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Abstract

Background: Stem cell therapy has emerged as a promising addition to traditional treatments for a number of
diseases. However, harnessing the therapeutic potential of stem cells requires an understanding of their fate in vivo.
Non-invasive cell tracking can provide knowledge about mechanisms responsible for functional improvement of
host tissue. Superparamagnetic iron oxide nanoparticles (SPIONs) have been used to label and visualize various cell
types with magnetic resonance imaging (MRI). In this study we performed experiments designed to investigate the

labeled with clinically approved SPIONSs.

human use.

biological properties, including proliferation, viability and differentiation capacity of mesenchymal cells (MSCs)

Results: Rat and mouse MSCs were isolated, cultured, and incubated with dextran-covered SPIONs (ferumoxide)
alone or with poly-L-lysine (PLL) or protamine chlorhydrate for 4 or 24 hrs. Labeling efficiency was evaluated by
dextran immunocytochemistry and MRI. Cell proliferation and viability were evaluated in vitro with Ki67
immunocytochemistry and live/dead assays. Ferumoxide-labeled MSCs could be induced to differentiate to
adipocytes, osteocytes and chondrocytes. We analyzed ferumoxide retention in MSCs with or without mitomycin C
pretreatment. Approximately 95% MSCs were labeled when incubated with ferumoxide for 4 or 24 hrs in the
presence of PLL or protamine, whereas labeling of MSCs incubated with ferumoxide alone was poor. Proliferative
capacity was maintained in MSCs incubated with ferumoxide and PLL for 4 hrs, however, after 24 hrs it was
reduced. MSCs incubated with ferumoxide and protamine were efficiently visualized by MRI; they maintained
proliferation and viability for up to 7 days and remained competent to differentiate. After 21 days MSCs pretreated
with mitomycin C still showed a large number of ferumoxide-labeled cells.

Conclusions: The efficient and long lasting uptake and retention of SPIONs by MSCs using a protocol employing
ferumoxide and protamine may be applicable to patients, since both ferumoxides and protamine are approved for

1. Background

Stem cell transplantation has been explored as a new
method to prevent or reverse deleterious effects of sev-
eral types of tissue injury [1,2]. Mesenchymal stem cells
(MSCs) derived from bone marrow have the capacity to
differentiate into a number of mesenchymal phenotypes,
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including adipocytes, osteocytes, chondrocytes and myo-
cytes [3-5]. Moreover, MSCs seem to be immunosup-
pressive, being able to inhibit T cell proliferation
in vitro and the function of both naive and memory
T cells [6-8] and to suppress the development of mono-
cyte-derived dendritic cells in an in vitro system [9]. All
these features together with the fact that MSCs can be
culture-expanded in large numbers show their great poten-
tial to repair or reconstitute a wide array of organs [10].
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The success of stem cell therapies in patients requires
methods to determine the biodistribution and fate of
stem cells without postmortem histology, and the lack
of tracking data represents a serious obstacle for the
clinical use of cell therapy. Thus, the development of
sensitive, non-invasive techniques for tracking cells can
provide knowledge about the poorly understood
mechanisms responsible for the improvement that has
been described in several lesion models [11-13]. Mag-
netic resonance imaging (MRI) is an excellent tool for
high-resolution visualization of the fate of cells after
transplantation and for evaluation of cell-based repair,
replacement, and therapeutic strategies [13-18]. In addi-
tion, this technique has been also used for in vivo visua-
lization of endogenous neural stem/progenitor cell
migration from subventricular zone in normal and
injured animal brains [19-21].

For in vivo cell tracking, contrast agents such as
superparamagnetic iron oxide nanoparticles (SPIONSs)
have been successfully used for labeling different mam-
malian cell types [11,22-25]. Ferumoxides are dextran-
coated SPIONSs clinically used as an intravenous MRI
contrast agent for analyzing liver pathology. The nano-
particles are phagocytosed and accumulate in endo-
somes of Kupffer cells and reticuloendothelial cells [26].
The particles are biodegradable and incorporated into
hemoglobin in red cells within 30 to 40 days or inte-
grated into other metabolic processes [27]. SPIONs tend
to aggregate and this has been reduced by coating with
dextran or other polymers [28]. Unfortunately, dextran-
coated SPIONs do not show sufficient cellular uptake to
enable tracking of nonphagocytic cells [29]. However,
the cellular uptake of SPIONs by nonphagocytic cells
can be facilitated by cationic compounds such as poly-
L-lysine (PLL) [29,30] and protamine sulfate [31-33] due
to their interaction with the negatively charged cell sur-
face and subsequent endosomal uptake [29,34]. PLL is a
synthetic cationic polymer commonly used to enhance
cell adhesion to the surface of culture dishes. However,
its use has not yet been approved in humans. Prota-
mines are low-molecular-weight arginine-rich proteins
(~4000 Da), that are purified from the mature testes of
fish. Protamine sulfate is an FDA approved polycationic
peptide primarily used as an antidote for heparin antic-
oagulation [35,36]. It has been administered i.v. to
humans at doses of 600-800 mg with minimal toxicity
and is well-tolerated by cells in vitro [37].

Approval for clinical MRI tracking of labeled stem
cells depends on efficient cell labeling that does not
exhibit cellular toxic effects and does not elicit side
effects. Labeling of MSCs with SPIONs has been studied
by a number of groups over the past several years
[38-40], but no studies have completely characterized
the effects of SPIONs on cell proliferation, survival and

Page 2 of 13

differentiation and have concurrently shown retention of
these labeling particles for long times.

In this work, we carried out a thorough study on the
effect of the SPIONs in MSCs using a refined protocol
and we compared two different compounds used to
facilitate the incorporation of ferumoxides into the cells,
poly-L-lysine and protamine. We analyzed the efficiency
of SPIONSs to label MSCs during short- or long-term
exposure (4 or 24 hrs) both in vivo and in vitro.
Furthermore, we investigated the retention time of
SPIONS in the cells for up to 21 days and we analyzed
the influence of SPION labeling, using our protocol, on
the biological properties (proliferation, viability and dif-
ferentiation) of MSCs. Our results demonstrate the high
potential for long-term SPIONSs labeling of MSCs using
clinically approved substances.

2. Methods
2.1. Animals
Experiments were performed on adult male Wistar
syngeneic rats (8-12 weeks old) or C57BL/6 mice
(8-10 weeks old). All experiments were performed in
accordance with the U.S. National Institutes of Health
Guide for the Care and Use of Laboratory Animals
(NIH Publication No. 80-23), and were approved by the
Committee for the Use of Experimental Animals at our
institutions (Universidade Federal do Rio de Janeiro and
Albert Einstein College of Medicine).

Only mice were used for MRI experiments since our
MRI coils are too small to accommodate rats. All other
experiments were performed on rats.

2.1. Isolation and Cultivation of Rat/Mouse Mesenchymal
Cells from Bone Marrow

To obtain bone marrow cells, tibias and femurs were iso-
lated, the epiphyses were removed, the bones were indivi-
dually inserted in 1 mL automatic pipette polypropylene
tips and then put in 15 mL tubes. The bones were centri-
fuged at 300 x g for 1 min and the pellets suspended in
Dulbecco’s modified Eagle’s medium F-12 (DMEM F-12;
Invitrogen Inc., Carlsbad, CA, http://www.invitrogen.com ),
supplemented with 10% fetal bovine serum (FBS; Invitro-
gen Inc.), 2 mM l-glutamine (Invitrogen Inc.), 100 U/mL
penicillin (Sigma-Aldrich Co., St. Louis, MO, http://www.
sigmaaldrich.com), and 100 pg/mL streptomycin (Sigma-
Aldrich Co.). Mononuclear cells were purified by centri-
fugation in Histopaque 1083 (Sigma-Aldrich Co.) gradi-
ent at 400 x g for 30 minutes. After three washes in
phosphate-buffered saline (PBS) using centrifugations at
300 x g, the cells were plated in 75 cm?® flasks with sup-
plemented DMEM F-12 and maintained in 5% CO,
atmosphere at 37°C. The medium was replaced 48-72 hrs
after initial culture to remove nonadherent cells and the
adherent cells were grown to confluence before each
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passage. Medium was replaced three times a week. All
experiments were performed on third passage cells.

2.2. MSC Labeling

In the present study we used a clinically approved con-
trast agent, ferumoxide (Feridex IV, Advanced Mag-
netics Inc., Cambridge, MA, http://www.amagpharma.
com). The physical properties of Feridex are as follows:
the core iron size is 5 nm, and the hydrodynamic size
including the dextran coat is 80-150 nm [38]. To
improve the incorporation, a final concentration of
5.0 pg/mL protamine chlorhydrate (Valeant Pharmaceu-
ticals International, Sdo Paulo, SP, Brazil, http://www.
valeant.com) or 375 ng/mL PLL (MW = 389.000;
Sigma-Aldrich Co.) was used as a facilitator agent. In
Brazil, protamine chlorhydrate is clinically approved by
The National Health Surveillance Agency (ANVISA)
and it has been used as a substitute for protamine sul-
fate in rescue of heparin anticoagulation.

Protamine chlorhydrate and PLL were separately com-
bined with Feridex in culture medium and gently shaken
for 30 minutes at room temperature. The solutions con-
taining Feridex and PLL (FePLL) or protamine (FeProt)
were added to adherent cell cultures at a proportion of
1:1 in supplemented DMEM F-12. The final concentra-
tion of Feridex in all treated groups was 25 pg/mL. All
the groups used in this study are listed in Table 1
except the groups described in section 2.7.

2.4. Prussian Blue Staining

After incubation with Feridex, the Prussian blue (PB)
method was used to detect iron within the cells in cul-
ture. This method induces a reduction of ferric iron to
the ferrous state with the formation of a blue ferrocya-
nide precipitate. For PB staining, MSCs were cultured

Table 1 Experimental groups

Group Name Transfection Feridex Experiment
Agent Exposure Time  duration
CTRL None None 24 hours
CTRL/3d None None 3 days
CTRL/7d None None 7 days
PLL 24 h Poly-L-lysine None 24 hours
Prot 24 h Protamine None 24 hours
Fe 4 h None 4 hours 4 hours
Fe 24 h None 24 hours 24 hours
FePLL 4 h Poly-L-lysine 4 hours 4 hours
FePLL 24 h Poly-L-lysine 24 hours 24 hours
FeProt 4 h Protamine 4 hours 4 hours
FeProt 24 h Protamine 24 hours 24 hours
FeProt 4 h/24 h Protamine 4 hours 24 hours
FeProt 4 h/3d Protamine 4 hours 3 days
FeProt 4 h/7d Protamine 4 hours 7 days
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on glass coverslips coated with 0.2% gelatin, washed
twice with warm PBS and fixed for 20 min in 4% paraf-
ormaldehyde at 37°C. After fixation, the cells were
washed twice with PBS and incubated with Perls’
reagent (20% potassium ferrocyanide and 20% hydro-
chloric acid) for 20 min at room temperature. Cultures
were then washed once in deionized water, dehydrated
through graded alcohols and mounted with Entellan
(Merck KGaA, Darmstadt, Germany, http://www.merck.de).
Samples were observed by light microscopy.

2.5. Immunocytochemistry

For immunofluorescence, MSCs were grown and fixed as
described above. The cells were washed three times with
PBS with 0.1% Triton X-100, incubated with 5% normal
goat serum (Sigma-Aldrich) in PBS for 30 min, and then
incubated with the primary antibody overnight at 4°C.
The MSCs were then incubated with the secondary anti-
body and mounted with VectaShield (Vector Labora-
tories Inc., Burlingame, CA, http://www.vectorlabs.com).
Immunostaining with anti-dextran (1:1000; mouse
monoclonal, Stem Cell Technologies, Vancouver, BC,
http://www.stemcell.com) was used to detect Feridex
incorporation efficacy by different treatments. The pro-
liferation rate of MSCs labeled with Feridex was evalu-
ated by immunostaining with anti-Ki67 (1:400, rabbit
monoclonal, Abcam Inc., Cambridge, MA, http://www.
abcam.com).

The secondary antibodies used in this study were:
Alexa 488-conjugated goat-anti-mouse IgG (1:400; Invi-
trogen Inc.) and Cy3-conjugated goat-anti-rabbit IgG
(1:1,000; Jackson ImmunoResearch Inc., West Grove,
PA, http://www.jacksonimmuno.com). The cell nuclei
were counterstained with 0.1% 4’,6-diamidino-2-pheny-
lindole (DAPI, Sigma-Aldrich Co.).

2.6. Feridex-Labeled MSC Viability/Cytotoxicity

The effect of Feridex on viability of MSCs was deter-
mined by Live/dead viability/cytotoxicity kit (Invitrogen
Inc.) for up to 7 days after initial exposure. Feridex
labeled MSCs were incubated with 1 pM calcein AM
(green) and 2 pM ethidium homodimer (EthD-1; red) in
PBS for 10 min in 5% CO, atmosphere at 37°C. There-
after, the glass coverslips containing the MSCs were
mounted onto slides, viewed by fluorescent microscopy
and the ratio of live/dead (green/red) cells determined.

2.7. In Vitro Retention of Feridex in MSCs
In this study we analyzed the duration of Feridex reten-
tion in MSCs. The groups described in this section are
not listed in Table 1.

We analyzed the number of labeled cells up to 21 days
of culture. After initial FeProt incubation for 4 hrs, the
cells were trypsinized weekly and the number of cells
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labeled with Feridex was counted at the following time
points: 1, 7, 14 and 21 days (this group was called
FeProt 7/7d).

Because cells in culture proliferate more rapidly than
in vivo, we used Mitomycin C to reduce proliferation
rate. Thus, we incubated the cells with 10 pg/mL Mito-
mycin C for 3 hrs before FeProt incubation for 4 hrs,
and as described for the FeProt 7/7d the cells were tryp-
sinized weekly and the number of labeled cells was
counted at the following time points: 1,7, 14 and
21 days (this group was called FeProt MitC). We chose
Mitomycin C to reduce cellular proliferation since it has
been widely used for inhibition of cell proliferation in
several cell types.

For both groups described above, we used trypsin dur-
ing the experiment. To control for the possibility that
the trypsinization process might interfere with exocytose
of the Feridex, we created a group in which no trypsini-
zation was done. In this group the cells were labeled
with FeProt for 4 hrs and maintained in culture for
21 days without trypsinization (this group was called
FeProt 21d).

2.8. Differentiation Studies

To determine if Feridex labeling had adverse effects on
MSC differentiation, we performed adipogenic, osteo-
genic and chondrogenic differentiation assays. MSC cells
were incubated with FeProt for 4 hrs before starting the
differentiation protocol. Control samples were main-
tained in supplemented DMEM F-12. In all differentia-
tion studies, the medium was changed every 2-3 days.
After differentiation, the cells were fixed as described
below.

2.8.1. Adipogenic Differentiation

To verify the adipogenic differentiation potential of
labeled MSCs, ~70% confluent cells were cultivated for
3 weeks in DMEM F-12 supplemented with 1 M dexa-
methasone, 10 pg/mL insulin, 0.5 uM isobutylemethyl-
xanthine and 200 uM indomethacin. The cells were
stained with 0.2% Oil Red O for 30 minutes to reveal
the intracellular accumulation of lipid-rich vacuoles. All
reagents used in this experiment were from Sigma-
Aldrich Co.

2.8.2. Osteogenic Differentiation

Osteogenic differentiation was performed with medium
supplemented with 1 uM dexamethasone, 10 mM B-gly-
cerolphosphate, and 0.5 puM ascorbic phosphate for
3 weeks. Calcium deposits were evidenced by 1% Ali-
zarin Red staining for 30 minutes in water. All reagents
used in this experiment were from Sigma-Aldrich Co.
2.8.3. Chondrogenic Differentiation

To investigate chondrogenic differentiation potential,
labeled MSCs were trypsinized and resuspended in sup-
plemented DMEM-F12 at 1.6 x 10” cells/mL. To form
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micromass cultures, the cells were seeded in 7 pl dro-
plets in the center of 24 well plates and cultivated under
high humidity conditions. After 2 hrs chondrogenesis
media (Invitrogen Inc.) was added to the culture plates
and the cells were cultivated for 2 weeks. The micro-
mass formed was embebbed in paraffin, sectioned and
the presence of proteoglycans was evaluated by 1%
Alcian Blue (Sigma-Aldrich Co.) staining in 3% acetic
acid (Sigma-Aldrich Co.) solution for 30 min.

2.9. In Vivo MRI

To confirm that labeled MSCs could be detected by
MRI, mouse cells labeled with FeProt for 4 or 24 hrs
were injected (3 x 10° cells in 30 uL of PBS) through
the medial surface in the adductor muscles of the hind
leg. In these experiments, we used C57BL/6 mice
instead of rats since our MRI coils are too small to
accommodate rats. The mouse MSCs were isolated and
cultivated as described above (2.1). Labeled MSCs were
injected into the muscle 18 hrs before the imaging
experiment. To perform the MRI, the animals were
anesthetized with isofluorane (2-3% in medical air admi-
nistered via a nose cone). Mice were positioned head-up
in the MRI coil in a 9.4-T GE Omega vertical bore ima-
ging system (Fremont, CA, http://www.gehealthcare.
com) equipped with an S50 shielded gradient microima-
ging accessory and a 40 mm inner diameter-60 mm
long 'H quadrature birdcage imaging coil. Body tem-
perature was maintained by a water-heating system.
Transverse plane images of the mouse at the position of
the hind limbs were acquired using a 51-mm field of
view with a 128 x 256 matrix size (interpolated to 256 x
256). Routine spin-echo imaging was performed due to
limitations of the vertical bore MRI system hardware.
Eight contiguous 1 mm thick images were acquired with
a 300ms repetition time (TR) and an 18 ms echo time
(TE); 4 scans were averaged. Each set of 8 images was
acquired in approximately 3 min. In plane, resolution
was 200 microns.

We used the Image] program (from U.S. National
Institutes of Health, Bethesda, MD) to quantify the
mean intensity of the dark spots.

After imaging, the mouse was sacrificed and the leg
muscles were fixed in 4% paraformaldehyde overnight
and incubated with 20% sucrose (Sigma-Aldrich Co.) in
PBS for at least 24 hrs in 4°C for cryopreservation.
Thereafter, the tissues were incubated in optimal cutting
temperature resin (Sakura Finetek USA Inc., Torrance,
CA, http://www.sakuraus.com) and 10 um frozen sec-
tions were collected on microscope slides.

2.10. In Vitro MRI
After labeling with FeProt for 4 hrs, mouse MSCs were
washed three times with PBS, trypsinized, fixed for
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20 minutes in 4% paraformaldehyde in 1.5 mL tubes and
resuspended in 300 pl of 15% gelatin. Tubes containing
10,000 unlabeled cells/ul and 3,330, 1,660 and 166 labeled
cells/pl were positioned in the same coil used for in vivo
experiments. For this experiment, TR was 1s, TE was
15 ms, and four 0.5 mm thick contiguous images were
acquired with the same spin-echo sequence used for
in vivo imaging. To maximize signal to noise and instru-
ment usage, iz vitro experiments were set up to run over-
night (approximately 9 hours) with 256 scans signal
averaged and increased in-plane resolution (100 microns).

The Image] program (from U.S. National Institutes of
Health) was used to quantify the mean intensity of the
acquired images from the 1.5 mL tubes.

2.11. Microscope Image Acquisition

The photomicrographs shown in this study were
obtained using an Axiovert 200 M microscope (Zeiss,
GmbH, Germany, http://www.zeiss.com) equipped with
ApoTome system, Axiovert 135 microscope (Zeiss) or a
Nikon Eclipse TE300 microscope (Nikon Co., Tokyo,
Japan, http://www.nikon.com). Quantifications were per-
formed using AxioVision 4.8 software (Zeiss).

2.12. Statistical analysis

At least three independent experiments were performed
for each statistical analysis. For quantification of label-
ing, we acquired random images of each sample using a
20x objective and the number of labeled MSCs with
florescent probes was quantified as a percentage of the
total number of cells. For ferumoxide incorporation and
proliferation rate, we acquired 6 images from different
fields per sample and the total number of stained cells
was divided by the total number of DAPI-stained cells.
For live/dead assays, we acquired 8 images from differ-
ent fields per sample and we divided the number of
green or red cells by the total number of cells (green
plus red cells). The number of samples (n) used for
quantification is indicated in the figures. Brightfield
images were acquired to facilitate the quantification of
ferumoxide incorporation by MSCs. It was used to
determine the membrane boundaries and to distinguish
dextran-positive cells from the background.

Statistical significance was evaluated using one-way
ANOVA with Bonferroni’s post-test for comparison
among multiple groups and t-test for comparison
between 2 groups. All calculations were done using
GraphPad Prism 5 for Windows (GraphPad Software,
San Diego, CA, http://www.graphpad.com).

3. Results

3.1. MSC Labeling and Proliferation

Presence of iron nanoparticles within the cells was con-
firmed by staining with Prussian Blue (Figure 1A) or
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Figure 1 Representative images demonstrating labeling of
MSCs with Feridex in the absence or presence of agents
facilitating uptake of the nanoparticles. (A-F”) Presence of
Feridex in MSCs was detected by Prussian Blue staining or by
dextran immunoreactions. (A) Prussian Blue staining in MSCs
incubated with FePLL for 24 hrs. Note that virtually all cells display
blue intracellular staining. (B-F”) Representative images showing
dextran immunostaining (green) in MSCs labeled with Feridex and
nuclei counterstained with DAPI (blue). (B) Cells incubated with
Feridex for 24 hrs in the absence of facilitating agents. (C-F”) MSCs
exposed to Feridex in the presence of an agent facilitating
incorporation (C) FeProt for 4 hrs. (D) FePLL for 24 hrs. (E) FeProt for
24 hrs. (E’'-E"”) Higher-magnification image of the area indicated by
the box in (E) illustrating a Feridex-labeled cell whose nucleus is
counterstained with DAPI undergoing mitotic division. (E") Mitotic
cell (arrow). (E”) Merged image showing DAPI and dextran
immunostaining. (F-F”) Representative images demonstrating the
characteristic perinuclear distribution of Feridex in MSCs after 4 hrs
of incubation with FeProt (F) DAPI and dextran immunostaining. (F)

Brightfield. (F”) Merger of the images. Scale bar = 50 um.

anti-dextran antibody (Figure 1B-F“). The Prussian Blue
technique was used only to confirm the presence of iron
in the cells since we used anti-dextran antibody for
quantification of Feridex-positive cells and this antibody
only recognizes the dextran coating. It was suggested
that dextran coating can undergo degradation when
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taken up by macrophages [41]. Thus, a limitation in our
quantifications is a potential underestimation of the
number of labeled MSCs. Efficient Feridex uptake was
not observed when the cells were incubated with Feri-
dex without an incorporation facilitator for either 4 or
24 hrs (Figure 2A). However, MSC were efficiently
labeled with Feridex when incubated with the facilitating
agents, either PLL (Figure 2B) or protamine (Figure 2C).
In addition, we did not observe decrease in the number
of labeled cells with Feridex at 3 or 7 days after the
initial 4 hr incubation with FeProt (Figure 2D).

All groups (except for the group exposed to FePLL for
24 hrs, which showed a lower proliferation rate) incu-
bated with Feridex alone or in combination with incor-
poration facilitator for 4 or 24 hrs maintained their
proliferative capacity when compared to the control
group (Figure 2E-G). In addition, no alterations in pro-
liferation rate were observed when we analyzed prolif-
eration for longer periods (3 or 7 days) in the groups
exposed to FeProt complexes for 4 hrs comparing with
their respective controls (Figure 2H). However, as
shown in Figure 2H, the proliferation rate decreased
after 7 days of culture when compared with the cultures
of 3 days. In the CTRL/7d and FeProt/7d groups, we
plated half the amount of cells plated in the CTRL/3d
and FeProt/3d groups but the cells approached conflu-
ence at 7 days, and the decrease in proliferation rate is
probably due to the confluence.

3.2. Labeled MSC Viability

Live/dead assays were performed in cultures for up to
7 days to evaluate Feridex-labeled MSC viability. Viabi-
lity assays demonstrated no difference in MSC live/dead
ratio after exposing the cells to FeProt for 4 or 24 hrs
(Figure 3A) when compared to the control group. More-
over, after longer periods (3 or 7 days) of observation,
we did not find alterations in MSC viability after 4 hr
exposure to FeProt (Figure 3B-C).

3.3. In Vitro Retention of Feridex in MSCs

We analyzed the duration of Feridex retention in MSCs
in vitro for up to 21 days after initial incubation with
FeProt for 4 hrs. After 21 days of culture we observed a
decrease of 66.1%, 32.8% and 19.4% in the number of cells
labeled with Feridex in the groups FeProt 7/7d, FeProt 21d
and FeProt MitC, respectively (Figure 4A-C). As shown in
Figure 4D, the number of MSCs labeled with Feridex was
significantly greater in FeProt MitC than in the other
groups. In addition, the group FeProt 21d showed a higher
number of cells labeled when compared with the group
FeProt 7/7d. The fraction of cells labeled with Feridex
shown was obtained by immunostaining to dextran, but
the presence of iron nanoparticles was confirmed by Prus-
sian Blue staining after 21 days of culture (data not shown).
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3.4. Differentiation Studies

Differentiation assays were performed in vitro in both
unlabeled and 4 hrs FeProt labeled MSCs. Staining for
intracellular accumulation of lipid-rich vacuoles with Oil
Red O revealed that MSCs maintained adipogenic capa-
city after Feridex incorporation (Figure 5A-B). Also, the
osteogenic potential, evidenced by calcium deposits
stained with Alizarin Red, was not affected by Feridex
labeling (Figure 5C-D). In non-induced cultures we did
not observe adipogenic or osteogenic differentiation
(data not shown). In addition, unlabeled and Feridex-
labeled cells induced toward chondrogenic differentia-
tion formed micromasses that were not observed in
non-induced cultures (data not shown). Staining for
Alcian Blue revealed the differentiation toward chondro-
cytes of both unlabeled and labeled cells (Figure 5E-F).
Thus, we concluded that FeProt labeling does not
impact MSC differentiation into adipocyte, osteocyte or
chondrocyte lineages.

3.5. In vivo and in vitro MRI

MSCs labeled with Feridex for either 4 or 24 hrs were
detected in mouse tissues by in vivo MRI. In the trans-
verse image shown in Figure 6A, the hypointense (dark)
spots, indicated by white arrows, show Feridex-labeled
cells detected in the mouse legs; the right leg was
injected with cells incubated with FeProt for 4 hrs and
left leg was injected with cells incubated with FeProt for
24 hrs. There is no apparent difference in the intensity
of dark spots in MSCs incubated with FeProt for these
different labeling durations. Immunoreaction to dextran
confirmed the presence of Feridex-labeled cells in the
right and left legs (Figure 6B-C*”). In addition, labeled
MSCs were detected by in vitro MRI. Dark spots were
observed in Feridex-labeled cells with density corre-
sponding to number of labeled cells; there was no MRI
detection of unlabeled cells, even when the concentra-
tion of cells was high (Figure 6D).

4. Discussion

Extending knowledge about the effect of SPION incor-
poration by stem cells is essential for clinical approval
of this technique and for its use in tracking stem cells
after transplantation. In this study, we evaluated the
effect of clinically approved SPIONs in MSCs after short
and long-term exposure using the incorporation facilita-
tors PLL and protamine.

The protocol used in this study is different from those
used by others. Our choices were based on the following
reasoning. The most commonly used concentrations of
Feridex are 25, 50 and 100 pg/mL. It was shown that
efficient uptake of Feridex (15 to 20 pg of intracytoplas-
matic iron/cell) can be achieved using 25 pg/mL Fe and
750 ng/mL PLL in MSC [30,42]. Recently, another
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Figure 2 Quantification of labeling efficacy and proliferation rate of MSCs incubated with Feridex. (A-D) Evaluation of MSC cell labeling
by Feridex and/or agents facilitating incorporation for 4 or 24 hrs. (A) Cells incubated with Feridex alone for 4 or 24 hrs showed little
incorporation. (B) Cells exposed to Feridex and PLL showed an efficient incorporation rate. (C) Cells exposed to Feridex and protamine showed
efficient incorporation of Feridex. (D) Quantification of labeling efficacy of MSCs incubated with FeProt complexes for 4 hrs and cultured for up 7
days. The number of cells labeled with Feridex was constant even after 7 days of Feridex incorporation. (E-H) Evaluation of proliferative capacity
of MSCs exposed to Feridex and/or incorporation facilitator agents for 4 or 24 hrs. Alteration in proliferation rate was observed in MSCs
incubated with FePLL complexes for 24 hrs; no change in proliferation was observed in the other groups. (E) Cells incubated with Feridex
without an incorporation facilitator for 4 or 24 hrs. (F) MSCs labeled with Feridex and PLL for 4 or 24 hrs. (G) MSCs labeled with Feridex and
protamine for 4 or 24 hrs. (H) Measurements of proliferative capacity of MSCs incubated with FeProt complexes for 4 hrs and cultured for up 7
days. The proliferation rate was maintained even after 7 days of Feridex incorporation. The “n” indicated on the top of the bars is the number of
samples used for the quantification of each group. Error bars represent SEM. **P < 0.01 and ***P < 0.001.
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Figure 3 Evaluation of MSC viability after exposure to FeProt complexes. (A-C) Viability was measured by live/dead assays in live MSCs
incubated with FeProt complexes for 4 or 24 hrs. No change in MSCs viability was observed at different time points (A) MSCs exposed to FeProt
complexes for 4 or 24 hrs. (B-C) Viability of MSCs cultured for up 7 days after initial exposure to FeProt complexes for 4 hrs. (B) 3 days after
initial incubation. (C) 7 days after initial incubation. (N = 9, for each group). Error bars represent SEM.

group compared four different concentrations of Feridex
in human umbilical cord MSCs (5.6, 11.2, 22.4, and
44.8 ug/mL Feridex) and showed that 44.8 ug Fe/mL
was toxic for the cells in MTT test [43]. Based on this
information we chose to use a low concentration of Fer-
idex (25 pg/mL) in the present study.

In addition, it was shown that the intracellular uptake
of iron (pg/cell) is not altered when the ratio of Feridex
to protamine varied three fold, from 50:3 FeProt pug/mL
to 50:9 FeProt ug/mL [31]. However when a lower con-
centration of Feridex was used with a lower concentra-
tion of protamine (25:0.75 FeProt ug/mL), efficient
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Figure 4 Quantitative analysis of the duration of Feridex retention in MSCs pretreated or not with mitomycin C. (A-D) MSCs cultured
for up 21 days after initial exposure to FeProt complexes for 4 hrs. (A) Feridex-labeled cells trypsinized weekly and evaluated after 1, 7, 14 and

21 days of culture. (B) The number of MSCs labeled after 1 and 21 days of culture without trypsinization. (C) Mitomycin-pretreated cells labeled
with Feridex and trypsinized weekly. The number of MSCs labeled was evaluated after 1, 7, 14 and 21 days of culture. (D) Comparison of the
number of MSCs labeled with Feridex after 21 days of culture in the groups illustrated in (A-C). The percentage of labeled cells was significantly
higher in FeProt MitC than in the other groups. The “n” indicated on the top of the bars is the number of samples used for the quantification of
each time point. Error bars represent SEM. *P < 0.05 and ***P < 0.001.
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Figure 5 Analysis of the differentiation potential of MSCs
labeled with FeProt complexes for 4 hrs. (A-B) Oil Red O
staining indicating adipogenesis in unlabeled or Feridex-labeled
cells. (A) Unlabeled cells induced toward adipocyte differentiation.
(B) Labeled MSCs induced toward adipocyte differentiation. (C-D)
Alizarin Red staining showing osteogenic differentiation in MSCs
labeled with Feridex or not. (C) Unlabeled cells induced toward
osteocyte differentiation. (D) Labeled cells induced toward
osteocyte differentiation. (E-F) Alcian Blue staining showing
chondrogenesis in unlabeled or Feridex-labeled MSCs. The nuclei
were counterstained with Nuclear Fast Red. (E) Unlabeled cells
induced to chondrogenic differentiation. (F) Labeled cells induced
to chodrogenesis. The brown deposits in figure (F) indicate the
presence of SPIONs. No apparent alteration in differentiation
potential was observed due to Feridex labeling in MSCs. Scale bar =
50 pym.

labeling was not obtained [32]. Therefore, our choice of
25:5 FeProt pg/mL ratio was based on these published
observations - a Feridex concentration lower than the
reported toxic concentration for cord MSC and a prota-
mine concentration between 3 and 9 pg/mL to test the
safety and the efficacy of MSC labeling.

Various concentrations of PLL have been used with
25 pg/mL of Feridex, e.g., 375 ng/mL [44] 750 ng/mL
[30,45] and 1500 ng/mL [46]. Since some authors have
shown that the FePLL complexes can form toxic aggre-
gates which are not incorporated by the cells [39], we
chose a low, but efficient, concentration of PLL.

The MSCs were efficiently labeled with ferumoxide
when combined with either facilitating agent, indepen-
dent of whether the exposure time was short (4 hrs) or
long-term (24 hrs). These data corroborate a recent
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study that showed that the amount of intracellular
SPIONSs in cells exposed to FeProt for 4, 24 and
48 hours did not change whereas different concentrations
of FeProt interfered with the amount of intracellular
SPIONSs [32]. However, when MSCs were incubated with
ferumoxide in the absence of a facilitator the labeling of
cells was negligible. Under these conditions incorporation
was time dependent since after 24 hrs more Feridex incor-
poration occurred in the absence of facilitation than after
4 hrs of exposure.

In proliferation assays, we demonstrated that 4 hrs of
incubation with FePLL did not alter MSC proliferative
capacity. However, after 24 hrs of incubation with
FePLL, we observed a reduction in proliferation rate
that was not observed when MSCs were incubated with
FeProt for either 4 or 24 hrs. The proliferation rate
decrease observed in the FePLL 24 h group is dependent
on the formation of FePLL complexes since incubation
of the cells with PLL or Feridex alone did not affect pro-
liferation rate. According to Kostura et. al. [39] the
incorporation of FePLL complexes by MSCs affects their
differentiation into chondrocytes. Incubation of PLL
with Feridex can generate large FePLL complexes which
can not be incorporated into endosomes and remain
adhered to the cell membrane [31,40]. Recently it was
demonstrated that labeling of MSCs with ferucarbotran,
without an incorporation facilitator agent, inhibits chon-
drongenesis in a dose-dependent way. The authors sug-
gest that surface binding of ferucarbotran SPIONs could
inhibit surface-linked cell-cell interactions. This does
not appear to happen when the MSCs are exposed to
ferucarbotran associated with protamine because the
compound can facilitate transport of the SPIONs into
the intracellular compartment [47]. Our results show
that the protocol using FeProt is superior to that using
FePLL due to the toxicity observed when MSCs were
cultivated with FePLL for 24 hrs.

It was suggested that relatively high concentrations of
protamine (e.g., 5-6 pg/mL) form large extracellular
complexes that are not incorporated by the cells but
remain permanently attached to the cell membrane.
Recently, some authors described an optimized protocol
for cell labeling using lower concentrations of protamine
and higher concentrations of Feridex than used in their
previous studies. Formation of extracellular aggregates
was not observed using this new protocol [32]. However,
using the new optimized protocol, the authors did not
test whether higher concentrations of protamine could
induce the formation of extracellular complexes. In our
study we propose an optimized protocol using a low
concentration of Feridex and a higher concentration of
protamine (25:5 pg/mL Fe:Prot). Using our protocol,
extracellular aggregates attached to the MSC membrane
were not observed by electron microscopy (unpublished
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Figure 6 Detection of Feridex-labeled MSCs by in vivo and in vitro MRI. (
injected in right or left leg muscles, respectively, were detected by in vivo MRI and by dextran immunofluorescence (A) Representative image of
in vivo MRI (transverse plane) showing hypointense (black) spots corresponding to Feridex-labeled cells injected in the leg muscles (white
arrows). (B-B"") Dextran immunocytochemistry confirming the presence of Feridex-labeled cells in the right leg muscle. (B) Phase contrast
microscopy. (B) Nuclear counterstaining with DAPI. (B") Dextran. (B”) Merged images showing DAPI (blue) and dextran (green) staining. (B")
Merge of images with phase contrast. (C-C"") Dextran immunohistochemistry confirming the presence of Feridex-labeled cells in the left leg
muscle. (C) Phase contrast. (C') Nuclear counterstaining with DAPI. (C") Dextran. (C") Merged images showing DAPI (blue) and dextran (green)
staining. (C") Images merged with phase contrast. Scale bar = 20 um. (D) /n vitro MRI of unlabeled and FeProt labeled MSCs for 4 hrs. As few as
160 cells/ul could be detected by MRI. The “Mean” values are the mean intensities of the gray values in the range of 0-255.

A-C") Cells labeled with FeProt complexes for 4 or 24 hrs and

data in collaboration with members of our laboratory,
Louise Moraes and Wagner Monteiro Cintra).

Since protamine is clinically approved and does not
alter proliferation rate, we performed a more extensive
investigation evaluating FeProt complexes as candidates
to label MSCs. We chose the protocol using a short-
term (4 hrs) exposure to FeProt because this is more
suitable for clinical use. When we monitored the cells,
injected in the mouse leg muscles, by in vivo MRI, there
were no apparent differences in the hypointense dark

spots resulting from the MSCs incubated for short or
long time periods with FeProt. Moreover, we could
detect even a small number of the 4 hr FeProt labeled
cells in the in vitro assays.

Other incorporation facilitators, besides protamine and
PLL, have been used for cell labeling, such as FuGENE
[13], Superfect and Lipofectamine [25] and some
authors have not used any incorporation facilitator for
cell labeling [48,49]. The primary advantage of the incu-
bation labeling method is its simplicity. The primary
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disadvantage is the prolonged incubation time required
[50]. Thus other approaches to induce labeling of freshly
isolated cells such as magnetoelectroporation [51,52]
and magnetosonoporation [53] appear to be better when
the culture system must be avoided. Both techniques
induce reversible eletromechanical permeability changes
in the cell membranes, thereby facilitating the diffusion
of MRI contrast agents.

Most authors have analyzed the effect of SPIONs on
cell proliferation and viability by MTT (3-[4,5-
dimethylthia-zol-2-yl]-2,5-diphenyl tetrazolinum bro-
mide) assays [30,31,49]. However, it has been shown that
the MTT test is unsuitable for measuring either cell
growth or proliferation [54-56]. In the present study, we
analyzed MSC proliferation based on detection of the
Ki67 protein and viability by live/dead assays for up to
7 days after initial exposure to SPIONs. We did not
observe alterations in MSC proliferation rate at 3 or
7 days after the initial 4 hr exposure to FeProt when
compared with the respective controls. In addition, we
analyzed the viability of MSCs after exposure to FeProt
complexes. The viability was maintained after 4 or 24 hrs
of incubation and at 3 or 7 days after initial 4 hr incuba-
tion with FeProt. Our results demonstrate that the num-
ber of cells labeled with Feridex is maintained after
7 days. However, after 21 days the number of labeled
cells decreased by more than 65%, mainly due to cellular
proliferation because when we cultured the labeled MSCs
at confluence (FeProt 21d group) or pre-treated the cells
with mitomycin C (FeProt MitC group), we observed
only small decreases of 32.8% and 19.4% in the Feridex-
labeled cell number, respectively. Moreover, even the
small decreases observed in FeProt 21d and FeProt MitC
groups were probably due to ongoing proliferation, since
measurements of the group pre-treated with mitomycin
C showed a sustained proliferation rate of 6.9% (data not
shown). We believe that it is very important that a signifi-
cant fraction of the cells retain the label in order to accu-
rately report the distribution of the MSC population.

Although labeling of exogenous cells has been exten-
sively used for tracking cells after transplantation, it is
important to emphasize that endogenous cell labeling is
essential for understanding the alterations of migratory
activities in normal and injured organs and for the
development of new therapies. Micrometer-sized super-
paramagnetic iron oxide particles (MPIOs) have been
widely used for endogenous tracking of neural stem/pro-
genitor cell migration from subventricular zone (SVZ)
but are not yet clinically approved. Efficient endogenous
labeling can be achieved using a large amount of MPIOs
without an incorporation facilitator [19-21,57]. However,
quantitative analysis of bromodeoxyuridine revealed
altered proliferation in the SVZ and neural progenitor
cells after in situ injection of MPIOs. When a small
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number of MPIOs was associated with PLL, labeling
was more successful, and the proliferation in the SVZ
was only marginally affected [21]. In our work we have
focused on labeling of exogenous cells, but the knowl-
edge about safe and efficient labeling is expected to be
applicable to endogenous labeling as well.

Besides ferumoxides, ferucarbotran and gadolinium
have also been used as clinical contrast agents for MRI
and to label and track transplanted cells. Ferucarbotran
(Resovist, Bayer Schering Pharma AG, Berlin, Germany)
is a SPION coated with carboxydextran while ferumoxide
(Feridex) is coated with dextran. It was suggested that
the additional carboxyl groups associated with ferucarbo-
tran might lead to a higher affinity to the cell membrane
so that cells could be labeled with it without need of an
incorporation facilitator [48,49]. However, recent work
showed that a higher percentage of labeled cells, a higher
amount of intracellular iron and lower amount of extra-
cellular iron aggregates were reached using FeProt com-
plexes when compared to Resovist without incorporation
facilitator [33]. Moreover, in a study on human MSC
(hMSC), there was no difference in the total iron content
(pg/cell) among cells incubated with Feridex or Resovist
when both were added together with PLL; both Feridex
and Resovist incorporation was superior to a third type
of nanoparticle [monocrystalline iron oxide (MION), an
ultrasmall superparamagnetic iron oxide] when added
with PLL [58]. Cell viability and proliferation were not
altered in any condition. However, the levels of Oct-4
mRNA increased in labeled hMSC at day 1 but not at day
7 and a subpopulation of hMSCs expressing CD45 was
observed after 7 days of culture.

Gadolinium nanoparticles are also clinically approved
as contrast agents. Although gadolinium-labeled stem
cells have been reported to be efficiently tracked by
MRI [18,59], a significant increase in reactive oxygen
species was observed at all time points (from 2 to
24 hrs) after cell labeling and a significant decrease in
the proliferation rate was observed after 24 hours [60].
In addition, gadolinium-labeling can affect proteoglycan
synthesis, cell proliferation and apoptosis of chondro-
cytes in a dose-dependent manner [61]. For these rea-
sons, ferumoxides appear currently to be the preferred
material for cell labeling and tracking.

For clinical protocol approval, it is essential to main-
tain the differentiation capacity of MSCs after exposure
to FeProt complexes. The 4 hr Feridex labeled cells
were induced to differentiate into adipocytes, osteocytes
or chondrocytes and we observed that the differentiation
capacity was unaffected by FeProt incorporation.

5. Conclusion
In summary, in this study we demonstrate that FePLL
complexes affect cell proliferation after 24 hr exposure.
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However, the protocol using FeProt complexes does not
affect the proliferative capacity and cellular viability for
up to 7 days after incorporation. In addition, the differ-
entiation potential of labeled MSCs is not affected.
Furthermore, the protocol using FeProt complexes can
be applied to patients, since both ferumoxides and pro-
tamine are approved for human use and our results
show that this protocol is efficient to track cells by MRI.
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