin (Table 3).
IPA pathway analysis was used to group ERb-inter-

acting proteins detected by LC-MS/MS into functional
networks to determine the cellular activities that may
be regulated by ERb in lung cancer cells. For proteins
identified in the cellular assembly and organization
network (with the top score of 56), the NF�B signaling
pathway linked many of the ERb-interacting proteins,
including VIM, HSPD1 (hsp60), and HSPA1L (hsp70).
The resulting network also covered several “branches”
including a direct interaction of ERb and nuclear pro-
teins affecting chromatin structure and gene regula-
tion including those identified by LC-MS/MS, i.e.,
nucleolin and histones (Table 2, Additional file 8, Fig-
ure S4).
Finally, IPA was used to identify the differences in

functional networks of ERb-interacting proteins
between H1793 and A549 cells treated with EtOH or
E2. For EtOH-treated H1793 cells, the top network
(score 31) was “tissue development, cell morphology
and genetic disorders” and the pathways were linked to
ERK1/2 and NF�B signaling pathways (Additional file
9, Figure S5). For E2-treated H1793 cells, the top net-
work was “cellular function and maintenance” (score
47) and the pathways were linked not only to NF�B
and ERK1/2, but also to the FSH pathway (Additional
file 9, Figure S5) by the ERb-interacting proteins

HSPD1 (hsp60), HSPA1L (hsp70) and tropomyosins
(TPM4 and 3). Tropomyosins are involved in cell
movement and act as interpreters of the local signaling
environment in human cancer cells [50]. For EtOH-
treated A549 cells, the top network of ERb-interacting
proteins was “cell-to-cell signaling and interaction”
(score 34), which was linked to the FSH pathway by
Ca2+, tropomyosin (TPM1), calmodulin (CALM), b-
actin (ACTB) and transforming growth factor b 1 pro-
teins (TGFb1) (Additional file 10, Figure S6). For E2-
treated A549 cells, the top network was “drug metabo-
lism, endocrine system development and function”
(score 31), which was linked first to FSH and steroid
hormones pathways and secondarily to EGFR and
TGFB1 (Additional file 10, Figure S6). Moreover, mass
spectrometry identified EGFR in control- and E2- trea-
ted H1793 cells with 5 sequenced peptides that
matched the full length EGFR, but with maximum
score 4.4. These data indicate that ERb cross-talks
with the EGF signaling pathways by its interaction
with EGFR, a result commensurate with a report that
ERb interacts with EGFR in human REN mesothelioma
cells [51]. Additionally, ERa interacts with EGFR in
MCF-7 breast cancer cells [52]. The mechanism of
EGFR-ER cross-talk involves ERK1/2 activation, result-
ing phosphorylation of ser105 ERb which plays an
important role in its ligand-independent activation,
nuclear localization, and transcriptional activity [53].

Figure 2 Cellular location and molecular function of ERb-interacting proteins. The relative proportions of ERb-interacting proteins identified
in each cell line after EtOH or E2 treatment with LC-MS-MS with the subcellular localization (A), functional classification (B) and disease
classification (C) was determined by IPA as described in the text.
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Validation of MS/MS Data by Western blotting and
Reciprocal Immunoprecipitation
Expression of select FLAG-ERb1-interacting proteins
identified in mass spectrometry, were first examined by
Western blot analysis in each cell line. Because EGFR
overexpression and mutations are linked to aggressive
tumor biology including therapeutic resistance and poor
clinical outcome in NSCLC [54,55] and since EGFR was
previously reported to interact with ERb [51] and ERa
[56], we performed western and immunoprecipitation
(IP) assays to examine ERb-EGFR interaction. EGFR
protein expression was higher in A549 than H1793 cells

and A549 expresses both the 170 kDa (wild type) and a
145 kDa (vIII variant) of EGFR (Figure 3A). The 145
kDa EGFR (Δ 2-7) is a constitutively activated protein
that is located in the plasma membrane and cytoplasm,
is not regulated by EGF [57] and was reported to
enhance the malignant phenotype [58,59]. Incubation of
FLAG-ERb1 with WCE followed by IP with FLAG affi-
nity beads showed interaction of ERb with 170 kD
EGFR in both control and E2- treated samples in H1793
but not in A549 cell lines (Figure 3B). EGF blocked
ERb-EGFR interaction and E2 did not rescue this inhibi-
tion in H1793 cells (Figure 3B). Surprisingly, when A549
cells treated with EGF were IP’ed with FLAG affinity
beads and ERb, we observed EGFR-ERb interaction and
E2 blocked this interaction (Figure 3B). These results are
commensurate with a previous report that EGF
increased ERb-EGFR interaction and E2 blocked ERb-
EGFR interaction in REN mesothelioma cells [51].
MS/MS analysis identified calmodulin (CALM) inter-

action with FLAG-ERb in the EtOH-treated H1793 cells
and EtOH- and E2-treated A549 cells (Table 2). Because
CALM was reported to interact selectively with ERa
and not ERb[37] and with EGFR [60], we evaluated
interaction of ERb with CALM. Co-IP/western analysis
confirmed ERb-CALM interaction in the EtOH- and E2-
treated H1793 cells and ligand independent ERb-CALM
interaction in A549 cell line (Figure 3B). These data
provide the first evidence that ERb interacts with
CALM. Previous studies established that CALM directly
interacts with ERa but not ERb and the lack of interac-
tion of ERb with CALM was reported to be caused by a
lack of CALM binding site conservation in ERb [37].
Taken together, these results may be interpreted as indi-
cating a non-direct interaction between ERb and CALM.
One possible explanation for our results is that ERa/
ERb heterodimers may interact with CALM via ERa-
CALM interaction. Since H1793 and A549 express ERa
and ERb, it is likely that ERa/ERb heterodimers exist in
both cell lines. An alternative explanation is that the
interaction may be indirect, for example, known CALM-
interacting proteins include EGFR, myosin, and DDX5
http://www.hprd.org/ that also interact with ERb, thus
providing potential ‘bridging partners’.

Interaction of endogenous ERb with EGFR
Because we identified proteins by interaction with bacu-
lovirus-expressed FLAG-ERb protein, the next logical
step was to confirm interaction of endogenous ERb with
the same proteins. Immunoprecipitation of WCE from
H1793 and A549 cells with ERb antibody (Millipore)
detected ligand-dependent interaction of endogenous
ERb with EGFR in H1793 and A549 cell lines (Figure
4A and 4B). EGFR interacted with endogenous ERb in
H1793 cells treated with either EtOH or E2. EGF

Table 3 IPA-based functional category “cancer” correlates
with the identified ERb-interacting proteins

IPA
function

Total number
of proteins
identified

Protein

H1793 H1793 A549 A549

EtOH E2 EtOH E2

cancer 12 ACTB, + + + +

EEF1A1, +

ESR2, + + + +

HSPA8, + +

MYL12A, +

NCL +

PLEC, +

RAN, +

TPM1, + +

TPM3, +

TUBB2A, + + + +

VIM + +

malignant
tumor

7 EEF1A1, +

ESR2, + + + +

HSPA8, + +

MYL12A, +

NCL, +

TUBB2A, + + + +

VIM + +

non-small-
cell lung
cancer

5 EEF1A1, +

ESR2, + + + +

MYL12A, +

TUBB2A, + + + +

VIM + +

metastasis 4 ACTB, + + + +

ESR2, + + + +

TUBB2A, + + + +

VIM + +

The ERb-interacting proteins are from Supplemental Tables 2 and 3. The total
number of proteins in the IPA classification are indicated followed by the
protein name. The + means that protein was identified in the indicated cell
line (H1792 or A549) after EtOH or E2 treatment.
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Figure 4 Interaction of endogenous ERb with EGFR. A and B: H1793, A549, H1944 and H1792 cells were treated with 10 nM E2, 10 ng/ml
EGF, or the combination for 1 h. 300 μg WCE were incubated with rabbit polyclonal ERb antibody (Millipore) and them immunoprecipitate
using a Protein G beads (Cell Signaling) or rabbit IgG control, and immunobloted using ab EGFR (1005). A: EGFR bands were identified in the IP
of cytoplasmic (CE) and nuclear (NE) extracts of H1793 cells treated with EtOH and E2, but not EGF or the combination of E2 and EGF treated
H1793 cell. EGFR bands were identified in the IP of cytoplasmic (CE) extracts of A549 cells treated with EGF or the combination of E2, but not
EtOH and E2 treated cells. B: EGFR was identified in the ERb IP from H1944 cells treated with EtOH and E2, but not EGF or the combination of E2
and EGF. EGFR bands were not identified in the IP from male derived H1792 cells. The membranes were stripped and reprobed for ERb. C: The
subcellular localization of EGFR and ERb in lung adenocarcinoma cells was examined by immunofluorescent staining. The merged images are
shown with anti-mouse EGFR Ab-13 (green) and anti-rabbit ERb ab (06-629) (red) and counterstaining with DAPI (blue) in EtOH- and E2, EGF, E2
+EGF treated H1793, H1792, H1944 and A549 cell lines. The individual images for each staining in Additional figure 11, Figure S7.

Figure 3 Validation of ERb-interacting proteins by coimmunoprecipitation and western blot. A: H1793 and A549 cells were treated with
10 nM E2 for 1 h, whole cell extracts (WCE) were prepared and equal amts (30 μg protein) western blotted for EGFR. Higher EGFR protein
expression was detected in A549 than H1793 cells. The arrow indicates the 170 kDa wild type EGFR. The membranes were stripped and
reprobed for a-tubulin for normalization. The graph shows the quantification of EGFR expression. B: H1793 and A549 cells were treated with 10
nM E2, 10 ng/ml EGF, or the combination for 1 h. WCE of H1793 and A549 were incubated with rhERb and then immunoprecipitated using a
FLAG affinity beads or mouse IgG control and immunobloted using EGFR, calmodulin, and ERb antibodies. EGFR bands were identified in the IP
of H1793 cells treated with EtOH and E2, but not EGF or the combination of E2 and EGF treated.
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blocked EGFR-ERb interaction and E2 did not affect the
inhibition of EGFR-ERb interaction seen with EGF treat-
ment (Figure 4A). As seen for FLAG-ERb in the co-IP
studies, endogenous ERb-EGFR interaction was not
detected in the EtOH- and E2- treated A549 cells (Fig-
ure 4B). However, EGFR was co-IP’ed with endogenous
ERb in A549 cells treated with EGF or EGF plus E2

(Figure 4B). The molecular mechanism underlying these
differences is unknown, but likely depends on cell-speci-
fic proteins that interact with both ERb and EGFR. We
were unable to perform the control blot for ERb since
IgG and ERb have similar MWs. To test if ERb interacts
with EGFR in other lung adenocarcinoma cell lines, IP
studies were performed using WCE from H1944 and
H1792 lung adenocarcinoma cell lines from a female
and male patient respectively (Figure 4B). Immunopreci-
pitation of ERb in WCE from H1944 cells showed a pat-
tern similar to that seen in H1793 cell lines: EGFR
interacted with ERb in the EtOH- and E2- treated
H1944 cells and EGF blocked EGFR-ERb interaction
(Figure 4B). ERb-EGFR interaction was not detected in
H1792 cells (Figure 4B). We conclude that the gender
of the patient from whom the lung adenocarcinoma cell
line was derived correlate with endogenous ERb interac-
tion with EGFR, although there is some suggestion of a
male-bias toward ERb-EGFR interaction. Further studies
with more samples and primary tumors will be required
to verify any gender-dependence.

Subcellular localization of EGFR and ERb in lung
adenocarcinoma cells
To further examine endogenous ERb-EGFR interaction,
and to assess whether subcellular localization is impor-
tant in ligand-dependent interaction between ERb and
EGFR detected in co-IP studies, we performed immuno-
fluorescent staining for ERb and EGFR in EtOH-treated
cells or in cells treated with E2, EGF, or both E2 and
EGF for 1 h (Figure 4C, Additional file 11, Figure S7).
First, we observed cell line-dependent differences in
EGFR cellular localization between EtOH- and E2- trea-
ted cell lines derived from male (A549 and H1792) ver-
sus from female (H1793 and H1944) patients (Figure
4C). In EtOH- and E2- treated A549 and H1792 cells,
EGFR was predominantly localized to the plasma mem-
brane junction between cells and ERb was cytoplasmic.
In EtOH- and E2- treated H1793 and H1944 cell lines,
EGFR showed plasma membrane localization, but also
showed cytoplasmic and nuclear localization. These
observations provide an explanation for the differences
between ERb/EGFR interaction in EtOH- and E2- trea-
ted male versus female derived cell lines. Surprisingly,
EGF treatment resulted in a dynamic migration of
EGFR into the cytoplasm and nucleus for all cell lines
(Figure 4C). Although EGFR is a plasma membrane-

bound receptor, a number of recent reports have vali-
dated nuclear EGFR localization and suggest a potential
role the nuclear EGFR in tumor response to therapy
[55]. For example, nuclear EGFR contributed to resis-
tance to cetuximab in cancer cells including NSCLC
[61]. To our knowledge, an association between gender
differences and nuclear EGFR in lung adenocarcinoma
is unknown. Women with lung adenocarcinoma are
more sensitive to Gefitinib therapy and have greater
overall survival than men because EGFR mutations are
more prevalent in females [62]. Constitutively active
EGFR mutants, e.g., L837Q and L723-P729insS, in
NSCLC display cell-surface clustering even in the
absence of EGF and are internalized from the cell sur-
face [63]. Precisely how gender affects intracellular
dynamics of EGFR, whether wildtype or mutant, follow-
ing ligand-activation of EGFR is unknown and is the
topic of ongoing investigation.

Interaction of endogenous ERb with BRCA1
Several ERb-associated proteins were found in the DNA
repair function/network identified by IPA suggesting that
DNA-bound ERb may be involved in DNA repair, e.g.,
transcription-coupled DNA repair [64,65]. Because
BRCA1 interacts directly with ERa and forms a complex
between ERa and CBP that inhibits E2-stimulated ERa
activity [66], we further investigated the possible BRCA1-
ERb interaction. The BRCA1 interaction site with ERa is
LBD/AF2 region (aa 282-420) [67]. ERb contains LBD/
AF2 domain within 63% identities/87% positives to ERa
protein, indicating the possibility of enough sequence/
conformation within the LBD of the two subtypes for
BRCA1 interaction. Further, low levels of BRCA1 have
been reported in women with NSCLC [68]. Co-IP experi-
ments showed that BRCA1 interacted with endogenous
ERb in E2-, EGF- and E2/EGF- treated A549 and in E2-
and EGF- treated H1944 cells, but not in H1793 or
H1792 cells (Figure 5A). Nuclear BRCA1 has been
reported play a variety of roles including DNA repair,
regulation of gene transcription, cell growth and apopto-
sis [69,70]. Western blot analysis of NE confirmed
nuclear localization of BRCA1 in EtOH- and E2- treated
A549 cell lines and BRCA1 was co-immunoprecipitated
with ERb in E2- treated A549 cells (Figure 5B). Future
studies will examine if the E2-stimulated ERb-BRCA1
interaction mediates estrogenic responses in A549 cells.
To provide translational relevance to our studies, we

examined the interaction of ERb with BRCA1 in 8 human
lung adenocarcinomas (Figure 5C and Table 1). BRCA1
was immunoprecipitated with endogenous ERb in tumor
samples # 1002800 and #1003775 (Figure 5C and Table 1).
Both tumors were poorly differentiated, one from a male
and another from a female NSCLC patient. Importantly,
ERb-BRCA1 interaction was not detected in normal lung
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tissue from the same patients (# 1002800 and #1003775)
showing ERb/BRCA1 interaction in the tumor (Figure
5C). This suggests a ‘gain of function’ of BRCA1-ERb
interaction in the tumor. These data along with the IPA
pathway analyses (Figure 2 and Additional file 7, Figure
S3) suggest the potential ability of tumor suppressor
BRCA1 to regulate the genomic ERb signaling pathways in
lung cancer, perhaps similar to BRCA1 function in breast
cancer [71]. Further studies will be needed to assess the
clinical significance of ERb-BRCA1 interaction in NSCLC.

Conclusions
In summary, these studies identified 27 ERb-interacting
proteins in two lung adenocarcinoma cell lines: H1793
and A549, and demonstrated cell- and ligand- specific
differences in protein-ERb interaction. Notably, IPA
analysis identified 12 of the ERb-interacting proteins as
having roles in cancer progression and metastasis with 4

of these proteins having established roles in NSCLC, i.e.,
EEFIA, MYL12A, TUBB2A, VIM1 (Table 3). IPA analy-
sis revealed that the proteins identified as interacting
with ERb are involved in cell movement, cell morphol-
ogy, cellular assembly and organization, cell cycle and
death, protein synthesis, and DNA replication, recombi-
nation and repair. The top network identified was “tis-
sue development, cell morphology and genetic
disorders”. This functional network is linked by nonge-
nomic/membrane-initiated ER signaling pathways with
NF�B, ERK1/2, TGFB1, and EGFR signaling pathways
and with the traditional genomic ER pathway. IPA iden-
tified EGFR as a part of the “drug metabolism, endo-
crine system development and function network” for
ERb-interacting proteins identified in our FLAG-ERb
pulldown. We confirmed that endogenous ERb and
EGFR interact and that E2 and EGF differentially modu-
late ERb and EGFR interaction and subcellular

Figure 5 Interaction of the endogenous ERb with BRCA1. A: A549, H1793 and H1792 cells were treated with 10 nM E2, 10 ng/ml EGF, or the
combination for 1 h. 300 μg WCE were incubated with rabbit polyclonal ERb antibody (Millipore), immunoprecipitated using a Protein G beads
or rabbit IgG (negative control), and immunobloted using BRCA1 ab. The membranes were stripped and reprobed for ERb. BRCA1 bands were
identified in the IP from E2-, EGF-, E2+EGF- treated A549 cells and E2- and EGF- treated 1944 cells, but not in H1793 and H1792 cell. B: A549 cells
were treated with 10 nM E2 for 1 h. 300 μg NE were incubated with ERb (H150) ab, immunoprecipitated, and immunobloted using BRCA1 ab.
BRCA1 bands were identified in the NE from E2-treated A549 cells. C: 300 μg WCE from normal human lung tissue (N) or tumor human lung
tissue (T) were incubated with ERb (H150) ab, immunoprecipitated, and immunoblotted with BRCA1 ab. BRCA1 bands were identified only in the
IP from two tumor samples from patients #1002800 and 1003775. The membranes were stripped and reprobed with b-actin (ACTB) as a loading
control and then stripped and re-probed for ERb. ERb bands were identified in the WCE from normal or tumor lung tissue. IgG bands
overlapped with ERb in IP samples.
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distribution in a ligand- and cell line-dependent manner.
Further, we identified BRCA1 as an endogenous ERb-
interacting protein in lung adenocarcinoma cell lines
and in human lung adenocarcinomas. Further studies
will be required to determine the precise role of these
ERb-interacting proteins as therapeutic targets or bio-
markers in lung adenocarcinoma.

Additional material

Additional file 1: Supplemental Figure 1: Experimental design for
identification of ERb-FLAG interacting proteins in transfected A549
and H1793 lung adenocarcinoma cells. A549 and H1793 cells were
incubated in phenol red-free medium with 5% DCC-stripped serum for 3
days prior to 1 h treatment with ethanol (EtOH, 1:1,000 dilution) or 10
nM E2. WCE (1 mg) from H1793 and A549 was preincubated with or
without 355 fmol rhFLAG-ERb for 1 h at 4°C and added to
EZview™™Red ANTI- FLAG-M2 affinity beads (Sigma) followed by
overnight incubation at 4°C with rotation. After rinsing, as indicated,
proteins were eluted with 6 M urea and digested with trypsin prior to
LC-MS/MS analysis described in Materials and Methods. In parallel,
samples of eluted proteins were separated by SDS PAGE gels and were
stained with silver or were transferred for western blot. These western
blot images demonstrate ERb-protein capture. Ingenuity Pathway
Analysis (IPA) was used to identify defined canonical pathways and
functional classifications of the identified ERb-interacting proteins.

Additional file 2: Supplemental Figure 2: Confirmation of the
immunoprecipitation of ERb. WCE prepared from EtOH or E2- treated
H1793 and A549 cells were incubated with FLAG-ERb as described in
Materials and Methods. FLAG-ERb and interacting proteins were
immunoprecipitated using Anti-FLAG M2 affinity beads (Lanes 1-4) and
after elution 10 μl of the 100 μl samples was loaded. As a negative
control, WCE were incubated with the FLAG beads (Lanes 5-6). Lane 7
was 35.5 fmol rhFLAG-ERb. The blot was probed with ERb (H150)
antibody. A band at 59 kDa corresponding to ERb was identified in the
IP of H1793 and A549 cell lysates incubated with purified rhFLAG-ERb
protein but not in H1793 or A549 cell extracts incubated with FLAG
beads without added rhFLAG-ERb protein, demonstrating the specificity
of the immunocapture for FLAG-ERb. A nonspecific band of 50 kDa (NS)
that was recognized by the ERb antibody was bound by the FLAG beads
in the A549 cells. This may be a splice variant of ERb. The efficiency of
eluting rh-FLAG-ERb from beads was evaluated by counting the
integrated optical densities (IOD) by Un-Scan-It (Silk Scientific, Orem, UT,
USA). IODs bands of interest were divided to the control 35.5 fmol
rhFLAG-ERb and counted as %.

Additional file 3: Supplemental Table 1: List of all ERb interacting
proteins identified in ANTI- FLAG-M2 affinity beads eluates. Shown
are SwissProt ID, protein synonyms and abbreviation, gene name,
subcellular location, molecular function types, biomarker applications,
entrez human ID.

Additional file 4: Supplemental Table 2: Identification of ERb
interacting proteins in H1793 and A549 cells by LC-MS/MS. This
table lists proteins identified as interacting with ERb in H1793 and A549
lung adenocarcinoma cells treated with EtOH or E2.

Additional file 5: Supplemental Table 3: Identification of ERb-
interacting proteins in 4-hydroxytamoxifen (4-OHT) treated H1793
by LC-MS/MS. This table lists proteins identified as interacting with ERb
in H1793 lung adenocarcinoma cells treated with 100 nM 4-OHT.

Additional file 6: Supplemental Table 4: List of common ERb
interacting proteins identified in ANTI- FLAG-M2 affinity beads
eluates. This table lists proteins identified as interacting with ERb in
H1793 and A549 lung adenocarcinoma cells treated with EtOH and E2 or
in both H1793 and A549 cells treated with EtOH and E2.

Additional file 7: Supplemental Figure 3: “DNA replication,
recombination and repair” network of ERb-interacting proteins
identified in LS-MS/MS. Proteins shaded in grey were identified as ERb-

interacting proteins. Proteins in white are those identified by Ingenuity
Knowledge Base. The shapes denote the molecular class of the protein
(◇enzyme, ▬ ligand-dependent nuclear receptor, ● other, double circle-
group, hexagone-translational regulator). Solid lines indicate direct
molecular interaction and dashed lines indicate indirect molecular
interaction.

Additional file 8: Supplemental Figure 4: Network pathway analysis
of total ERb-interacting proteins identified in LS-MS/MS. Proteins
shaded in grey were identified as ERb-interacting proteins. Proteins in
white are those identified by Ingenuity Knowledge Base. The shapes
denote the molecular class of the protein (◇enzyme, ▬ ligand-dependent
nuclear receptor, ● other, double circle-group, hexagone-translational
regulator). Solid lines indicate direct molecular interaction and dashed
lines indicate indirect molecular interaction.

Additional file 9: Supplemental Figure 5: Network pathway analysis
of ERb-interacting proteins in EtOH-(A) and E2- (B) treated H1793
cell lines identified by LC-MS/MS. Proteins shaded in grey were
identified as ERb-interacting proteins. Proteins in white are those
identified by Ingenuity Knowledge Base. The shapes denote the
molecular class of the protein (◇enzyme, ▬ ligand-dependent nuclear
receptor, ● other, double circle-group, hexagone-translational regulator)
(Table 2). Solid lines indicate direct molecular interaction, dashed lines
indicate indirect molecular interaction and blue lines indicate the
proteins discussed in the text.

Additional file 10: Supplemental Figure 6: Network pathway
analysis of ERb-interacting proteins in EtOH (A) and E2 (B) treated
A549 cell lines identified by LC-MS/MS. Proteins shaded in grey were
identified as ERb-interacting proteins. Proteins in white are those
identified by Ingenuity Knowledge Base. The shapes denote the
molecular class of the protein (◇enzyme, ▬ ligand-dependent nuclear
receptor, ● other, double circle-group, hexagone-translational regulator)
(Table 2). Solid lines indicate direct molecular interaction, dashed lines
indicate indirect molecular interaction and blue lines indicate the
proteins discussed in the text.

Additional file 11: Supplemental Figure 7: Subcellular localization of
EGFR and ERb in lung adenocarcinoma cells. The indicated lung
adenocarcinoma cell lines were treated with EtOH, E2, EGF, or E2+EGF-
for 6 h. Merged images for EGFR and ERb immunocytochemical staining
are shown with anti-mouse EGFR Ab-13 (green) and anti-rabbit ERb ab
(06-629) (red). Cells were counterstained with DAPI (blue). At the far right
of each panel are non-merged images for EGFR (green) and ERb (red).
Dotted lines outline the cell areas enlarged in the middle panel.
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(4-OHT): 4-hydroxytamoxifen; (HAc): acetic acid; (ACN): acetonitrile; (ab):
antibodies; (CALM): calmodulin; (CE): cytoplasmic extract; (DCC-FBS): 5%
dextran-coated, charcoal-stripped fetal bovine serum; (DBD): DNA binding
domain; (EGF): epidermal growth factor; (EGFR): epidermal growth factor
receptor; (E2): estradiol; (ERα): estrogen receptor α; (ERβ): estrogen receptor
β; (P-ser118-ERα): serine-118-phospho-ERα; (αERKO and βERKO, respectively):
mice in which ERα and/or ERβ were deleted; (FBS): fetal bovine serum;
(EtOH, vehicle control): ethanol; (ICI 182,780): faslodex/fulvestrant; (IP):
immunoprecipitation; (IPA): Ingenuity Pathway Analysis; (LBD): ligand binding
domain; (LC-MS/MS): liquid chromatography electrospray ionization tandem
mass spectrometry; (MALDI-TOF-MS): matrix-assisted laser desorption/
ionization mass spectrometry; (MW): molecular weight; (N): normal; (NE):
nuclear extract; (NSCLC): nonsmall cell lung cancer; (T): tumor; (WCE): whole
cell extracts;

Acknowledgements
We thank Marjorie L. Pilkington for her work optimizing ERb-protein capture
and Kristen H. Luken for proof-reading the text. Research Support: This work
was supported by grants from Joan’s Legacy Foundation, LUNGevity
Foundation, the Kentucky Lung Cancer Research Program, and NIH R01
DK53220 to C.M.K. S.M.A. was supported by NIH 5 T35 DK072923. WMP, Jr.
was supported in part by NIEHS P30ES014443.

Ivanova et al. Proteome Science 2011, 9:60
http://www.proteomesci.com/content/9/1/60

Page 12 of 14

http://www.biomedcentral.com/content/supplementary/1477-5956-9-60-S1.PPT
http://www.biomedcentral.com/content/supplementary/1477-5956-9-60-S2.PPT
http://www.biomedcentral.com/content/supplementary/1477-5956-9-60-S3.XLS
http://www.biomedcentral.com/content/supplementary/1477-5956-9-60-S4.DOC
http://www.biomedcentral.com/content/supplementary/1477-5956-9-60-S5.DOC
http://www.biomedcentral.com/content/supplementary/1477-5956-9-60-S6.XLS
http://www.biomedcentral.com/content/supplementary/1477-5956-9-60-S7.PPT
http://www.biomedcentral.com/content/supplementary/1477-5956-9-60-S8.PPT
http://www.biomedcentral.com/content/supplementary/1477-5956-9-60-S9.PPT
http://www.biomedcentral.com/content/supplementary/1477-5956-9-60-S10.PPT
http://www.biomedcentral.com/content/supplementary/1477-5956-9-60-S11.TIFF


Author details
1Department of Biochemistry & Molecular Biology, Center for Genetics and
Molecular Medicine, University of Louisville School of Medicine, Louisville, KY.
40292 USA. 2Department of Pharmacology and Toxicology, Center for
Genetics and Molecular Medicine, University of Louisville School of Medicine,
Louisville, KY. 40292 USA.

Authors’ contributions
MMI performed the cell-based studies, IPA, prepared the Figures and
contributed to the writing of the text; SMA performed co-IP experiments;
WMP, Jr. performed all LC-MS/MS and peptide identification; CMK
participated in all data analysis, Figure preparation, and writing of the
manuscript. All authors read and approved the manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 19 April 2011 Accepted: 27 September 2011
Published: 27 September 2011

References
1. Bouchardy C, Benhamou S, Schaffar R, Verkooijen HM, Fioretta G,

Schubert H, Vinh-Hung V, Soria J-C, Vlastos G, Rapiti E: Lung cancer
mortality risk among breast cancer patients treated with anti-estrogens.
Cancer 2011, 117:1288-1295.

2. Dubey S, Siegfried JM, Traynor AM: Non-small-cell lung cancer and breast
carcinoma: chemotherapy and beyond. The Lancet Oncology 2006,
7:416-424.

3. Pietras RJ, Marquez DC, Chen HW, Tsai E, Weinberg O, Fishbein M: Estrogen
and growth factor receptor interactions in human breast and non-small
cell lung cancer cells. Steroids 2005, 70:372-381.

4. Ramchandran K, Patel JD: Sex Differences in Susceptibility to Carcinogens.
Seminars in Oncology 2009, 36:516-523.

5. Kiyohara C, Ohno Y: Sex differences in lung cancer susceptibility: A
review. Gender Medicine 2010, 7:381-401.

6. Taioli E, Wynder EL: Re: Endocrine factors and adenocarcinoma of the
lung in women. J Natl Cancer Inst 1994, 86:869-870.

7. Siegfried JM, Hershberger PA, Stabile LP: Estrogen Receptor Signaling in
Lung Cancer. Seminars in Oncology 2009, 36:524-531.

8. Niikawa H, Suzuki T, Miki Y, Suzuki S, Nagasaki S, Akahira J, Honma S,
Evans DB, Hayashi S-i, Kondo T, Sasano H: Intratumoral Estrogens and
Estrogen Receptors in Human Non-Small Cell Lung Carcinoma. Clin
Cancer Res 2008, 1078-0432, CCR-1007-1950.

9. Stabile LP, Dacic S, Land SR, Lenzner DE, Dhir R, Aquafondata M,
Landreneau RJ, Grandis JR, Siegfried JM: Combined analysis of estrogen
receptor β-1 and progesterone receptor expression identifies lung
cancer patients with poor outcome. Clinical Cancer Research 2011.

10. Taneja SS, Ha S, Swenson NK, Huang HY, Lee P, Melamed J, Shapiro E,
Garabedian MJ, Logan SK: Cell-specific Regulation of Androgen Receptor
Phosphorylation in Vivo. J Biol Chem 2005, 280:40916-40924.

11. Paech K, Webb P, Kuiper GG, Nilsson S, Gustafsson J, Kushner PJ,
Scanlan TS: Differential ligand activation of estrogen receptors ERalpha
and ERbeta at AP1 sites. Science 1997, 277:1508-1510.

12. Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J,
Tujague M, Strom A, Treuter E, Warner M, Gustafsson JA: Estrogen
receptors: how do they signal and what are their targets. Physiol Rev
2007, 87:905-931.

13. Klinge CM: Estrogen receptor interaction with co-activators and co-
repressors. Steroids 2000, 65:227-251.

14. Prossnitz ER, Maggiolini M: Mechanisms of estrogen signaling and gene
expression via GPR30. Molecular and Cellular Endocrinology 2009, 308:32-38.

15. Chambliss KL, Shaul PW: Estrogen modulation of endothelial nitric oxide
synthase. Endocr Rev 2002, 23:665-686.

16. Levin ER: Cell localization, physiology, and nongenomic actions of
estrogen receptors. J Appl Physiol 2001, 91:1860-1867.

17. Levin ER: G Protein-Coupled Receptor 30: Estrogen Receptor or
Collaborator? Endocrinology 2009, 150:1563-1565.

18. Ivanova MM, Mazhawidza W, Dougherty SM, Minna JD, Klinge CM: Activity
and intracellular location of estrogen receptors [alpha] and [beta] in
human bronchial epithelial cells. Mol Cell Endocrinol 2009, 205:12-21.

19. Pedram A, Razandi M, Wallace DC, Levin ER: Functional Estrogen
Receptors in the Mitochondria of Breast Cancer Cells. Mol Biol Cell 2006,
17:2125-2137.

20. Zhang G, Yanamala N, Lathrop KL, Zhang L, Klein-Seetharaman J, Srinivas H:
Ligand-Independent Antiapoptotic Function of Estrogen Receptor-{beta}
in Lung Cancer Cells. Mol Endocrinol 2010, 24:1737-1747.

21. Ivanova MM, Mazhawidza W, Dougherty SM, Klinge CM: Sex Differences in
Estrogen Receptor Subcellular Location and Activity in Lung
Adenocarcinoma Cells. Am J Respir Cell Mol Biol 2010, 42:320-330.

22. Dougherty SM, Mazhawidza W, Bohn AR, Robinson KA, Mattingly KA,
Blankenship KA, Huff MO, McGregor WG, Klinge CM: Gender difference in
the activity but not expression of estrogen receptors alpha and beta in
human lung adenocarcinoma cells. Endocrine-Related Cancer 2006,
13:113-134.

23. Fasco MJ, Hurteau GJ, Spivack SD: Gender-dependent expression of alpha
and beta estrogen receptors in human nontumor and tumor lung
tissue. Mol Cell Endocrinol 2002, 188:125-140.

24. Mollerup S, Jorgensen K, Berge G, Haugen A: Expression of estrogen
receptors alpha and beta in human lung tissue and cell lines. Lung
Cancer 2002, 37:153-159.

25. Canver CC, Memoli VA, Vanderveer PL, Dingivan CA, Mentzer RM Jr: Sex
hormone receptors in non-small-cell lung cancer in human beings. J
Thorac Cardiovasc Surg 1994, 108:153-157.

26. Omoto Y, Kobayashi Y, Nishida K, Tsuchiya E, Eguchi H, Nakagawa K,
Ishikawa Y, Yamori T, Iwase H, Fujii Y, et al: Expression, function, and
clinical implications of the estrogen receptor beta in human lung
cancers. Biochem Biophys Res Commun 2001, 285:340-347.

27. Omoto Y, Inoue S, Ogawa S, Toyama T, Yamashita H, Muramatsu M,
Kobayashi S, Iwase H: Clinical value of the wild-type estrogen receptor
beta expression in breast cancer. Cancer Lett 2001, 163:207-212.

28. Raso MG, Behrens C, Herynk MH, Liu S, Prudkin L, Ozburn NC, Woods DM,
Tang X, Mehran RJ, Moran C, et al: Immunohistochemical Expression of
Estrogen and Progesterone Receptors Identifies a Subset of NSCLCs and
Correlates with EGFR Mutation. Clinical Cancer Research 2009,
15:5359-5368.

29. Schwartz AG, Prysak GM, Murphy V, Lonardo F, Pass H, Schwartz J, Brooks S:
Nuclear Estrogen Receptor {beta} in Lung Cancer: Expression and
Survival Differences by Sex. Clin Cancer Res 2005, 11:7280-7287.

30. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson J-A: Cloning of
a novel estrogen receptor expressed in rat prostate and ovary. Proc Natl
Acad Sci USA 1996, 93:5925-5930.

31. Rajendran RR, Nye AC, Frasor J, Balsara RD, Martini PG, Katzenellenbogen BS:
Regulation of nuclear receptor transcriptional activity by a novel DEAD
box RNA helicase (DP97). J Biol Chem 2003, 278:4628-4638.

32. Johansson L, Bavner A, Thomsen JS, Farnegardh M, Gustafsson JA, Treuter E:
The orphan nuclear receptor SHP utilizes conserved LXXLL-related
motifs for interactions with ligand-activated estrogen receptors. Mol Cell
Biol 2000, 20:1124-1133.

33. Qi C, Zhu YT, Chang J, Yeldandi AV, Rao MS, Zhu YJ: Potentiation of
estrogen receptor transcriptional activity by breast cancer amplified
sequence 2. Biochem Biophys Res Commun 2005, 328:393-398.

34. Northrop JP, Nguyen D, Piplani S, Olivan SE, Kwan ST, Go NF, Hart CP,
Schatz PJ: Selection of estrogen receptor beta- and thyroid hormone
receptor beta-specific coactivator-mimetic peptides using recombinant
peptide libraries. Mol Endocrinol 2000, 14:605-622.

35. Kotaja N, Aittomaki S, Silvennoinen O, Palvimo JJ, Janne OA: ARIP3
(androgen receptor-interacting protein 3) and other PIAS (protein
inhibitor of activated STAT) proteins differ in their ability to modulate
steroid receptor-dependent transcriptional activation. Mol Endocrinol
2000, 14:1986-2000.

36. Faulds MH, Pettersson K, Gustafsson JA, Haldosen LA: Cross-talk between
ERs and signal transducer and activator of transcription 5 is E2
dependent and involves two functionally separate mechanisms. Mol
Endocrinol 2001, 15:1929-1940.

37. Garcia Pedrero JM, Del Rio B, Martinez-Campa C, Muramatsu M, Lazo PS,
Ramos S: Calmodulin is a selective modulator of estrogen receptors. Mol
Endocrinol 2002, 16:947-960.

38. Aquila S, Sisci D, Gentile M, Middea E, Catalano S, Carpino A, Rago V,
Ando S: Estrogen receptor (ER)alpha and ER beta are both expressed in
human ejaculated spermatozoa: evidence of their direct interaction with

Ivanova et al. Proteome Science 2011, 9:60
http://www.proteomesci.com/content/9/1/60

Page 13 of 14

http://www.ncbi.nlm.nih.gov/pubmed/21264820?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21264820?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16648046?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16648046?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15862820?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15862820?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15862820?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19995643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21056866?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21056866?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8182770?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8182770?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19995644?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19995644?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16210317?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16210317?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9278514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9278514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17615392?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17615392?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10751636?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10751636?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19464786?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19464786?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12372846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12372846?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11568173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11568173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19307418?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19307418?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16495339?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16495339?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20660297?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20660297?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19556604?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19556604?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19556604?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16601283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16601283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16601283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11911952?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11911952?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11911952?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12140138?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12140138?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8028359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8028359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11444848?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11444848?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11444848?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11165756?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11165756?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19706809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19706809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19706809?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16243798?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16243798?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8650195?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8650195?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12466272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12466272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10648597?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10648597?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15694360?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15694360?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15694360?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10809226?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10809226?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10809226?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11117529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11117529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11117529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11117529?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11682624?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11682624?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11682624?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11981030?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15001646?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15001646?dopt=Abstract


phosphatidylinositol-3-OH kinase/Akt pathway. J Clin Endocrinol Metab
2004, 89:1443-1451.

39. Ivanova MM, Mattingly KA, Klinge CM: Estrogen receptor beta yield from
baculovirus lytic infection is higher than from stably transformed Sf21
cells. Appl Microbiol Biotechnol 2007, 74:1256-1263.

40. Tarallo R, Bamundo A, Nassa G, Nola E, Paris O, Ambrosino C, Facchiano A,
Baumann M, Nyman TA, Weisz A: Identification of proteins associated
with ligand-activated estrogen receptor α in human breast cancer cell
nuclei by tandem affinity purification and nano LC-MS/MS. Proteomics
2011, 11:172-179.

41. Nassa G, Tarallo R, Ambrosino C, Bamundo A, Ferraro L, Paris O, Ravo M,
Guzzi PH, Cannataro M, Baumann M, et al: A large set of estrogen
receptor beta-interacting proteins identified by tandem affinity
purification in hormone-responsive human breast cancer cell nuclei.
Proteomics 2011, 11:159-165.

42. Charpentier AH, Bednarek AK, Daniel RL, Hawkins KA, Laflin KJ, Gaddis S,
MacLeod MC, Aldaz CM: Effects of estrogen on global gene expression:
identification of novel targets of estrogen action. Cancer Res 2000,
60:5977-5983.

43. Yang S-H, Liu R, Perez EJ, Wen Y, Stevens SM, Valencia T, Brun-
Zinkernagel A-M, Prokai L, Will Y, Dykens J, et al: Mitochondrial localization
of estrogen receptor {beta}. PNAS 2004, 101:4130-4135.

44. Simpkins JW, Yang S-H, Sarkar SN, Pearce V: Estrogen actions on
mitochondria–Physiological and pathological implications. Molecular and
Cellular Endocrinology 2008, 290:51-59.

45. Yang S-H, Sarkar SN, Liu R, Perez EJ, Wang X, Wen Y, Yan L-J, Simpkins JW:
Estrogen Receptor {beta} as a Mitochondrial Vulnerability Factor. J Biol
Chem 2009, 284:9540-9548.

46. Simpkins JW, Yi KD, Yang S-H, Dykens JA: Mitochondrial mechanisms of
estrogen neuroprotection. Biochimica et Biophysica Acta (BBA)-General
Subjects 2010, 1800:1113-1120.

47. Katzenellenbogen BS, Norman MJ, Eckert RL, Peltz SW, Mangel WF:
Bioactivities, estrogen receptor interactions, and plasminogen activator-
inducing activities of tamoxifen and hydroxytamoxifen isomers in MCF-7
human breast cancer cells. Cancer Res 1984, 44:112-119.

48. Skog S, He Q, Khoshnoud R, Fornander T, Rutqvist LE: Genes related to
growth regulation, DNA repair and apoptosis in an oestrogen receptor-
negative (MDA-231) versus an oestrogen receptor-positive (MCF-7)
breast tumour cell line. Tumour Biol 2004, 25:41-47.

49. Durant ST, Nickoloff JA: Good timing in the cell cycle for precise DNA
repair by BRCA1. Cell Cycle 2005, 4:1216-1222.

50. Wang CLA, Coluccio LM: New Insights into the Regulation of the Actin
Cytoskeleton by Tropomyosin. In International Review of Cell and Molecular
Biology. Volume 281. Edited by: Kwang WJ. Academic Press; 2010:91-128.

51. Pinton G, Thomas W, Bellini P, Manente AG, Favoni RE, Harvey BJ, Mutti L,
Moro L: Estrogen receptor beta exerts tumor repressive functions in
human malignant pleural mesothelioma via EGFR inactivation and
affects response to gefitinib. PLoS One 5:e14110.

52. Fan P, Wang J, Santen RJ, Yue W: Long-term Treatment with Tamoxifen
Facilitates Translocation of Estrogen Receptor {alpha} out of the Nucleus
and Enhances its Interaction with EGFR in MCF-7 Breast Cancer Cells.
Cancer Res 2007, 67:1352-1360.

53. Picard N, Charbonneau C, Sanchez M, Licznar A, Busson M, Lazennec G,
Tremblay A: Phosphorylation of Activation Function-1 Regulates
Proteasome-Dependent Nuclear Mobility and E6-Associated Protein
Ubiquitin Ligase Recruitment to the Estrogen Receptor {beta}. Mol
Endocrinol 2008, 22:317-330.

54. Ladanyi M, Pao W: Lung adenocarcinoma: guiding EGFR-targeted therapy
and beyond. Mod Pathol 2008, 21(Suppl 2):S16-22.

55. Lo HW: Nuclear mode of the EGFR signaling network: biology,
prognostic value, and therapeutic implications. Discov Med 10:44-51.

56. Marquez DC, Lee J, Lin T, Pietras RJ: Epidermal growth factor receptor and
tyrosine phosphorylation of estrogen receptor. Endocrine 2001, 16:73-81.

57. Konishi A, Berk BC: Epidermal Growth Factor Receptor Transactivation Is
Regulated by Glucose in Vascular Smooth Muscle Cells. Journal of
Biological Chemistry 2003, 278:35049-35056.

58. Damstrup L, Wandahl Pedersen M, Bastholm L, Elling F, Skovgaard
Poulsen H: Epidermal growth factor receptor mutation type III
transfected into a small cell lung cancer cell line is predominantly
localized at the cell surface and enhances the malignant phenotype. Int
J Cancer 2002, 97:7-14.

59. Kuan CT, Wikstrand CJ, Bigner DD: EGF mutant receptor vIII as a
molecular target in cancer therapy. Endocr Relat Cancer 2001, 8:83-96.

60. Sengupta P, Bosis E, Nachliel E, Gutman M, Smith SO, Mihályné G, Zaitseva I,
McLaughlin S: EGFR Juxtamembrane Domain, Membranes, and
Calmodulin: Kinetics of Their Interaction. Biophysical Journal 2009,
96:4887-4895.

61. Li C, Iida M, Dunn EF, Ghia AJ, Wheeler DL: Nuclear EGFR contributes to
acquired resistance to cetuximab. Oncogene 2009, 28:3801-3813.

62. Armour AA, Watkins CL: The challenge of targeting EGFR: experience
with gefitinib in nonsmall cell lung cancer. Eur Respir Rev 2010,
19:186-196.

63. Choi SH, Mendrola JM, Lemmon MA: EGF-independent activation of cell-
surface EGF receptors harboring mutations found in gefitinib-sensitive
lung cancer. Oncogene 2007, 26:1567-1576.

64. Tornaletti S: DNA repair in mammalian cells: Transcription-coupled DNA
repair: directing your effort where it’s most needed. Cell Mol Life Sci 2009,
66:1010-1020.

65. Hanawalt PC, Spivak G: Transcription-coupled DNA repair: two decades of
progress and surprises. Nat Rev Mol Cell Biol 2008, 9:958-970.

66. Zheng L, Annab LA, Afshari CA, Lee WH, Boyer TG: BRCA1 mediates
ligand-independent transcriptional repression of the estrogen receptor.
Proc Natl Acad Sci USA 2001, 98:9587-9592.

67. Ma YX, Tomita Y, Fan S, Wu K, Tong Y, Zhao Z, Song LN, Goldberg ID,
Rosen EM: Structural determinants of the BRCA1: estrogen receptor
interaction. Oncogene 2005, 24:1831-1846.

68. Planchard D, Loriot Y, Goubar A, Commo F, Soria JC: Differential
expression of biomarkers in men and women. Semin Oncol 2009,
36:553-565.

69. Murphy CG, Moynahan ME: BRCA gene structure and function in tumor
suppression: a repair-centric perspective. Cancer J 2010, 16:39-47.

70. Venkitaraman AR: Linking the cellular functions of BRCA genes to cancer
pathogenesis and treatment. Annu Rev Pathol 2009, 4:461-487.

71. Ma Y, Fan S, Hu C, Meng Q, Fuqua SA, Pestell RG, Tomita YA, Rosen EM:
BRCA1 Regulates Acetylation and Ubiquitination of Estrogen Receptor-
{alpha}. Mol Endocrinol 2010, 24:76-90.

doi:10.1186/1477-5956-9-60
Cite this article as: Ivanova et al.: Ligand-dependent differences in
estrogen receptor beta-interacting proteins identified in lung
adenocarcinoma cells corresponds to estrogenic responses. Proteome
Science 2011 9:60.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Ivanova et al. Proteome Science 2011, 9:60
http://www.proteomesci.com/content/9/1/60

Page 14 of 14

http://www.ncbi.nlm.nih.gov/pubmed/15001646?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17318543?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17318543?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17318543?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21182205?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21182205?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21182205?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21182203?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21182203?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21182203?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11085516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11085516?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15024130?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15024130?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18571833?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18571833?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19189968?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6537799?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6537799?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6537799?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15192311?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15192311?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15192311?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15192311?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16103751?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16103751?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20460184?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20460184?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17283173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17283173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17283173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17962381?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17962381?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17962381?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18437168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18437168?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11887937?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11887937?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12829718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12829718?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11774237?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11774237?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11774237?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11397666?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11397666?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19527647?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19527647?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19684613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19684613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20956191?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20956191?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16953218?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16953218?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16953218?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19153656?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19153656?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19023283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19023283?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11493692?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11493692?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15674350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15674350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19995647?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19995647?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20164689?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20164689?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18954285?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18954285?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19887647?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19887647?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Materials and methods
	Antibodies
	Cell lines and treatment
	Sources of patient samples
	Affinity purification of rhFLAG-ERβ interacting proteins
	Protein Identification by LC-MS/MS
	Protein pathway analysis
	Co-immunoprecipitation and western blot
	Immunofluorescence Staining

	Results and Discussion
	Identification of ERβ interacting proteins by LC-MS/MS mass spectrometry analysis
	Bioinformatic analysis of ERβ-interacting proteins
	Subcellular distribution of ERβ interacting proteins
	Bioinformatic analysis of ERβ-interacting proteins
	Validation of MS/MS Data by Western blotting and Reciprocal Immunoprecipitation
	Interaction of endogenous ERβ with EGFR
	Subcellular localization of EGFR and ERβ in lung adenocarcinoma cells
	Interaction of endogenous ERβ with BRCA1

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

