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Abstract

Yersinia pestis proteins were sequentially extracted from crude membranes with a high salt buffer
(2.5 M NaBr), an alkaline solution (180 mM Na,CO;, pH 11.3) and membrane denaturants (8 M
urea, 2 M thiourea and 1% amidosulfobetaine-14). Separation of proteins by 2D gel electrophoresis
was followed by identification of more than 600 gene products by MS. Data from differential 2D
gel display experiments, comparing protein abundances in cytoplasmic, periplasmic and all three
membrane fractions, were used to assign proteins found in the membrane fractions to three
protein categories: (i) integral membrane proteins and peripheral membrane proteins with low
solubility in aqueous solutions (220 entries); (ii) peripheral membrane proteins with moderate to
high solubility in aqueous solutions (127 entries); (iii) cytoplasmic or ribosomal membrane-
contaminating proteins (80 entries). Thirty-one proteins were experimentally associated with the
outer membrane (OM). Circa 50 proteins thought to be part of membrane-localized, multi-subunit
complexes were identified in high M, fractions of membrane extracts via size exclusion
chromatography. This data supported biologically meaningful assignments of many proteins to the
membrane periphery. Since only 32 inner membrane (IM) proteins with two or more predicted
transmembrane domains (TMDs) were profiled in 2D gels, we resorted to a proteomic analysis by
2D-LC-MS/MS. Ninety-four additional IM proteins with two or more TMDs were identified. The
total number of proteins associated with Y. pestis membranes increased to 456 and included
representatives of all six f-barrel OM protein families and 25 distinct IM transporter families.
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Background

Yersinia pestis, a Gram-negative bacterium, is the causative
agent of the bubonic and pneumonic plague. The patho-
genic lifestyle of this microbe involves two distinct life
stages, one in the flea vector, the other in mammalian
hosts, primarily rodents [1]. Humans are a dead-end host
and not part of the flea-mammal cycle. Y. pestis strains
associated with high virulence have been divided into
three classical biovars (antiqua, mediaevalis and orienta-
lis) based on differences in their abilities to ferment glyc-
erol and reduce nitrate. A fourth biovar (microtus) has
been proposed on the basis of low virulence and reduced
transmission [2-4]. Complete DNA sequence data exist for
the genomes of each of these four biovars [5-8]. The gene
organization and complete DNA sequences of three Y. pes-
tis virulence-associated plasmids were also determined
[9,10]. The pCD1 plasmid, shared with other human
pathogenic Yersinia species, encodes a suite of proteins
required for a functional type III secretion system (T3SS)
and host infection. A temperature increase from 26-30 to
37°C and host cell contact or a low Ca2* concentration
induce expression of these proteins [11]. Most Y. pestis
strains harbor two unique plasmids, pPCP1 and pMT1,
not present in Y. pseudotuberculosis. These plasmids encode
factors such as the plasminogen activator protease (Pla),
required for mammalian pathogenesis [12], the Yersinia
murine toxin (Ymt), required for colonization of the mid-
gut of fleas [13,14], and the F1 capsular antigen (Cafl)
[15]. The F1 antigen causes in vitro resistance to phagocy-
tosis, but its role in mammalian virulence is unclear [16].
In addition, the genetically unstable chromosomal 102-
kb pgm locus is important for full virulence of the bubonic
plague in mammals and for transmission via blocked fleas
[17,18]. It encodes the vyersiniabactin siderophore-
dependent iron transport (Ybt) system [19,20] and the
Hms-dependent biofilm system. Biofilm formation
allows colonization of the flea proventriculus, causing
blockage which induces active feeding behaviour [21,22].
Gene expression and proteomic studies have demon-
strated that numerous plasmid- and pgm locus-encoded
genes are differentially expressed at 26-30 vs. 37°C [23-
26] and during temperature transition [27]. Some of these
changes are in agreement with specific functional roles of
the encoded proteins in one of the two life stages
[24,25,27].

Several of the characterized Y. pestis virulence factors,
including effector proteins and their transporters, are
membrane-associated. Global profiling of Y. pestis mem-
brane compartments holds promise for the discovery of
novel virulence- and life stage-associated proteins. A pro-
teomic effort to designate life stage-specific Y. pestis KIM
protein biomarkers included several membrane-associ-
ated proteins [24]. The latter study did not focus on deter-
mining membrane protein localizations, and a
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comprehensive Y. pestis membrane proteome survey has
not been published to date. The assessment of membrane
association of proteins annotated in Y. pestis genome data-
bases has largely relied on sequence similarities to orthol-
ogous proteins in Escherichia coli and other Gram-negative
bacteria or on predictions of conserved membrane inte-
gration motifs. Extensive membrane proteome surveys
have been reported for E. coli [28,29], Pseudomonas aerugi-
nosa [30] and Rhodobacter sphaeroides [31]. Strategies for
membrane proteome analysis using non-recombinant
methodologies are diverse and were presented in review
articles [32,33]. High salt buffers and alkaline Na,CO,
solutions are often used to solubilize peripheral mem-
brane proteins. To dentaure membranes and solubilize
integral membrane proteins, detergents such as CHAPS,
laurylsarcosine and amidosulfobetaine-14 (ASB-14) are
frequently used in combination with chaotropic reagents,
7-9 M urea, for instance. With 2D gels, it is most challeng-
ing to profile low abundance proteins harboring several
transmembrane domains (TMDs). A novel method was
recently described to increase the depth of integral mem-
brane protein surveys [34]. Proteolytic digestion of bacte-
rial membrane fractions in organic solvents resulted in the
enrichment of TMD proteins, which were identified with
increased sequence coverage by 2D-LC-MS/MS.

Here, the Y. pestis membrane proteome derived from sta-
tionary phase cells grown at 26 °C was investigated prima-
rily. Both 2D gel- and 2D-LC-MS/MS-based approaches
were used to separate and identify more than 500 proteins
apparently associated with the inner membrane (IM) or
the outer membrane (OM) of this pathogen. Other meth-
odologies were also employed to substantiate the experi-
mental findings. Algorithms such as TMHMM, LipoP and
BOMP and the subcellular localization tool PSORTb [35]
were used to recognize various conserved membrane asso-
ciation motifs. Additional evidence for membrane associ-
ation of proteins can be obtained from co-fractionation
experiments, e.g. size exclusion chromatography (SEC) or
non-denaturing BN-PAGE [36], because membrane pro-
teins are often part of multi-subunit protein complexes.
Thus, we included a protein survey of high M, membrane-
derived SEC fractions. Information gleaned from data in
this report is useful to improve protein annotations in Y.
pestis genome databases and to select targets for functional
and protein-protein interaction studies.

Methods

Materials

Specialty reagents used for subcellular fractionation, 2D
gel and MS were previously described [37]. The detergents
Triton X-100, CHAPS and ASB-14 were purchased from
Calbiochem (LaJolla, CA). RNase and DNase I (each from
bovine pancreas) were from Sigma-Aldrich (St. Louis,
MO). Sequencing grade porcine trypsin and chymotrypsin

Page 2 of 16

(page number not for citation purposes)



Proteome Science 2009, 7:5

were from Promega (Madison, WI) and Roche (Indianap-
olis, IN), respectively.

Bacterial strains and culture conditions

The Y. pestis KIM6+ strain used in this study is an avirulent
derivative of the fully virulent KIM strain, which was cured
of the pCD1 plasmid. The chromosomal pgm locus and
the plasmids pMT1 and pPCP1 are present in KIM6+ [38].
Cells were maintained and grown in chemically defined
media (PMH2) as previously described [39]. Aliquots of
KIM6+ stock solutions in 33 mM K,HPO, (pH 7.5) were
used to inoculate 5-10 mL pre-cultures in PMH?2. Pre-cul-
tures were transferred to shaker flasks with 0.25-1.0 L
PMH?2 and grown overnight, at 26 and 37°C, to an ODy,
of 1.9-2.4. To limit phosphate (P;) concentrations during
cell growth, 0.12 mM K,HPO, (1/20t of the normal con-
centration) was added to PMH2. Cells in P;-deficient
media were grown overnight to an OD, of 1.0-1.4. Bac-
terial cells were harvested by centrifugation at 8,000 x g
for 15 min at 4°C and washed with a 30-fold volume of
33 mM K,HPO, (pH 7.5).

Preparation of Y. pestis cell lysates and subcellular
fractionations

Whole cell lysate (WCL) supernatants were only prepared
from cells grown to stationary phase at 26°C. Cells were
resuspended in 25 mM Tris-OAc (pH 7.8), 5 mM EDTA,
150 ug/ml lysozyme, 2 mM PMSF, 0.05% Triton X-100
and 1 mM benzamidine. After incubation for 30 min at
20°C and intermittent vortexing, the cell lysate was centri-
fuged at 208,000 x g for 90 min at 4 °C. The pellet was dis-
carded, while the supernatant was recovered and
concentrated to ca. 2-5 mg/mL protein for analysis in 2D
gels. To perform subcellular fractionation experiments, a
lysozyme/EDTA  spheroplasting method previously
described [37,40] was applied. Periplasmic supernatant
(PPS) fractions were exchanged into buffer A (25 mM
NaHCO;, pH 7.8, 1 mM EDTA and 1 mM benzamidine)
and concentrated in Ultrafree-4 filter units (NMWL
10,000; Fisher Scientific) to ca. 2-5 mg/mL protein for
analysis in 2D gels. Diluted protein fractions described in
the following paragraphs were concentrated accordingly,
unless otherwise stated.

Spheroplast pellets were subjected to lysis in an ice-cold
solution of 0.25 M sucrose, 10 mM Tris-OAc (pH 7.8), 5
mM EDTA, 0.2 mM DTT, and protease inhibitors (1 mM
benzamidine, 10 xg/ml leupeptin, 5 ug/ml pepstatin, 10
ug/ml N -p-Tosyl-L-arginine methyl ester and 2 mM
PMSF), using ca. 7-10 mL/g wet cell pellet weight.
Homogenized spheroplasts were sonicated on ice for 3
min in 10 sec on/off cycles at amplitude 30 (Branson son-
icator), followed by incubation with 10 mM MgCl,,
DNase I (10 pg/ml) and RNase (10 pg/ml) for 1 h at
20°C. Thereafter, 150 mM NaCl was added to the lysate,
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which was left on ice for 30 min and then centrifuged at
208,000 x g for 1 h at 4°C. The cytoplasmic supernatant
(CYP) fraction was concentrated to ca. 2-5 mg/mL protein
for analysis in 2D gels. The pellet contained crude mem-
branes and could be frozen at -80°C. To isolate OM frac-
tions, the unfrozen membrane pellet was resuspended in
15% sucrose, 50 mM Tris-OAc, 2 mM Na-EDTA and
0.05% Triton X-100. Discontinuous sucrose density gradi-
ent centrifugation for 17 h was performed as previously
described [41]. The OM-enriched fraction banded as a
white layer with a density of ca. 1.25 g/mL and, after dilu-
tion with 50 mM Tris-OAc and 2 mM EDTA, was centri-
fuged again at 208,000 x g for 2 h.

Stepwise extraction of proteins from Y. pestis membrane
preparations

Crude membrane pellets were resuspended in a ca. 15-
fold volume of 10 mM Tris-HCI (pH 7.8), 5 mM EDTA,
0.2 mM DTT, 10 pg/ml Leupeptin, 5 ug/ml Pepstatin, 10
pg/ml N -p-Tosyl-L-arginine methyl ester and 2 mM
PMSF. Sodium bromide was added at a 2.5 M concentra-
tion. The suspension was stirred for 1 h at 20°C and cen-
trifuged at 50,000 x g for 1 h at 4°C. The high salt-
extracted supernatant (hs-MBR) fraction was desalted and
concentrated to ca. 1-2 mg/mL protein for analysis in 2D
gels. The remaining membrane pellet was re-homoge-
nized in ice-cold 0.18 M Na,CO; (pH 11.3), 50 mM DTT,
1 mM CaCl,, 1 mM MgCl, and 1 mM MnCl. The suspen-
sion was stirred for 1 h at 4°C, followed by centrifugation
at 50,000 x g for 1 h at 4°C. The supernatant of the high
pH extraction step (hpH-MBR fraction) was concentrated
to ca. 1-2 mg/mL protein. The insoluble membrane pellet
was frozen at -80°C or immediately resuspended in 8 M
urea, 2 M thiourea, 1% (w/v) ASB-14, 2 mM tributylphos-
phine and 0.5% (v/v) Bio-Lyte® pH 3-10 carrier
ampholytes. Protein solubilization for 30 min at 20°C in
the denaturing buffer was followed by centrifugation at
16,100 x g for 15 min. The residual pellet was discarded.
The protein concentration of the urea/detergent-extracted
supernatant (usb-MBR) fraction was estimated from the
Coomassie brilliant blue G-250 (CBB)-staining intensity
in SDS-PAGE gels. Finally, to extract proteins peripherally
associated with the OM/cell surface, stationary phase
KIM6+ cells were resuspended in 0.25 M sucrose, 25 mM
Tris-OAc (pH 7.8), 2 mM PMSF and 1 M NacCl (10 mL/g
cell weight) and agitated gently for 30 min. Following cen-
trifugation at 8,000 x g for 15 min, the high salt-extracted
cell surface supernatant (hs-CS) fraction was recovered
and filtered through a 0.45 um pore size filter. Extracted
proteins were concentrated in buffer A and lyophilized
prior to analysis in 2D gels.

Size exclusion chromatography
Triton X-100 (0.075% w/v) was added to a 1 mg protein
aliquot of the hpH-MBR fraction derived from stationary
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phase Y. pestis cells grown at 26 °C. The solubilized sample
(ca. 1 mL) was applied to a Superdex™ 200 column (1.6 x
100 cm; GE Healthcare) equilibrated in 100 mM
Na,HPO, (pH 7.5), 150 mM NaCl, 2 mM BAM, 2 mM
EDTA and 0.05% (w/v) Triton X-100. At a flow rate of
0.75 mL/min, proteins were fractionated at 20°C. To cal-
ibrate the column (elution time vs. M,), 0.5 mg of a high
M, protein standard mix including thyreoglobulin (670
kDa), bovine IgG (158 kDa), ovalbumin (45 kDa),
myoglobin (17 kDa) and vitamin B12 (1.4 kDa) was frac-
tionated via SEC. Protein elutions were monitored at a
wavelength of A,4,. Fractions were collected from the void
volume (~500 kDa) to an elution time corresponding to a
protein M, of ca. 20 kDa, concentrated in buffer A and
lyophilized for analysis in 2D gels.

Protein analysis in 2D gels

Protein concentrations in soluble fractions were measured
using the BCA assay (Sigma-Alrich, St. Louis, MO). Sam-
ples containing 75-150 g protein were diluted with 8 M
urea, 2 M thiourea, 4% (w/v) CHAPS, 18 mM DTT and
0.5% (v/v) Bio-Lyte® pH 3-10 carrier ampholytes to 400-
450 pl for IPG gel rehydration loading or 100-150 gL for
IPG gel anodic cup loading. The usb-MBR fractions
derived from either mixed membranes or OM-enriched
preparations were applied to IPG gels in the aforemen-
tioned denaturing urea/ASB-14 solubilization solution.
Electrophoretic protein separation in 1stdimension 24 cm
IPG strips (pH ranges 4-7 and 3-10) and 2d dimension
SDS-PAGE slab gels (25 x 19.5 x 0.15 cm) as well as gel
staining with the dyes CBB and Sypro® Ruby and gel image
processing into 16-bit TIFF files were carried out as previ-
ously described [42]. Spot positions of 25 cytoplasmic
proteins were used as landmarks for M, and pl calibrations
in 2D gels.

Differential display analysis to assess protein enrichment
in membrane fractions

First, semi-quantitative differential gel display experi-
ments were performed. PPS, CYP, hs-CS, hs-MBR, hpH-
MBR and usb-MBR fractions (two to four gels each) were
subjected to spot matching, which was confirmed by MS
data, and differential spot quantitation. The software used
for 2D gel image analysis was Proteomweaver vs.4.0 (Bio-
Rad, Hercules, CA). The analysis mode included pre-
match normalization, as previously reported [37]. Post-
match normalization was not performed, and P-values
were not determined, because low spot pattern similarity
among the fractions confounded such analysis steps. This
semi-quantitative analysis was comprehensive for 2D gels
(in the pH ranges 4-7 and 7-10) representing PPS, CYP,
hs-MBR, hpH-MBR and usb-MBR fractions of KIM6+ cells
grown to stationary phase at 26°C. Data for a small subset
of proteins much more abundant in equivalent fractions
of cells either grown in P;-limited media at 26°C or to sta-
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tionary phase at 37°C were derived from 2D gels (in the
pH range 4-7) representing these two growth conditions.
The densitometric intensity value of a spot in a given frac-
tion was usually averaged because spots were usually
detected in more than one gel per fraction. This data is
presented in the columns O-R of the Supplemental Table
(Additional File 1). Due to the small number of gels and
lack of biological replicates, coefficients of variation (CVs)
were not determined.

Secondly, a more quantitative differential display experi-
ment affording assessments of the reproducibility of pro-
tein enrichments in distinct subcellular fractions was
performed. All data were derived from 2D gels in the pH
range 4-7, representing CYP, hs-MBR, hpH-MBR and usb-
MBR fractions of KIM6+ cells grown to stationary phase
(in complete PMH2) at 26°C. Here, each subcellular frac-
tion (group) was represented by three separate cell culture
batches and at least six gels per group. For a protein form-
ing a spot train in a given fraction, spot quantities per train
were summed. Geometric means (Xy) and CVs were deter-
mined and are presented in the columns I-L of the Supple-
mental Table. If well-resolved spots were not detected for
a given protein, X and CV values were not obtained. All
of the data were used to calculate enrichment factors of
proteins in membrane fractions, specifically E,,, the ratio
of a protein quantity in all membrane fractions vs. the CYP
fraction, and E;,,, the ratio of a protein quantity in the
hpH-MBR and usb-MBR fractions vs. the hs-MBR fraction
(columns denoted E,, and E},,, Table 1; Additional File 2).
The equations used to calculate these factors were E,, =
(Xn)YNpsmpr X Hrp X Hgp! + (XN)l/thH-MBR X fhrp % Hop ! +
(Xn) N ugb-mpr X Hrp % Hap/ (Xn)Neyp % pirp x pgp? and Epy
= (XN)l/thH-MBR X pirp * pep ™t + (Xn) YN ygb-mpr X Lrp X Hgp”
(X)) YN mBr * L X Uop L, Tespectively, where X is the
geometric mean of a protein quantity, ugp is the average
quantity of gel-loaded protein and g is the average quan-
tity of total protein for a given fraction normalized based
on wet cell pellet weight.

Mass spectrometry analysis

Methods for spot picking and peptide digestion were pre-
viously described [42]. Peptide digests were analyzed
using a MALDI-TOFTOF mass spectrometer (4700 Pro-
teomics Analyzer, Applied Biosystems, Framingham, MA)
and a nano-electrospray LC-MS/MS system (LTQ-IT mass
spectrometer, Thermo-Finnigan, San Jose, CA) equipped
with an Agilent 1100 series solvent delivery system (Agi-
lent, Palo Alto, CA). Peptide separation for LC-MS/MS
analysis was performed using a PicoTip microcapillary
reversed-phase column (BioBasic Cy5, 75 um x 10 cm,
New Objective, Woburn, MA) at a flow rate of 0.35 uL/
min. Technical aspects of the MS analysis were previously
described [42]. MS and MS/MS data were searched against
the latest release of the Y. pestis KIM strain subset of the
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NCBInr database using the Mascot searching engine vs.2.2
(Matrix Science, London, UK). Carbamidomethyl was
invariably selected as a fixed modification. One missed
tryptic cleavage was allowed. MALDI search parameters
(+1 ions) included mass error tolerances of + 100 ppm for
peptide ions and + 0.2 Da for fragment ions. LTQ-IT
search parameters (+1, +2 and +3 ions) included mass
error tolerances of + 1.4 Da for peptide ions and + 0.5 Da
for fragment ions. Protein identifications were accepted as
significant when a Mascot protein score >75 and at least
one peptide e-value <0.1 were reported. To accept a Mas-
cot score between 50 and 75, a protein had to be identi-
fied at least three times with at least one peptide e-value
<0.1 each. Using the automatic decoy database search
option in Mascot with a default significance threshold of
0.05, the peptide false discovery rate was ca. 6%. Since at
least two peptides were identified in ca. 95% of all LC-MS/
MS analyses per spot, the final protein false discovery rate
was estimated to be lower than 0.3%.

Membrane protein profiling by 2D-LC-MSIMS

To analyze proteins via 2D-LC-MS/MS, a recently
described method [34] was employed. Briefly, ca. 200 ug
of a crude membrane pellet isolated from Y. pestis KIM6+
cells grown at 26°C in P;-rich media was predigested with
trypsin (20:1 w/w) in 25 mM NH,HCO; (pH 8.5) over-
night at 37°C. The sample was pelleted by centrifugation
at 100,000 x g, washed twice with an ice-cold 0.1 M
Na,CO, solution and water, and resuspended in metha-
nol/25 mM NH,HCO;, pH 8.5 (60:40, v/v). After sonica-
tion at an amplitude 5 for 10 min and overnight digestion
with trypsin/chymotrypsin (1:100 each, w/w), the sample
was centrifuged at 100,000 x g, lyophilized and adjusted
with AcOH to pH 3.0 for peptide separation via strong cat-
ion exchange chromatography (SCX). A 50 x 4.6 mm
Polysulfoethyl A column (PolyLC Inc, Columbia, MD)
was equilibrated with 5 mM KH,PO, (pH 3) in water/
AcCN (75:25). At a flow rate of 1 ml/min, a linear salt gra-
dient elution to 0.35 mM KCl with 5 mM KH,PO, (pH 3)
in water/AcCN (75:25) was performed. More than 20 frac-
tions were collected, lyophilized, re-suspended in 5% for-
mic acid and applied to LC-MS/MS on the LTQ system, as
described in the previous paragraph. A full range mass-
scan (100-1500 m/z) was followed by top five data-
dependent MS/MS scans. The digestion step resulted in
amino acid cleavages C-terminal to K, R, W, Y, F and L res-
idues. Criteria for protein identification using Mascot
included two missed cleavages [34]. A minimum of two
MS/MS peptide identifications per protein were required.
When Mascot scores were between 50 and 75, a protein
had to be identified in at least two separate analyses, with
at least one peptide e-value <0.1 in each case. To deter-
mine the false positive rate, a search with a decoy database
composed of a shuffled Y. pestis KIM sequence database
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was performed. Using these criteria, the false positive rate
was estimated to be lower than 2%.

Bioinformatic analysis tools

To predict motifs for lipoproteins, TMDs and export sig-
nal sequences in Y. pestis proteins, queries for the entire Y.
pestis KIM strain database http://cmr.jevi.org/tigr-scripts
CMR/CmrHomePage.cgi[43] were performed. The algo-
rithms used were LipoP, SignalP, TatP and TMHMM,, all of
which were accessed at http://www.cbs.dtu.dk[44]. In sil-
ico predictions of subcellular localizations were obtained
from PSORTD vs.2.0 searches [35]. The algorithm BOMP
http://www.bioinfo.no/tools/bomp[45] was used to
search for f-barrel OM protein motifs. To assign proteins
to membrane transporter categories, the Y. pestis KIM
strain subset of the database TransportDB was queried
http://www.membranetransport.org[46].

Results

Experimental approaches to assess protein association
with Y. pestis membranes

As illustrated in Figure 1, six subcellular fractions were iso-
lated from Y. pestis KIM6+ cell lysates. In addition to a cell
surface (hs-CS) fraction, a periplasmic (PPS) fraction was
recovered. Spheroplasts were lysed, and soluble proteins
of the cytoplasm (CYP fraction) were isolated. Crude
membrane pellets were extracted sequentially, first with
2.5 M NaBr (hs-MBR fraction), then with Na,CO; at pH
11.3 (hpH-MBR fraction), and finally with 8 M urea, 2 M
thiourea and 1% ASB-14 (usb-MBR fraction). Fractions
derived from cells grown to stationary phase at 26° C were
subjected to extensive analyses via differential 2D gel dis-

IM NaCl extraction -
Cell pellet m——p  hs-CS

(cell surface proteins)

Spheroplasts

Cell lysis
Iebilicied S

Sonication PPS (periplasmic proteins)

Lysate
High speed :'m.'riﬁagmiorL CYP

(cytoplasmic proteins)

Crude membranes
L2sMNaBr

Salt-extracted membranes
| 02508 NaxCOs, pii 12

hs-MBR

(proteins solubilized from

membranes with high salt)

hpH-MBR

¥ (proteins solubilized from
membranes at high pH)

High pH-extracted membranes

SM urea, 2 M thiourea, o USb-MBR

1% amidosulfobetaine-14 (detergent/urea-solubilzed

2 proteins from membranes)

-
>

Insoluble membrane pellet

Figure |
Subcellular fractionation and stepwise protein
extraction from Y. pestis KIMé+ membrane fractions.
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play, while the corresponding analyses for two other
growth conditions (P;-limited media at 26°C; stationary
phase at 37°C) were limited to a few proteins specifically
expressed under such growth conditions. Detailed
descriptions for the analysis modes are provided in the
Methods. The inclusion of CYP and PPS fractions allowed
us to discriminate between true peripheral membrane
proteins and contamination of membrane fractions with
'non-specifically binding' soluble proteins or protein
aggregates. Non-specific binding of proteins to mem-
branes is caused by physicochemical changes in cells,
resulting in partial protein denaturation and exposure of
hydrophobic surfaces normally hidden in the proteins'
interior. Abnormal protein aggregates form in vivo and,
more extensively and especially after cell lysis, in vitro;
these aggregates co-fractionate with membranes [47].

Due to the above-mentioned causes, overlapping protein
identifications among CYP, PPS and all three membrane
fractions were not unexpected. Less than 50% of more
than 600 distinct proteins were observed only in the
membrane fractions. As shown in the Venn diagram of
Figure 2A, protein overlaps among the membrane frac-
tions were also extensive and indicative of a gradual pro-
tein extraction process from membranes. Indeed, quite a
few relatively abundant proteins known to bind to mem-
branes in different modes (e.g. OmpA, ManX and ProV)
were detected in hs-MBR, hpH-MBR and usb-MBR frac-
tions. Therefore, comparative protein abundance meas-
urements in 2D gels were more insightful than the
'observation' or 'non-observation' of a protein in a given

usb-MBR hs-MBR

2D-LC-MS/MS

KIM6+: 665
KIM6+: 4436

Figure 2

Venn diagrams of proteins identified from 2D gels
derived from three different membrane fractions (A)
and proteins with more than one transmembrane
domain (TMD) identified in 2D gel vs. 2D-LC-MS/MS
experiments (B). Acronyms are described in the flowchart
of Figure 1. 2D gel-based protein identifications included sev-
eral Y. pestis growth conditions, while those identified from
2D-LC-MS/MS efforts were limited to stationary phase cell
growth at 26°C. The analysis of TMDs is based on bioinfor-
matic motif predictions by the algorithm TMHMM.
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subcellular fraction. Such data were available for 421 pro-
teins using semi-quantitative differential 2D spot abun-
dance measurements (columns O-R, Additional File 1)
and for 280 of 421 proteins using quantitative measure-
ments including biological replicates and CVs (columns I-
L, Additional File 1). The latter dataset allowed us to assess
biological and experimental variability. For a subset of
proteins, enrichment factors in membrane fractions (E,,
and E|,, values, Additional Files 1 and 2) were calculated.
The combination of this data served to establish mem-
brane protein categories and was compared to the predic-
tion of bioinformatic motifs indicative of membrane
association of proteins (Additional Files 1 and 2). Mem-
brane proteins with conserved motifs in Gram-negative
bacteria comprise integral IM proteins with a-helical
TMDs, integral OM proteins with fbarrel structures and
lipid-anchored peripheral membrane proteins. Generally
conserved structural motifs are not found among other
peripheral membrane proteins. Interestingly, proteins
thought to bind non-covalently to the periphery of mem-
branes showed considerable variation in their quantita-
tive distribution among membrane fractions which
resulted in their assignments to three different membrane
protein groups (i-M, p-M and p-M* categories, Additional
File 2). More than 300 membrane-associated proteins
listed in that Table are displayed in the Additional Files 3,
4,5,6,7,8,9 and 10 with equivalent spot numbers.

Peripheral membrane proteins with moderate to high
solubility in aqueous solutions

Proteins enriched in hs-MBR and hpH-MBR fractions, but
also detected in soluble CYP or PPS fractions, comprised
99 entries in Additional File 2 (p-M category). In quanti-
tative terms, E,, and E,,, values fell into the ranges of 0.05
to 1.2 and 0.3 to 4, respectively. Their quantitative distri-
bution among membrane fractions is compatible with the
general definition of peripheral membrane proteins.
These proteins appeared to associate with membranes
temporarily, did not require detergents for solubilization
and were also present in cytoplasmic and/or periplasmic
fractions. High salt and high pH membrane extraction
conditions favor the solubilization of proteins bound to
membranes electrostatically. Judged from their abun-
dance in CYP vs. PPS fractions and the presence of export
signal sequences, most of these proteins should localize at
the cytoplasmic surface of the IM. Many of these proteins
are also predicted to be peripheral membrane compo-
nents of multi-subunit complexes and associate with
other integral membrane proteins. Examples are NuoC
(#71), LpdA (#92), ManX (#101), AdhE (#99), AtpD
(#110), AtpA (#127) and GuaB (#164). All protein num-
bers referenced here and in the following two sections per-
tain to Figure 3, unless otherwise stated. Such protein
complexes, often characterized in E. coli, include ATP syn-
thase (AtpA and AtpD), NADH dehydrogenase (NuoC),
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A comparison of spot profiles in 2D gels derived from a Y. pestis KIMé+ whole cell lysate and five subcellular
fractions. Acronyms are described in the flowchart of Figure |. Cells were grown to stationary phase at 26°C. First dimension
IEF separations were performed in the pH range from 4 to 7. The M, range of second dimension SDS-PAGE separations was
10-200 kDa. Gel image analysis details are provided in the text. Spot identifications by MS confirmed appropriate spot match-
ing. Spot numbers are equivalent to those denoted in Table I; Additional File 2.
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pyruvate dehydrogenase (LpdA) and a mannose-specific
phosphotransferase system (ManX).

Orthologs of proteins known to associate peripherally
with membranes in E. coli are the phage shock protein
PspA, the sigma factor RpoE and the cell division protein
FtsZ (#45). A characterized peripherally OM/cell surface-
associated protein of Y. pestis is the Caf1 antigen. This pro-
tein is expressed only at 37°C and was highly enriched in
the hs-CS fraction of Y. pestis cells grown at 37°C (#29;
Additional File 3). The protease DegQ and the catalase
KatY were enriched in hs-MBR and hpH-MBR fractions
(#113 and #120, respectively), and even more abundant
in the hs-MBR fraction of Y. pestis cells grown at 37°C
(Additional File 4). Both proteins are involved in
responses to cellular stress, supporting the notion that
peripheral membrane association of proteins is influ-
enced by environmental factors such as temperature. Both
proteins have export signal sequences and were profiled in
PPS fractions, suggesting attachment to the IM or OM in
the periplasm. An uncharacterized protein particularly
enriched in the hpH-MBR fraction was the probable N-
acetylmuramoyl-L-alanine amidase y1845 (#205).

The assignment of 28 proteins to the membrane periphery
of the IM or OM was more tentative (p-M* category, Addi-
tional File 2). While consistently observed in at least two
membrane fractions, similar to proteins assigned to the p-
M category, these proteins were more abundant in CYP or
PPS fractions. In quantitative terms, E,, and E,,, values fell
into the ranges of 0.01 to 0.07 and 0.3 to 4, respectively.
Examples are AhpC (#93), TufB (#108), GroEL (#132)
and the virulence factor Ymt (#158). Some of these pro-
teins may associate with membranes in the form of phos-
pholipid-protein microdomains, possibly under thermal
or oxidative stress conditions (e.g. AhpC, GroEL, DnakK,
HtrA and Lon). The elongation factor Tu (TufB) report-
edly has two functions in rod-shaped bacteria, as an
enzyme in ribosomal protein biosynthesis and as a proto-
filament-forming protein of the cytoskeleton. The
cytoskeleton is physically associated with the cytoplasmic
surface of the IM, a characteristic that could explain why
TufB was consistently detected in all three membrane frac-
tions. In support of this, three other cytoskeleton-associ-
ated proteins (MreB, MinD and FtsZ) were enriched in
membrane fractions. Ymt, a phospholipase D, was
reported to be present intra- and extracellularly in the Y.
pestis flea environment [14]. Our data indicate that Ymt
was released in moderate quantities from cells at 26°C in
vitro (#158, hs-CS fraction) and present in all other sub-
cellular fractions. This virulence factor may transiently
reside in membranes during a protein export process yet
to be investigated. In summary, proteins in the p-M* cat-
egory are compatible with the general definition of
peripheral membrane proteins, but relatively low enrich-
ment levels in membrane fractions resulted in lower con-
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fidence for this subcellular protein designation. Most
proteins assigned to this category are not known to partic-
ipate in multi-subunit membrane protein complexes.

Cytoplasmic and ribosomal membrane-contaminating
proteins

Eighty proteins were frequently profiled in all three mem-
brane fractions, but in much lower quantitative ratios
compared to the CYP fraction (E,, values <0.04) and the
PPS fraction, and not with the same level of reproducibil-
ity as proteins sorted into the p-M and p-M* categories.
Examples are TktA (#162), CysK (#178), Fba (#179),
GapA (#191) and Tpx (#269). Although clear evidence is
missing, we assume that protein denaturation and aggre-
gation in cell lysates caused unspecific binding of these
proteins to membranes and co-fractionation of protein
aggregates with membranes. The fact that this group of
proteins includes numerous highly abundant cytoplasmic
proteins, e.g. those involved in carbon metabolism, sup-
ports a positive relationship between protein abundance
and membrane contamination levels. Several ribosomal
proteins (e.g., RplL, #169 and Rpll, #176, RpsA, #103 and
RpsF, #173) featured E,, values similar to those of true
peripheral membrane proteins. While strictly experimen-
tal criteria place these proteins in the p-M* category, they
were designated here as membrane contaminants. Ribos-
omes are organelle-like structures that may co-fractionate
with membranes via centrifugation following Y. pestis cell
lysis. A few ribosomal and soluble cytoplasmic contami-
nant proteins are included in Additional File 2, more of
them in Additional File 1; the protein category is termed
C/R.

Integral membrane proteins and peripheral membrane
proteins with low solubility in aqueous solutions

Proteins enriched in hpH-MBR and usb-MBR fractions
were initially designated integral membrane proteins. E,,
values were often not available because these proteins
were not detected in CYP fractions. E,,, values were calcu-
ated occasionally, ranging from 4 to 70. These proteins
comprise 220 entries in Additional File 2 (categories i-M
and i-OM). Search results with the algorithms TMHMM
and BOMP supported experimental assignments of inte-
gral membrane proteins in many, but not in all cases.
Lipid-anchored proteins, which have a conserved motif
surrounding a cysteine residue that becomes the lipid
anchor following signal peptide cleavage, were also
strongly enriched in hpH-MBR and usb-MBR fractions.
While such lipoproteins favor attachment to the IM and/
or OM via fatty acylation in the periplasmic space, their
topographies resembles those of other peripheral mem-
brane proteins. Examples are Lpp (Braun's lipoprotein in
E. coli), Pal and AcrA (#204, #21 and #36, respectively;
Figure 3E). Lpp, not recognized as an ORF in the Y. pestis
KIM genome, and Pal tether the peptidoglycan to the OM
of Gram-negative bacteria. E. coli AcrA is a protein
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anchored in the IM and part of the multidrug efflux sys-
tem AcrAB-TolC. Nearly 40 proteins with conserved glyc-
erolipid acylation sites were identified and assigned to the
i-M or i-OM categories. Spot resolution of these lipopro-
teins in 2D gels was nearly as poor as that of proteins with
two or more TMDs.

Surprisingly, 42% of the proteins listed in the i-M category
lacked a predicted IM or OM integration motif, even
though they were highly enriched in hpH-MBR and usb-
MBR fractions. Of note, a highly conserved protein family
structurally characterized in Gram-negative bacteria was
well represented among these proteins: ATP-binding sub-
units of ABC transporters. These proteins are often
described as dimeric peripheral IM subunits of ABC trans-
porters that also harbor two cognate, integral membrane
permease subunits. The solubilization traits of ATP-bind-
ing subunits of ABC transporters are not in good agree-
ment with the general definition of peripheral membrane
proteins. They do not appear to be very water-soluble,
considering their absence in cytoplasmic fractions and
low extraction levels in hs-MBR fractions. Their enrich-
ment in hpH-MBR and usb-MBR fractions suggests per-
manent membrane attachment. Abundant ATP-binding
subunits were ProV (#67), involved in amino acid import,
MalK (#209), involved in sugar import and YfeB (#272),
involved in iron/manganese import. Twenty-five addi-
tional (putative) ATP-binding subunits were identified,
totaling 28% of all of these subunits of ABC transporters
predicted by the database TransportDB for the Y. pestis
KIM genome. Many other proteins devoid of conserved
motifs indicative of IM or OM integration showed similar
enrichment characteristics in membrane-extracted frac-
tions and, in cases where E. coli orthologs were character-
ized, also appeared to participate in membrane protein
complexes. Examples are FtsA, MinE and MinD (#252),
all of which are peripheral membrane components of the
cell division apparatus. Many of the aforementioned pro-
teins tended to be more enriched in hpH-MBR than in
usb-MBR fractions, indicative of their extractability from
membranes without detergents. In this regard, the pro-
teins met the definition of peripherally membrane-
attached proteins. Like f-barrel OM proteins and water-
soluble peripheral membrane proteins, 2D spots of these
proteins were generally well resolved.

Integral membrane proteins featuring TMDs were of low
abundance in 2D gels and yielded low sequence coverage
by MS. Even proteins part of abundant IM-localized pro-
tein complexes (e.g. the subunit AtpB of ATP synthase)
were not detected as distinct spots, demonstrating the
technical difficulties to resolve these hydrophobic pro-
teins in 2D gels. Fragments of TMD proteins profiled in
hpH-MBR and usb-MBR fractions were often detected as
low-abundance spots. Only one protein with several a-
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helical TMDs was clearly visualized in 2D gel images, the
metal ion-transporting ATPase ZntA (#266). Based on the
number of proteins with two or more predicted TMDs (>
660 ORFs in the Y. pestis KIM genome), less than 5% (32
entries, Additional File 2) were profiled in 2D gel-based
experiments. Our methodology was ineffective to survey
integral IM proteins comprehensively. Finally, the detec-
tion of tryptic peptides in proximity to the proteins' N-ter-
mini was indicative of IM localizations as OM proteins
lose their N-terminal signal sequences during export into
the cell envelope. Such peptides were observed for forty i-
M category proteins (Additional File 1).

Beta-barrel OM proteins resolved well in 2D gels and were
partially extracted in hpH-MBR fractions, but were more
enriched in usb-MBR fractions. The algorithm BOMP pre-
dicted fB-barrel structures for 38 proteins associated with i-
M/i-OM categories (Additional File 1). Orthologs of many
characterized E. coli S-barrel proteins were identified, sup-
porting the notion that the Y. pestis OM proteome survey
was comprehensive. This included OmpA (#16), OmpF
(#17), OmpC (#19), YaeT (#22) and TolC (#26). OM pro-
tein profiling is of interest because several of these pro-
teins have been linked to Y. pestis virulence in humans, e.g.
the TonB-dependent receptor for yersiniabactin and pes-
ticin (#14), the protease Pla (#31) and the adhesion pro-
tein Ail (#8). The putative porin y2983 deserves re-
annotation in the Y. pestis database as a phosphate- or
anion-specific OM porin. It was expressed only in P;-
starved cells at 26°C and strongly enriched in the usb-
MBR fraction (spot #20; Additional Files 6 and 7). A func-
tional role in P;import was supported by the presence of
a conserved PHO box upstream of the y2983 gene (posi-
tion -121 to -104; TTGTCATAAATATATCAC). The PHO
box is the binding site of PhoB/R, a two-component regu-
lator for P; acquisition in E. coli.

Specific localization assignments were made for OM pro-
teins (i-OM category). In an experiment repeated three
times, OM fractions were isolated via sucrose density gra-
dient centrifugation and extracted. Protein spots more
abundant in OM-enriched usb-MBR fractions compared
to mixed membrane usb-MBR fractions were identified by
MS. Such protein spots collapsed into 31 distinct gene
products and amounted to ca. 90% of the volumetric
intensity of all spots in the respective 2D gel (n = 3). They
were designated integral OM proteins and are displayed
and annotated in Figure 4. Six structural types of S-barrel
OM proteins were represented: 1. small, monomeric and
peptidoglycan-linked (e.g. OmpA); 2. small, monomeric
and cell surface-associated (e.g. Ail, OmpX); 3. dimeric
and with enzymatic activity (e.g. P1dA); 4. trimeric, gen-
eral diffusion porins (e.g. OmpC, OmpF); 5. trimeric, sub-
strate-specific porins (e.g. FadlL, LamB); 6. TonB-
dependent receptors (e.g. Psn, HmuR).
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Protein display for an OM-enriched sucrose density gradient fraction derived from stationary phase Y. pestis
cells grown at 26°C. A crude membrane fraction was layered on top of a 3-step sucrose density gradient (15%, 54% and 70%
w/V sucrose) and centrifuged at 105,000 x g for 17 h at 5°C. A whitish OM-enriched band was isolated, washed with a 2.5 M
NaBr solution and extracted with 8 M urea/2 M thiourea/1% ASB-14 (usb-MBR fraction). Circa 120 ug of the protein extract
was analyzed in a 2D gel as described in the legend of Figure 3. OM proteins are denoted with their short names or gene locus

tags.

High M. membrane protein complexes

To address the concern that cell lysis followed by protein
aggregation severely interfered with reliable assignments
of membrane-associated proteins, particularly those local-
ized in the membrane periphery, our intention was to
show that partially intact membrane protein complexes
could be isolated from membrane fractions of cell lysates
in high M, ranges. This would be indicative of native pro-
tein states. The hpH-MBR fraction derived from Y. pestis
KIM6+ cells grown at 26°C was isolated in two experi-
mental replicates. Proteins were maintained in a soluble
state with 0.075% Triton X-100 and SEC-fractionated.
Five fractions each representing a different M, range (500
to 20 kDa) revealed different protein patterns in 2D gels.
High M, fractions in the range above 250 kDa were ana-
lyzed by MS. Circa 50 orthologs of proteins known to par-

ticipate in multi-subunit membrane complexes in E. coli
were indeed profiled in the high M, range. Proteins are
listed in the 'MPC' column of Additional File 2. Proteins
are displayed in Figure 5 with equivalent spot numbers.
YaeT (#22) and NIpB (#56) are part of the OM protein
assembly complex. LamB (#1) is the trimeric OM maltop-
orin. IM protein complexes implicated in energy metabo-
lism and conservation are the F;-ATP synthase sub-
complex as, S5, 6, v, € (o, fand € subunits; spots #127,
#110 and #1009, respectively), pyruvate dehydrogenase
(AceE, AceF and LpdA; spots #134, #91 and #92, respec-
tively), NADH dehydrogenase (NuoC and NuoG; spots
#71 and #83, respectively) and the dimeric alcohol dehy-
drogenase AdhE (#99). ATP-binding subunits of ABC
transporters (ProV, #67; MalK, #209; YfeB, #272) and pro-
teins linked to the cytoskeletal network and cell division
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Protein spot display for a high M, fraction derived from alkaline membrane extraction of Y. pestis KIMé+ cells
grown to stationary phase at 26°C. Proteins isolated from the hpH-MBR fraction were loaded onto a Superdex 200 col-
umn (1.6 x 100 cm), separated in the presence of 0.05% Triton X-100, concentrated to ca. | mg/mL and lyophilized for 2D gel
analysis. The fraction displayed here corresponded to a native protein M, range from ca. 250 to 450 kDa. Spot numbers are

equivalent to those denoted in Additional File 2.

(FtsA, #247; FtsZ, #45; MreB, #61; EF-Tu, #108) were also
identified. Among the proteins not characterized to date
as components of membrane-associated complexes in Y.
pestis were putative type VI secretion system subunits
(CIpB, #78, y3673, #172; y3674, #89; y3675, #211) and
a putative phospholipid-binding protein (y2104, #207).
While we only infer the association of aforementioned
proteins with distinct membrane protein complexes, this
experiment was in support of the notion that many pro-
teins assigned to the membrane periphery were indeed
enriched in high M, fractions, while proteins designated
membrane contaminants were not.

Proteins with several transmembrane domains identified
via 2D-LC-MSIMS

In order to profile more Y. pestis proteins featuring a-hel-
ical TMDs, we resorted to a 2D-LC-MS/MS approach
(experiment performed in triplicate). Following extensive
wash and pre-digestion steps to reduce the quantities of
soluble contaminant and peripheral membrane proteins,
Y. pestis membrane fractions derived from cells cultured at
26°C were subjected to treatment with trypsin/chymot-
rypsin, and the resulting peptide mixtures were analyzed.
Circa 55% of the proteins designated as membrane-asso-
ciated via 2D gel profiling were also identified by 2D-LC-
MS/MS. Analysis with the TMHMM algorithm revealed
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that, with an overlap of 22 proteins, 32 and 116 proteins
with more than one TMD were identified via the 2D gel
and 2D-LC-MS/MS methodologies, respectively (Venn
diagram, Figure 2B). The latter methodology clearly
improved our ability to detect integral IM proteins. Mem-
brane transporters were the dominant functional protein
group found in the 2D-LC-MS/MS dataset. According to
the TransportDB database, 25 transporter families resid-
ing in the IM of Y. pestis KIM were represented. This
included 14 ABC transporter permeases, a variety of ion
channels, two sugar-specific IM subunits of phospho-
transferase systems and various secondary transporters,
such as major facilitator superfamily (MSF) and amino
acid-polyamine organocation (APC) transporters. Pro-
teins only identified by 2D-LC-MS/MS and showing evi-
dence for membrane association based on PSORTb and
TMHMM searches are listed in part II of Additional File 2.
Numerous ribosomal proteins were also retained in the
membrane fraction and profiled by 2D-LC-MS/MS raising
further questions about natural membrane association vs.
unnatural co-aggregation of ribosomes with membranes
in cell lysates.

Discussion

The cell envelope of Gram-negative bacteria is composed
of the IM, the periplasmic space, the peptidoglycan mesh-
work and the OM [48]. In an extension of a recent study
of the periplasmic proteome of a derivative of the Y. pestis
KIM strain [37], the membrane proteome of this strain
was profiled here. We used a differential 2D gel display
approach comparing periplasmic, cytoplasmic and
sequentially extracted membrane fractions to discern var-
ious types of membrane-associated proteins, primarily
using Y. pestis cells grown to stationary phase at 26°C, the
ambient temperature of the flea vector. In order to
increase the number of proteins with hydrophobic TMDs,
a 2D-LC-MS/MS analysis was performed using fractions
specifically enriched in integral membrane proteins.

Peripheral membrane proteins

Peripheral membrane proteins are generally defined as
water-soluble proteins that bind temporarily to mem-
brane surfaces, often to other integral membrane proteins
and often as subunits of membrane protein complexes.
Exceptions are lipoproteins, proteins that are permanently
attached to membranes via glycerolipid acylation. Water-
soluble peripheral membrane proteins can be extracted
from membrane pellets with high salt solutions or at a
high pH. Using such extraction conditions, we identified
nearly 130 proteins, designated here as peripheral mem-
brane proteins with moderate to high solubility in aque-
ous solutions. These proteins were discriminated from
membrane-contaminating cytoplasmic and periplasmic
proteins based on their relative enrichment in membrane
vs. soluble fractions. Membrane contamination with solu-
ble proteins is unavoidable during the subcellular frac-
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tionation of cell lysates, a topic previously referred to in
the results section. Information on characterized protein
orthologs, particularly from E. coli, strongly supported the
assignments of water-soluble peripheral Y. pestis mem-
brane proteins. Among the highly abundant proteins were
subunits of several membrane protein complexes linked
to energy metabolism, e.g. ATP synthase, NADH dehydro-
genase, pyruvate dehydrogenase, 2-oxoglutarate dehydro-
genase, succinate dehydrogenase and fumarate reductase.
Response regulators of two-component regulatory sys-
tems, e.g. PhoB, PhoP and CpxR, were also assigned to this
group of proteins. They seem to bind temporarily to the
cytoplasmic side of the IM where they interact with cog-
nate integral membrane sensory proteins. Two recent
studies focused on the identification of intact E. coli mem-
brane protein complexes. In one study, protein complexes
were dissociated with small alcohols followed by diagonal
electrophoresis [49]. Circa 50% of the identified E. coli
proteins were orthologs to proteins associated with the Y.
pestis membrane periphery in our survey. In the second
study, 2D blue native gels were used to isolate membrane
protein complexes [50], and 58% of the identified E. coli
proteins were orthologs to proteins we assigned to the Y.
pestis membrane periphery. Finally, more than 50 of the Y.
pestis proteins assigned to the membrane periphery,
derived from high pH membrane extracts, fractionated
into high M, fractions (> 250 kDa) via SEC. This data sup-
ported the notion that many peripheral membrane pro-
teins can be recovered from cell lysates as components of
intact or partially intact membrane protein complexes.

In addition to ca. 40 lipoproteins, more than 90 proteins
devoid of conserved membrane integration motifs were
extracted at a high pH and in membrane-denaturing solu-
tions. These proteins were not or barely detected in high
salt-extracted membrane and cytoplasmic fractions, and
were designated peripheral Y. pestis membrane proteins
with low solubility in aqueous solutions. Several
orthologs of such proteins have been described as periph-
eral membrane proteins in the literature, e.g. various ATP-
binding subunits of ABC transporters and the cell division
proteins MinD, MinE and FtsA. There is evidence that
some of these proteins specifically bind to membrane
phospholipids, e.g. MinD [51]. We speculate that, unlike
typical peripheral membrane proteins that bind to inte-
gral membrane proteins via electrostatic interactions and
are water-soluble, proteins with such phospholipid-bind-
ing motifs are more difficult to extract from membanes
and reside only in small quantities in soluble form, for
instance, in the cytoplasm. The structure of monotopic
integral membrane proteins would also explain the low
solubility in high salt membrane extracts, but the exist-
ence of monotopic membrane proteins in bacteria has not
been confirmed. The structures and topographies of sev-
eral bacterial ATP-binding subunits of ABC transporters
have been solved, and there is little evidence for direct
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interactions between them and membrane phospholipids
[52]. The examination of phospholipid-binding motifs in
less water-soluble peripheral membrane proteins is an
interesting research topic.

The concept of temporary membrane association of stress
response and cytoskeletal network-associated proteins is a
research topic also deserving more attention. Heat shock
and oxidative stress response proteins were associated in
this survey with the Y. pestis membrane periphery. These
proteins were generally quite abundant as soluble pro-
teins (e.g. DnaK, HtpG, ClpB, Lon, KatY, DegQ, UspA and
Dps). E. coli orthologs of some of these proteins seem to
be involved in protein aggregate repair and solubilization
[47] and in the restoration of membrane functionality
during cellular stress such as elevated temperatures [53].
Indeed, several of the Y. pestis stress response proteins
were more abundant in membrane fractions of cells
grown at 37°C than at 26°C. Evidence for the interaction
of heat shock proteins with membrane lipid microdo-
mains, also called lipid rafts, is emerging. Such interac-
tions are hypothesized to facilitate extracellular release
and immuno-stimulatory activities of the proteins
[53,54]. Stress response proteins have indeed been identi-
fied as major antigens in various organisms. For a cyto-
plasmic protein, the elongation factor Tu (TufB) was
unusually abundant in all membrane fractions. Its abun-
dance may be relevant in the context of data describing E.
coli TufB as an intracellular protofilament protein, a key
component of the cytoskeleton [55]. Orthologs of other
less abundant membrane-associated Y. pestis proteins
identified in this survey also participate in the assembly of
the E. coli cytoskeletal network, e.g. bacterial tubulin
(FtsZ), bacterial actin (MreB) and the ATPase MinD [56].

Integral membrane proteins and protein complexes of the
M

Use of the 2D-LC-MS/MS strategy resulted in nearly four
times as many identifications of proteins with two or
more a-helical TMDs than proteomic analysis in 2D gels,
accounting for ca. 20% of the bioinformatically predicted
TMD protein subset in the Y. pestis KIM genome. The
majority of the proteins were involved in transport func-
tions. The largest conserved family of IM-localized trans-
porters are ABC transporters. Some 30% of their in silico-
predicted ATP-binding subunits, peripheral membrane
proteins, and 10% of their in silico-predicted permease
subunits, integral membrane proteins, were identified
here. Among these proteins were subunits of three charac-
terized Y. pestis ABC transporters (Yiu, Yfe, Yfu), all of
which are implicated in iron acquisition [19,57]. Cognate
solute-binding proteins for all of the identified ABC trans-
porters were profiled in a recent study of the Y. pestis peri-
plasmic proteome where identical cell growth conditions
were applied [37]. Expression of ABC transporters is typi-
cally induced when cells sense nutrient starvation. Tran-
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scriptional regulation mechanisms pertaining to ABC
transporters are quite complex. It was shown here that Y.
pestis PstB, the ATP-binding subunit of a high affinity
phosphate ABC transporter, was expressed only in P;-
starved cells. The most abundant ABC transporters in sta-
tionary phase Y. pestis cells were MalK and ProV, indica-
tive of intracellular maltose and proline shortages,
respectively. Both proteins were detected in high M, frac-
tions of membrane extracts suggesting at least partially
intact ABC transporter complexes. The two orthologous E.
coli ABC transporters (MalFGK, and ProV,W,) were
recently isolated as intact tetrameric membrane-associ-
ated complexes [50]. The variety of IM-associated ion
channels and small molecule transporters surveyed in the
Y. pestis KIM membrane proteome was remarkable (25
protein families). A smaller subset of IM-associated trans-
porters and ion channels was recently profiled in the Y.
pestis KIM5 strain [24]. Finally, several uncharacterized Y.
pestis proteins were identified in high M, membrane frac-
tions and appeared to be components of multi-subunit
membrane protein complexes. Examples are the proteins
y3674, y3675 and ClpB2, all part of a putative type VI
secretion system which has been linked to pathogenicity
of Vibrio cholerae [58], and the protein y2104, a putative
phospholipid-binding protein whose ortholog YdgA also
formed oligomeric structures in E. coli [50].

OM-associated proteins and protein complexes of the OM
Thirty-one proteins were designated Y. pestis OM proteins
following the isolation and proteomic analysis of OM-
enriched sucrose gradient fractions. A high dynamic range
of protein abundances was observed. Bioinformatic pre-
dictions for S-barrel and lipoprotein motifs suggested OM
localizations for ca. 20 additional proteins, making this
effort the most extensive OM proteome analysis reported
to date for a Gram-negative bacterium. All five proteins
orthologous to components of the E. coli f-barrel OM pro-
tein assembly apparatus [59] were identified here; the
lipoproteins y1356 (YfgL), y0911 (YfiO), NIpB and SmpA
and the fbarrel protein YaeT. Several OM proteins have
functional roles in microbial pathogenesis and are of par-
ticular interest as drug and vaccine targets. Relatively few
Y. pestis OM proteins have been subjected to characteriza-
tion efforts, among them are Pla, Ail, Pal, Lpp and SlyB
[60,61]. Ail is a small g-barrel protein involved in adhe-
sion and serum resistance using in vitro assays [62,63]. Ail
was shown here to be a highy abundant OM protein in
cells grown at 37°C. Additional small f-barrel proteins
whose functional roles are unknown in the flea vector and
mammalian hosts were identified; OmpX, MipA and the
putative phospholipase PIdA. The TonB-dependent OM
receptor Psn was highly abundant in OM surveys at 26
and 37°C and has been implicated in iron/siderophore
import and virulence in mammalian hosts. Other TonB-
dependent OM receptors, nine of which were identified in
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Y. pestis membrane fractions, have not been functionally
characterized to date.

Conclusion

A comprehensive membrane proteome analysis of the
Gram-negative bacterium Y. pestis is presented. More than
450 Y. pestis proteins were sequentially extracted from
membrane fractions, identified by MS and divided into
different membrane protein association categories. Thirty-
one proteins were specifically associated with the OM and
represent interesting targets with respect to potential roles
in the virulence of Y. pestis in the flea and/or the mamma-
lian hosts. Numerous peripheral membrane proteins
appeared to be associated with high Mr protein com-
plexes. This data yields valuable information for the
improvement of membrane protein annotations in Y. pes-
tis genome databases.
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