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Abstract
Background: Little is known regarding the molecular pathways that underlie the process of retinal
development. The purpose of this study was to identify proteins which may be involved in
development of retina. We used a proteomics-based approach to identify proteins that are up- or
down-regulated during the development of the embryo chick retina.

Results: Two-dimensional gel electrophoresis was performed with the retina of embryo chicken,
which was obtained from embryos of day 7 (ED7) and of day 11 (ED11). The protein spots showing
significant differences were selected for identification by MALDI mass spectrometry. Thirteen
proteins were differentially expressed; seven proteins were up-regulated in embryo retina of
chicken at ED 11 and six proteins were down-regulated. Significant proteins were also evaluated in
embryo day 15 (ED15). Some of identified proteins were known to regulate cell proliferation, cell
death, transport, metabolism, organization and extracellular matrix, and others also included novel
proteins.

Conclusion: We identified thirteen proteins which differentially expressed in embryonal retina of
chicken at day 7, as compared to the retina of embryo of day 11. They were various regulatory
proteins for cellular signaling.

Background
Chick retina has been extensively employed as a model of
retinal cell differentiation. In an chick embryo, mitosis of
retinal progenitor cells begins on embryonic day (ED) 3.
A part of them give rise to non-photoreceptor cells and
others to photoreceptors during the interval between ED6
and ED8. Therefore, it is proposed that ED6 to ED8 is suit-
able for experiments aimed at analyzing mechanism of
retinal differentiation. [1]

The first cells generated from retinal progenitor cells are
retinal ganglion cells (RGCs). Several proteins have been
found to affect development of retina. Notch and basic
helix-loop helix protein (bHLH) play a role in neural
determination and differentiation of RGC [2,3]. Another
protein, Brn3 was found to be important for terminal dif-
ferentiation of RGC precursors [4] Neurite outgrowth in
RGCs can be promoted by E-cadherin [5], and RGCs
axons are navigated by Ephrin and Ephrin receptors [6,7].
On the other hand, PaxL had an inhibitory effect on gan-
glion cell development [8]. Overexpression of brain-
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derived neurotrophic factor (BDNF) promoted differenti-
ation of photoreceptor cells via TrkB in early chick retina
[9]. Activin is associated with the differentiation to ama-
crine cells until ED8 and it was reported that overexpres-
sion of follistatin, an activin binding protein and an
inhibitor, cause a decreased in the frequency of amacrine
cells generation during chick retina development [10].
Despite reported findings, the mechanism of retina devel-
opment is not fully understood. Thus, comprehensive
studies are required to describe proteins whose change
during retina development.

Here, we performed proteome profiling of chick retina to
identify proteins that are differentially expressed between
ED7 and ED11 in chick retina. We report thirteen proteins
whose expression is changed in embryonal retina of chick.

Results
Two-dimensional proteome maps of embryo retina of 
chicken
To identify the development-dependent proteins in the
retina, we compared the proteome of ED7 chick retina
with that of ED11. Total lysates of retina samples were
resolved by two-dimensional gel electrophoresis. We
detected an average one thousand protein spots on the

two-dimensional gels after silver staining (Figure 1). We
generated three gels for each experimental condition to
ensure the reliability of the selection of spots with signifi-
cant changes of expression. [See Additional file 1]

A mother gel was constructed using images of three gels of
chick retina by PD-Quest software. The volume of all of
the protein spots was quantitatively analyzed, and the
maximum volume of a single spot was 46,685 arbitary
unit (a.u.). Weak spots, whose volumes in the matched
pair spots were both less than 5000 a.u., were deleted to
avoid the small change of the paired spots. We removed
from analysis spots which showed volume difference of
less than two fold between compared conditions, i.e. ED7
vs ED11. Finally, twenty spots that had increased or
decreased volume in embryo chick retina were selected as
significant spots and MALDI TOF mass spectrometry was
performed to identify the proteins. [see Additional file 2]
Thirteen proteins were identified in selected spots. Fur-
thermore, protein expressions of significant spots were
also evaluated in embryonic day 15 (ED15).

Clustering of identified proteins
Analyses of the identified proteins showed that embry-
onic retinal development is required for the potential of

Photographs of two-dimensional electrophoresis gels with annotation of the spots of identified proteinsFigure 1
Photographs of two-dimensional electrophoresis gels with annotation of the spots of identified proteins. The left image shows 
a silver-stained gel of embryo chick retina at ED7 and the right image is that of embryo chick retina at ED11. The proteins 
spots that increased or decreased in embryo days ED7 to ED11, and that were identified by PMF are shown. Spots S1 through 
S13 represent the annotated spots. The pI gradient of the first dimension electrophoresis is shown on the top of the gels, and 
the migration of molecular mass markers for SDS-PAGE in the second dimension is shown on the side of the gel. Representa-
tive gel images are shown.
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altering different cellular functions (Table 1). We found
that the expression of seven of the thirteen proteins
(54%), S1 through S5, S12, and S13, was increased in
ED11 of embryo chick retina and six (46%), S6 through
S11, were decreased (Table 1). The expression of S1 pro-
tein was undetectable in ED7 of embryo chick retina and
was defined as zero in the PD-Quest-based analyses.
Another twelve proteins, except for S1, were expressed in
both ED7 and ED11 of embryo chick retina.

Fatty acid binding protein-retina (R-FABP) (S1) and
Gamma-aminobutyric-acid (GABA) receptor-A (S11) has
been already identified as a signaling protein and related
to the development of embryonic chick retina. These find-
ings demonstrated that our approach not only detect pre-
viously suggested functional links of retinal development,
but also confirmed the validity of our technique. The
identification of novel proteins opens for the possibility
of novel mechanism on development of the embryo ret-
ina.

In ED15, an expression of flice (S12) in ED15 was unde-
tectable by PD-Quest software analysis.

Discussion
We used the proteomic approach and detected eighteen
proteins that changed their expression in retina ED7 as
compared to ED11. (Table 1) Known functions of some of
the identified proteins suggest that they may be important
for retinal development.

R-FABP (S1) is expressed in the neuritis of ganglion cells,
inner nuclear layer, inner plexiform layer, optic nerve
fiber layer, and non-pigment ciliary epithelium [11] and
supposed as an important component of developmental

program in chick retina [12]. R-FABP includes a binding
site of AP-2, a repressor of R-FABP [13]. R-FABP mRNA is
highly expressed in ED5 of chick retina and that is down-
regulated in ED10 and vanished in ED16 [14]. But, our
study showed that protein expression of R-FABP was up-
regulated in ED11. Therefore, it is speculated that R-FABP
protein is degraded or not translated around ED7, and
that mRNA of R-FABP may be possibly down-regulated as
negative feedback mechanism.

It has been known that Wnt family have an important role
in the development of chick retina. Wnt 13 is required for
the induction and maintenance of extraocular mesen-
chyme [15]. Wnt4 and Wnt5 seem to participate directly
in axon guidance and Frizzled-related protein 1 (SFRP1)
has the ability to guide growth cone movement via Friz-
zled-2 receptor [16]. Wnt9 (S2), that is expressed in
mouse embryo from 9.5 to 17.5 days [17], was identified
as a protein whose expression was up-regulated in ED 11
in this study. Wnt14, homologous gene to Wnt9, was
closely linked to Wnt3 [18] and Wnt3 increase prolifera-
tion of dedifferentiated Muller glia [19]. Wnt2b play a role
in determining the identity of ciliary body and iris derived
from the peripheral optic cup and beta-catenin inhibit ret-
inal progenitor gene expression [20]. The degradation of
beta-catenin is promoted by SMT3A (S3) that is ubiquitin
like protein [21] and identified in this study. Wnt signal-
ing pathway is suppressed by histone deacetylase 1
(HDAC1), and that is required for the switch from prolif-
eration to differentiation in zebrafish retina [22]. The
activity of HDAC1 is regulated by Sin3B (S6) [23] that was
identified as the protein whose expression was decreased
in ED11 in this study. These speculate that Wnt9/14,
Wnt3, SMT3A, and Sin3B may cooperate and play a role
in the development of retina.

Table 1: Differentially expressed proteins identified by proteomics from retinas of ED7, ED11 and ED15 of embryo chick retina.

Theoretical value Experimental value Changes(ratio)
Protein Est'Z Taxonomy Sequence coverage(%) ncbi ID pH Mr (kDa) pH Mr (kDa) ED7:ED7:ED15

S1 Fatty acid-binding protein, retina 2.13 Chick 61 Q05423 5.6 15.02 5.5 15 (-):(+):(+)
S2 Wnt-9 0.98 P. hagfish 37 P28124 11.3 15.06 5.75 10 1:14:4.6
S3 Ubiquitin like protein, SMT3A 0.4 Human 24 P55854 5.3 11.68 7 10 1:9.6:1.2
S4 unnamed protein product 0.66 Mouse 12 BAC32207.1 5.3 80.05 6.75 70 1:2.4:2.3
S5 Alpha enolase 2.38 Chick 35 P51913 6.2 47.63 6.5 100 1:2.2:1.7
S6 Sin3B 0.76 Human 10 AAH05113 6.6 49.62 9 45 2.1:1:0.3
S7 hypothetical protein 1.03 Human 23 CAD38885.1 9.2 26.71 9 35 2.5:1:1.7
S8 unnnamed protein product 0.99 Human 44 BAB14762.1 5.5 29.35 4 20 2.4:1:1.7
S9 unnamed protein product 1.51 Human 43 BAB85061.1 5.4 17.7 4 20 4.2:1:1.6
S10 ZZ type zinc finger containing protein 0.52 C. elegans 15 NP498699.1 4.5 64.85 4.5 30 7.5:1:4.2
S11 GABA receptor-A beta-3 0.61 Chick 12 P19019 9.4 54.76 5 45 2.8:1:4.1
S12 Flice 0.72 Mouse 18 CAA04196.1 5.3 49.35 5 70 1:2.9:(-)
S13 Keratin-9 2.43 Human 36 NP000217.1 5.1 62.2 9 45 1:2.3:4.0

S1 – S13 means ID numbers of spots. Taxonomy category was used for search. Probability, Est'Z, sequence coverage, and theoretical value of pI and 
Mr were obtained from the Pro Found search. The calculation of experimental pI and Mr was based on the migration of the protein in a 2D gel. 
Changes indicate the ED7 chick retinal protein volume ratio compared with that of ED11 and ED15. (-) indicate that protein spots were not 
detected
Page 3 of 6
(page number not for citation purposes)



Proteome Science 2008, 6:3 http://www.proteomesci.com/content/6/1/3
GABA is one of the metabolic substrates forming the met-
abolic cycle of glutamate that is taken in by cells [24].
GABA-B receptors regulate chick retinal calcium waves
occurring before synapse formation in the embryonic
chick retina [25] and calcium entry into cells is important
for the regulation of neurite outgrowth in developing
chick retina from ED6 [26]. GABA-A receptor does not
contribute to calcium wave production [27,28] and our
result showed that GABA receptor-A beta-3 subunit
(GABAR-A beta3) (S11) was down-regulated in ED11. The
immunofluorescence signal detected with specific anti-
bodies against GABAR-A beta3 in the inner plexiform
layer of the developing chick retina [29], and GABAR-A
beta3 was also expressed in the postnatal retina of rabbits
[30,31] and ferrets. [32] GABA-C receptor binds with
ZIP3, which is expressed in the retina, and ZIP3 contains
a ZZ type Zinc finger domain [33]. ZZ type zinc finger con-
taining protein (S10) regulates hypertensive to red and
blue 1 (HRB1) in the photomorphogenic development
[34]. Thus, GABA receptors and ZZ type zinc finger con-
taining protein may be possibly associated with the syn-
aptic formation of retina.

Flice (S12), also called caspase-8, was expressed in axot-
omized retinal ganglion cells (RGCs) [35] and flice is acti-
vated in 7-keratocholesterol-induced apoptosis in R28,
retinal precursor cells [36]. Flice also control the death or
survival of RGCs in a rat model of choronic glaucoma
[37]. We found that flice was expressed in the develop-
mental retina of chicken and up-regulated in ED11 and
disappeared in ED15. These suspect that flice have a role
in the decision of programmed death of RGCs during the
retinal development.

Alpha-enolase (S5) was identified and up-regulated in
ED11. It was reported that alpha-enolase was an impor-
tant crystalline in the chicken lens [38], but the function
of alpha-enolase for the retinal development is unkown.
Among unnamed proteins, S4 (BAC32207) coded kinesin
superfamily protein 20B [39]. Kinesines are microtubule-
dependent motor proteins that are responsible for the dis-
tribution of various organs. [40] Kinesine family 2 (KIF2)
localized in retina and retinal pigment epithelium [41]
and Kinesine family 3 (KIF3) localized in photoreceptor
[42]. Dynactin, a regulator of the microtubule motor pro-
teins, is required to maintain the position of the nucleous
within post mitotic photoreceptor neurons. [43] and Dis-
abled 1 (Dab1) also determines nuclear positioning in
neurons [44]. These may speculate the association of
Kinesine family and related proteins have an effect on the
retinal development. Other unnamed proteins, S9, S10,
and S11, included no domain or structure that have been
reported as any relation with the retinal development pre-
viously.

Conclusion
We report here identification of thirteen proteins which
change expression during development of embryo chick
retina. Identified proteins included various cellular func-
tions.

Methods
Animals
Fertilized White Leghorn chicken eggs were obtained from
Hiroshima Experimental Animals Ltd. (Japan). All eggs
were maintained in air at 37°C and handled in accord-
ance with the Guide for the Care and Use of Laboratory
Animals by the USA National Institutes of Health.

Sample preparation
The eyes were directly enucleated from embryo chicken.
The retinas were carefully isolated from the choroid in
phosphate-buffered saline (PBS). Eight retinas from eight
eyes, including four right eyes and four left, at the age of
ED7 were collected in one tube. Retinas at the age of ED11
and ED15 were also collected as same, and lysed with 8 M
urea by pipetting. After centrifugation, the supernatant
was collected to one tube as a master lysate.

Master lysates were divided two samples. One was used
for measurement of protein concentration, and resolved
in urea mix [8 M urea, 4% NP-40, 2% ampholine, 2%
mercaptoethanol]. Protein concentration was measured
by the modified Bradford protein assay [45]. Others were
solubilized in sample buffer [8 M urea, 4% CHAPS, 0.5%
dithiothreitol (DTT), IPG buffer, pH 3–10] for two-
dimensional electrophoresis.

Two-dimensional electrophoresis
Two-dimensional electrophoresis and protein identifica-
tion were performed as described early [46]. Samples,
including 50 µg protein, were applied by the rehydration
technique. Isoelectrofocusing was performed on the strips
with an immobilized pH gradient (pH 3–10 non-linear
gradient, 18 cm: GE Healthcare). First-dimension isoelec-
trophoresis was performed in IPGphor (GE Healthcare)
according to manufacturer's instructions. After the isoe-
lctrofocusing, the strips were placed in equilibration
buffer-1 (50 mM Tris-HCl, pH 8.8, 6.0 M urea, 2.0% SDS,
30% glycerol, 1% DTT) and then in equilibration buffer-
2 (50 mM Tris-HCl, pH 8.8, 6.0 M urea, 2.0% SDS, 30%
glycerol, 4% iodoacetamide). The equilibrated strips were
loaded onto SDS-containing 12% polyacrylamide gel, and
SDS-polyacrylamide gel electrophoresis (PAGE) was per-
formed.

After the electrophoresis, the gels were fixed in 7.5% acetic
acid and 20% methanol, and sensitized in 25% ethanol,
0.2% sodium thiosulfate, and 3.4% sosium acetate. The
gels were then stained with 0.25% silver nitrate and devel-
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oped with 2.5% sodium carbonate and 0.04% formalde-
hyde.

Gel analyses
Silver-stained gels were scanned by an image scanner
(EPSON) and analyzed with calculation of the volumes of
the spots with the PDQuest (2-D Analysis Software Ver-
sion.1: BioRad) following the manufacturer's instruc-
tions. The software included the equipment to correct and
standardize automatically the difference of total and
whole staining of the compared gels. Three gels from each
type of chicken were prepared and a master gel was gener-
ated for each type of chicken. The values of the volume of
each matched spot on the master gels were compared.
Spots with differences in expression were then identified
by mass spectrometry.

Protein identification
The excited protein-containing spots were de-stained with
30 mM potassium ferricyanide and 100 mM sodium thio-
sulfate. Then, the gel pieces were dipped in 0.1 M sodium
hydrocarbonate and washed with acetnitril. After the gel
pieces were dried, in-gel digestion was performed with
trypsin. Then, 10% trifluoroacetic acid (TFA) and ace-
tonitrile were used to extract the peptides, and the extract
was desalted on a nano-column. After washing the col-
umn with 0.1% TFA, the matrix was eluted with acetnitril
containing alpha-cyano-4-hydroxycinnamic acid directly
onto the MALDI target. Spectra were generated on a
Bruker Biflex 3 MALDI-TOF-MS (Bruker Daltonics). The
spectra were internally calibrated using known internal
tryptic peptides from trypsin and searches were made in
the NCBI sequences using ProFound. No restrictions on
species and pI were applied, and tolerance was set on less
than 0.5 Dalton. The search results were evaluated by con-
sidering the probability, the Z-value, peptide coverage,
and correspondence to experimental pI and molecular
mass.
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Additional file 1
Actual photographs of two-dimensional electrophoresis gels. Upper three 
panels showed silver-stained gels from ED7, middle from ED11, and 
lower from ED15.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1477-
5956-6-3-S1.BMP]

Additional file 2
Protein volume of significant spots. The data provide the actual protein 
volume (arbitary unit; a.u.) and SEMs of significant protein spots, meas-
ured by PD-Quest software.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1477-
5956-6-3-S2.pdf]
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