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Abstract

Background: Persistent vascular inflammation has been implicated as an important cause for a higher prevalence
of cardiovascular disease (CVD) in HIV-infected adults. In several populations at high risk for CVD, vascular
18Fluorodeoxyglucose (18FDG) uptake quantified using 3D-positron emission-computed tomography (PET-CT) has
been used as a molecular level biomarker for the presence of metabolically active proinflammatory macrophages in
rupture-prone early atherosclerotic plaques. We hypothesized that 18FDG PET-CT imaging would detect arterial
inflammation and early atherosclerosis in HIV-infected adults with modest CVD risk.

Methods: We studied 9 HIV-infected participants with fully suppressed HIV viremia on antiretroviral therapy (8 men,
median age 52 yrs, median BMI 29 kg/m2, median CD4 count 655 cells/μL, 33% current smokers) and 5 HIV-
negative participants (4 men, median age 44 yrs, median BMI 25 kg/m2, no current smokers). Mean Framingham
Risk Scores were higher for HIV-infected persons (9% vs. 2%, p< 0.01). 18FDG (370 MBq) was administered
intravenously. 3D-PET-CT images were obtained 3.5 hrs later. 18FDG uptake into both carotid arteries and the aorta
was compared between the two groups.

Results: Right and left carotid 18FDG uptake was greater (P< 0.03) in the HIV group (1.77 ±0.26, 1.33 ±0.09 target
to background ratio (TBR)) than the control group (1.05 ± 0.10, 1.03 ± 0.05 TBR). 18FDG uptake in the aorta was
greater in HIV (1.50 ±0.16 TBR) vs control group (1.24 ± 0.05 TBR), but did not reach statistical significance (P= 0.18).

Conclusions: Carotid artery 18FDG PET-CT imaging detected differences in vascular inflammation and early
atherosclerosis between HIV-infected adults with CVD risk factors and healthy HIV-seronegative controls. These
findings confirm the utility of this molecular level imaging approach for detecting and quantifying glucose uptake
into inflammatory macrophages present in metabolically active, rupture-prone atherosclerotic plaques in HIV
infected adults; a population with increased CVD risk.
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Background
Atherosclerosis is initiated by a series of proinflammatory
events that occur in the arterial wall causing endothelial
smooth muscle disruption, macrophage activation and
infiltration, oxidized lipid accumulation, and plaque for-
mation [1-6]. Several circulating and imaging biomarkers
for these proatherogenic processes have been assessed
clinically [7-14]. Unfortunately, few are specific for early
molecular level events involved in atherogenesis. Thus,
they are not predictive biomarkers of subclinical athero-
sclerosis that identify people at early risk for developing
vascular plaques. Moreover, none of these biomarkers
provides information about the risk for plaque rupture or
thrombosis that result in infarct or stroke.
People living with human immunodeficiency virus

infection (HIV) have a 2-fold greater risk for experien-
cing a stroke or myocardial infarction than the general
population [15-17]. Evidence suggests that chronic
low-grade inflammation associated with the host im-
mune response to HIV infection and ongoing viral
replication contributes to greater cardiovascular dis-
ease (CVD) risk and the higher incidence of CV events
in HIV infected adults [18-23]. However, the evidence
is based primarily on circulating biomarkers for in-
flammation (hsCRP, D-dimer, cytokines) which are nei-
ther sensitive, nor specific molecular-level predictive
biomarkers for early proatherogenesis or vascular
plaque in/stability [21,24].
Several groups have pioneered the use of 18Fluoro-

deoxyglucose (18FDG) uptake by proinflammatory
macrophages present in the arterial wall as a non-
invasive, sensitive, specific, and reproducible molecular
level biomarker for early atheroma formation in meta-
bolically active, rupture-prone atherosclerotic plaques
[25-51]. Proinflammatory macrophages utilize glucose at
a high rate [30,40,49], and 3-dimensional positron
emission-computed tomography imaging (PET-CT)
detects 18FDG uptake by macrophages in the vascular
wall of animals and humans. 18FDG PET-CT imaging
has been used to detect and quantify vascular inflamma-
tion in early atherogenesis and in vulnerable plaques in
human aorta and carotid arteries, but not in people liv-
ing with HIV and asymptomatic CVD.
The purpose of this proof-of-concept pilot study was

to determine if 18FDG PET-CT imaging detects greater
aortic and carotid inflammation and early atherosclerosis
in HIV-infected adults with mild CVD risk and known
carotid plaque than in healthy controls without signifi-
cant CVD risk. If confirmed, 18FDG PET-CT can be used
to monitor atherogenesis, determine the independent
contributions of HIV infection and anti-retroviral ther-
apy to vascular inflammation, and evaluate the anti-
inflammatory, anti-atherogenic effectiveness of thera-
peutic interventions in people living with HIV.
Participants
Healthy men and women were recruited from Washing-
ton University Institute of Clinical and Translational
Sciences Research Participant Registry. Inclusion criteria
were: 35–60 yrs old, confirmed HIV seronegative status,
fasting plasma glucose <100 mg/dL and <140 mg/dL
two hours after ingesting a 75-gr glucose beverage, fast-
ing serum triglycerides <150 mg/dL, HDL-cholesterol
>40 mg/dL (men), >50 mg/dL(women), resting blood
pressures <130/85 mmHg), carotid intima media thick-
ness <0.8 mm and no evidence for carotid plaque, waist
circumference (at the umbilicus) <102 cm (men,
<88 cm (women). Exclusion criteria were: known car-
diac or cerebrovascular disease, kidney or liver disease
(active hepatitis B or C), certain medications (e.g.,
glucose- or lipid-lowering agents, anti-hypertensives, low
dose aspirin, or other anti-inflammatory agents), illegal
drug use (cocaine, methamphetamines, opiates detected
on urine drug screen), pregnancy, cognitive impairment
that limited their ability to provide voluntary informed
consent, incarcerated or otherwise unable to provide
informed consent. We excluded younger adults because
the prevalence of atherosclerosis is rare in people
<35 yrs old. Before screening, healthy controls were
informed that participation required a test for HIV-
infection and the implications of a positive HIV test.
HIV infected men and women were recruited from the

Washington University AIDS Clinical Trials Unit and
Infectious Diseases Clinics. Inclusion criteria were: 35–
60 yrs old, documented HIV seropositive status, stable
antiretroviral therapy for at least the past 4 months,
CD4+ T-cell count >200 cells/μL, plasma HIV RNA
<50 copies/mL, fasting plasma glucose 100–126 mg/dL,
or 140–200 mg/dL two hours after ingesting 75-gr glu-
cose beverage, or fasting triglycerides >150 mg/dL,
HDL-cholesterol <40 mg/dL (men), <50 mg/dL
(women), or resting blood pressure ≥130/85 mmHg, ca-
rotid intima media thickness >0.8 mm or evidence of
carotid plaque, or waist circumference ≥102 cm(men),
≥88 cm(women), or BMI 25–35 kg/m2. Exclusion cri-
teria were identical to those used for the healthy con-
trols. By enrolling two groups with distinctly different
cardiometabolic phenotypes, we optimized our chances
of detecting a difference in arterial inflammation.
We enrolled 9 HIV infected adults with cardiovascular

disease (CVD) risk factors and documented (ultrasound)
carotid intima media thickening or non-obstructive
plaque, and 5 HIV seronegative adults with no CVD risk
factors (Table 1). Right and left carotid 18FDG PET-CT
studies were conducted on all 14 participants. Aorta
18FDG PET-CT studies were added after the first five
participants were enrolled, so aorta 18FDG studies were
conducted on 4 controls and 5 HIV participants. All par-
ticipants provided verbal and written informed consent.



Table 1 Physical and Demographic Characteristics

Parameter Control HIV+ p-value

N (% female) 5 (20) 9 (11) 1.0

Ethnicity All Caucasian 7 Cauc. 2 African American 0.51

Age (yrs) 44 ± 3 (46, 35, 51) 52 ± 3 (52, 38, 67) 0.07

# Yrs Known HIV+ 0 14 ± 2 (13, 7, 20) <0.01

CD4+ (cells/μL) nd 771 ± 132 (655, 622, 1035)

Plasma HIV RNA (copies/mL) nd All <50

History Hypertension (%) 0 78 0.02

Family History Diabetes (%) 0 56 0.08

History Hyperlipidemia (%) 20 44 0.58

Current tobacco smoker (%) 0 33 0.26

# Yrs Smoker 0 21 ± 4 (22, 10, 30) <0.01

Packs/day 0 1.4 ± 0.2 (1.3,1.0,2.0) <0.01

BMI (kg/m2) 25 ± 1 (25, 20, 28) 29 ± 2 (26, 22, 40) 0.12

Waist circ (cm) 86 ± 3 (88, 79, 90) 101 ± 6 (95, 84, 130) 0.07

Resting Systolic BP (mmHg) 112± 3 (114,104,119) 129 ± 5 (128, 115, 150) 0.01

Resting Diastolic BP (mmHg) 71 ± 5 (72, 55, 88) 76 ± 3 (75, 66, 90) 0.48

Fasting Triglycerides (mg/dL) 63 ± 6 (60, 53, 79) 149 ± 35 (115, 43, 349) 0.04

HDL-cholesterol (mg/dL) 51 ± 6 (50, 37, 65) 45 ± 4 (47, 29, 68) 0.43

Total cholesterol (mg/dL) 164± 4 (164, 156, 172) 182 ± 9 (177, 140, 218) 0.11

Calc.LDL-cholesterol (mg/dL) 101± 7 (95, 91, 122) 108 ± 9 (106, 74, 156) 0.55

Framingham 10-yr Risk 2 ± 1 (1, 1, 4) 9 ± 2 (7, 1, 18) <0.01

Carotid Ultrasound

Mean Right & Left Posterior CIMT (mm) 0.54 ± 0.03 (0.52, 0.45, 0.63) 0.78 ± 0.02 (0.78, 0.66, 0.90) <0.01

Non-obstructive Plaque 0 8 (89%)

Glycemic Control

Fasting Glucose (mg/dL) 89 ± 3 (89, 81, 96) 97 ± 4 (98, 82, 114) 0.11

Fasting Insulin (μU/mL) 2.0 ± 0.1 (2, 2, 2) 13.7 ± 4.5 (9, 6, 30) 0.06

Fasting C-peptide (ng/mL) 0.9 ± 0.1 (0.9, 0.7,1.0) 4.0 ± 0.8 (3.4, 2.3, 6.5) 0.02

HOMA 0.4 ± 0.0 (0.4, 0.4, 0.5) 3.2 ± 1.1 (2.6, 1.2, 7.4) 0.07

Systemic Inflammatory Biomarkers

hs-CRP (mg/L) 0.8 ± 0.3 (0.8, 0.5, 1.2) 2.6 ± 2.3 (2.0, 0.6, 6.2) 0.16

D-dimer (μg FEU/mL) 0.1 ± 0.1 (0.1, 0.0, 0.2) 0.4 ± 0.5 (0.1, 0.0, 1.1) 0.27

Mean± SE (Median, Min, Max); CIMT = carotid intima media thickness; nd = not done.
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The informed consent document was approved by the
Human Research Protection Office and the Radioactive
Drug Research Committee at Washington University
School of Medicine. The study was registered with Clini-
calTrials.gov (#00958815).

Methods
Carotid ultrasound imaging
Carotid artery intima-media thickness (CIMT) was mea-
sured by a single vascular sonographer using B-mode
images of both carotid arteries expressed as the average
thickness of the far walls of the right and left common
carotid arteries; each site represents the average of 3
separate measurements [7]. The intra-class correlation
coefficient for repeated measures of the CIMT is 0.91 at
our laboratory [52]. The presence of carotid plaque was
defined as described [7]; focal wall thickening that was
≥50% of the surrounding vessel wall or as a focal region
with CIMT >1.5 mm that protruded into the lumen and
was distinct from the adjacent boundary. Carotid wall
thickening that did not meet this definition (<50% or
<1.5 mm) was classified as a non-obstructive plaque.
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18FDG PET-CT imaging
After an overnight fast, 18FDG (~370 MBq;
9.9 ± 0.5 mCi) was administered intravenously and 3.5 hr
later, 3D-PET-CT images of the thoracic ascending, arch,
and descending aorta and carotid arteries were obtained.
Prior to 18FDG administration, fasting blood glucose
concentration was measured; if >150 mg/dL the scan
was rescheduled. To minimize motion artifact during
image acquisition, each participant was individually fit-
ted with a thermoplastic mask (Orfit Industries America,
Jericho, NY) that was secured to the scanner table and
immobilized their head, neck and shoulders.
A Biograph 40 Truepoint PET-CT scanner (Siemens,

Malvern, PA) was used to acquire 3-dimensional neck
and chest CT attenuation and contrast CT scans. The
PET used lutetium oxyorthosilicate detectors (169 crys-
tals/detector block, 192 detector blocks, 52 detector
rings) and a 216 mm axial field of view (FOV). The
CT has 40 detector rows and a 700 mm transaxial
extended FOV. The CT attenuation scans used low
dose CT (30 mAs (eff.), 120 kV, 0.5 sec rotation, 0.8
pitch, 28.8 mm collimation, 3 mm slice thickness,
500 mm transaxial FOV).
PET images were obtained at 2 bed positions (15 min

per position) and both attenuation corrected and non-
attenuation images were reconstructed in a 168 x 168
pixel matrix. Attenuation corrected PET images were
reconstructed with ordered subset method of the expect-
ation maximization (OSEM) using 4 iterations, 8 subsets
and Gaussian filter 5 mm Full Width Half Maximum
(FWHM). Only CT attenuated PET volumes were used
for analysis. Contrast CT images were obtained immedi-
ately after the PET images were obtained. Contrast CT
used 150 mAs (eff.), 120 kV, 0.5 sec rotation, 1.0 pitch,
28.8 mm collimation, 3 mm slice thickness, 500 mm
transaxial FOV. Immediately prior to acquiring contrast
CT images, 70 mL of Isovue-370 (Bracco Diagnostics,
Princeton, NJ) were infused intravenously. The contrast
agent clearly delineated the narrow carotid arteries and
jugular veins, and optimized CT and PET image co-
registration and analysis.

PET-CT image analysis
Image analysis was conducted using custom extensions of
MATLAB (The Mathworks Inc., Natick, MA). All images
were analyzed by the same analyst (blinded to group as-
signment) using a standardized workflow. In general,
MATLAB functions were used to co-register PET, CT at-
tenuation and contrast CT images/datasets, quantify max-
imum 18FDG uptake (SUV) within the vessels from 1 cm
above to 1 cm below the right and left carotid bifurcation,
and through the ascending, arch, and descending aorta.
Background 18FDG uptake in corresponding regions of
the jugular veins and superior vena cava were used to
calculate the maximum target-to-background ratio
(TBRmax) in both carotid arteries and the aorta.
Specifically, PET volumes were converted to body

weight standardized uptake values (SUVbw), where,
1 mL pure water = 1gr of body weight. In both regions of
interest (neck, upper chest), axial PET and CT volumes
were cropped to focus and reduce the dataset sizes.
Within each axial image, rigid anatomical landmarks
were identified (neck = cervical vertebrae; upper chest =
sternum) and used to align the contrast CT volume with
corresponding PET and CT attenuation volumes. Affine
volume transformation by normalized cross correlation
that allowed for rotation and shift in all three planes was
used to register the contrast CT scan with the CT at-
tenuation scan using the nearest rigid (bone) landmark
corresponding to the vessel of interest. The contrast CT
and CT attenuation co-registration matrix obtained was
then used to align the corresponding PET volume. This
provided optimal PET volume co-registration with con-
trast CT-enhanced vascular anatomy. MATLAB func-
tions then quantified 18FDG SUV metrics (mean,
median, standard deviation, min, max) along the arterial
and venous regions, and these were used to derive ca-
rotid and aorta TBRmax [28].

Serum lipids and lipoproteins
Blood was collected from an antecubital vein after a 10-
12 hr overnight fast. As described [53], serum triglycer-
ides, total- and HDL-cholesterol were measured and
LDL-cholesterol estimated in the Core Laboratory for
Clinical Studies at Washington University Medical Cen-
ter. The accuracy of these methods is verified and stan-
dardized by participation in the Centers for Disease
Control (CDC) Lipid Standardization Program, the CDC
Cholesterol Reference Method Laboratory Network, and
the College of American Pathologists external profi-
ciency program [54]. Framingham 10-yr coronary heart
disease (CHD) risk was determined using an American
Heart Association calculator (http://hp2010.nhlbihin.
net/atpiii/calculator.asp?usertype=prof ).

Blood hormones and metabolites
As described [55], plasma glucose concentration was
quantified using an automated YSI glucose analyzer
(Yellow Springs Instruments, Yellow Springs, OH), and
plasma insulin and C-peptide concentrations were deter-
mined using chemiluminescent immunometric methods
(Immulite; Siemens, Los Angeles, CA). The homeostasis
model assessment of insulin resistance (HOMA) was
calculated as described [56].

Systemic inflammatory biomarkers
D-dimer and highly sensitive C-Reactive Protein (hsCRP)
concentrations were quantified using particle enhanced

http://hp2010.nhlbihin.net/atpiii/calculator.asp?usertype=prof
http://hp2010.nhlbihin.net/atpiii/calculator.asp?usertype=prof
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immuno-turbidimetric assay kits according to manufac-
turer’s instructions (Roche Diagnostics, Indianapolis,
IN). Human plasma CRP and D-dimer complex with
latex particles coated with a monoclonal antibody direc-
ted against CRP or D-dimer epitopes, and the precipitate
was assayed for turbidity on a Roche/Hitachi Cobas c
system. Adequate amounts of archived plasma from 4
healthy controls and 5 HIV participants were available
for these assays.
Data analysis
Mean ± standard error (SE), median, minimum and max-
imum values are reported for the participant characteris-
tics. Physical and demographic characteristics were
compared using a non-parametric Fishers’ exact test or
Kruskal–Wallis one-way analysis of variance by ranks
test. Carotid and aorta maximum TBRmax were com-
pared between groups using an unpaired t-test. P< 0.05
was accepted as significant.
Results
The two groups had similar demographic characteristics
(age, sex, ethnicity; Table 1). Mean and median age for
HIV+ participants (Mean ± SE; 52 ± 3 yrs, median =
52 yrs) were numerically, but not statistically higher
(p = 0.07) than controls (44 ± 3 yrs, median =46 yrs).
Immune (CD4+ T-cell count = 771 ± 132 cells/μL) and
virologic (all <50 copies HIV RNA/mL) status were
stable and controlled in the HIV+participants. By de-
sign, cardiovascular disease risk profiles were worse
among HIV+ participants than controls (Table 1). The
Framingham 10-yr coronary heart disease (CHD) risk
score was greater (9 ± 2%) in HIV+ participants than in
controls (2 ± 1%; p< 0.01), but by definition these repre-
sent low (<10%) risk for CHD events (MI, stroke). Four
of the 9 HIV participants had Framingham 10-yr CHD
risk scores between 10-20%. The higher CHD risk score
among HIV+ participants was attributed to current
tobacco use and higher systolic blood pressure (history
of hypertension).
The mean intima media thickness of the common ca-

rotid arteries was greater (p< 0.01) in HIV+ participants
(0.78 ± 0.02 mm) than controls (0.54 ± 0.03 mm), and
eight of nine HIV+ participants had ultrasound detect-
able non-obstructive plaques in at least one carotid ar-
tery, while no plaques were detected in controls.
Glycemic control parameters (fasting glucose, insulin, C-
peptide, HOMA) were not different between control and
HIV+ participants. Fasting triglycerides were greater
(p = 0.04) in HIV+ participants (149 ±35 mg/dL) than
controls (63 ± 6 mg/dL), but total-, HDL-, and calculated
LDL-cholesterol levels were not different between
groups. D-dimer and hsCRP levels were numerically, but
not statistically (P> 0.16), higher in HIV+ participants
than controls.
Representative images of carotid 18FDG PET uptake

superimposed on the contrast CT images, and the corre-
sponding carotid ultrasound images are provided for an
HIV+ and a control participant (Figure 1). Right and left
carotid 18FDG uptake (TBRmax) was greater (P< 0.03) in
HIV+ participants (1.77 ±0.26, 1.33 ±0.09) than controls
(1.05 ± 0.10, 1.03 ± 0.05; Figure 2). Aorta 18FDG TBRmax

tended (P= 0.18) to be greater in HIV+ participants
(1.50 ± 0.16) than controls (1.24 ±0.05; Figure 2).
Discussion
Carotid artery 18FDG PET-CT imaging detected differ-
ences in vascular inflammation and early atherosclerosis
between HIV-infected adults with CVD risk factors and
healthy HIV-seronegative controls. These findings con-
firm the utility of this molecular level imaging approach
for detecting and quantifying glucose uptake into inflam-
matory macrophages present in metabolically active,
rupture-prone atherosclerotic lesions or early non-
obstructive plaques in HIV infected adults; a population
with increased CVD risk.
Vascular inflammation has been implicated in the

underlying pathophysiology for the higher incidence of
myocardial infarction and stroke in HIV infected adults
taking anti-retroviral medications. However, this sug-
gestion is based on indirect, non-specific measures of
circulating pro-inflammatory or pro-oxidant stress bio-
markers, or static vascular imaging methods (carotid
intima media thickness, coronary calcium deposition).
We provide the first direct, molecular-level evidence
for the presence of metabolically active, inflammatory
vascular lesions/plaques in people living with HIV in-
fection. It is important to note that the HIV partici-
pants studied had modest clinical evidence of CVD
risk; characterized by carotid intima media thickening
or small non-obstructive plaques and low Framingham
10-yr CHD risk profiles (9 ± 2% risk). However, carotid
18FDG PET-CT imaging and greater TBRmax provided
clearer evidence of atherosclerotic vascular disease in
HIV+ participants.
We specifically selected participants with ultrasound-

detected carotid intima media thickening and non-
obstructive plaques in order to assess the ability of vas-
cular 18FDG PET-CT imaging to detect an expected dif-
ference in vascular inflammation between healthy
controls and HIV-infected men and women with CHD
risk. In agreement with others, we found that not all cal-
cified lesions are metabolically active, inflammatory,
rupture-prone plaques [25,26]. The current study was
underpowered to definitively assess the relationship be-
tween 18FDG uptake and carotid thickness. The
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Figure 1 Representative co-registered 3-dimensional positron emission (PET) and contrast-enhanced computed tomography (CT)
images of the right carotid artery of a healthy HIV-seronegative control male (Panel 1), and an HIV infected man with CVD risk factors
(Panel 2). Transverse, sagittal, and coronal contrast CT images (A) and PET 18FDG uptake images (B) along with the corresponding carotid
ultrasound images for these two men are shown. The anterior wall of the right carotid artery (upper portion of the carotid ultrasound image) is
indicated with a yellow arrow and the posterior wall with a red arrow (lower portion of the image). In the HIV infected man (Panel 2), ultrasound
imaging detected increased carotid artery intima media thickness in both the anterior and posterior walls and a non-obstructive plaque in the
posterior wall of the right carotid artery. In the healthy control male (Panel 1), the intima media thickness was normal and no plaques were
present in the anterior or posterior walls of the right carotid artery. Carotid PET imaging detected regions of higher 18FDG uptake (red nodules in
blue, red and green ovals) in the HIV infected man (Panel 2B), while less 18FDG uptake was detected in the carotid artery of the healthy control
male (Panel 1B).
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relationship between plaque morphology and 18FDG up-
take should be further investigated in future studies.
This imaging method may be useful for addressing

several critically important clinical questions in HIV
infected people, e.g., Is there vascular inflammation in
untreated HIV-infection? Does highly active anti-
retroviral therapy reduce or worsen vascular inflam-
mation? Is vascular inflammation worse in older
HIV-infected adults than in age- and CVD risk
factor-matched HIV-seronegative adults? Do effective
treatments for insulin resistance, dyslipidemia, or anti-
inflammatory agents reduce vascular inflammation in
HIV? In the long-term, does a reduction in vascular in-
flammation translate to fewer clinical events (stroke, MI)
in HIV? This non-invasive method is ideal for examining
interactions among vascular inflammation and CVD risk
factors (insulin resistance, central obesity, dyslipidemia)
on early atherosclerotic progression in HIV and other
autoimmune disorders where inflammatory stimuli are
implicated (e.g., systemic lupus erythematosus, rheuma-
toid arthritis, Crohn’s disease).
Circulating inflammatory biomarker levels (hsCRP, D-

dimer) were variable, but on average, were 3–4 times
higher in HIV than healthy controls. This supports the
generalization that even well-controlled HIV (using con-
temporary anti-viral agents) is associated with a chronic,
low-grade, pro-inflammatory state, but the stimulus,
source, location and severity of the inflammation cannot
be discerned from these plasma biomarkers. HIV related
inflammation can be caused by multiple factors, includ-
ing chronic replicating virus, anti-HIV medications, gut
microbial translocation, obesity, diabetes, tobacco/alco-
hol/illegal drug abuse, hepatitis co-infection, or other
co-morbidities. 18FDG PET-CT specifically revealed vas-
cular inflammation in the carotid arteries as a quantifi-
able source for molecular-level, pro-inflammatory events
that are biochemically related to early atherogenesis, and
if left unrestrained, can precipitate a CV event.
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Figure 2 Right and left carotid 18FDG uptake (Mean± SE) was
greater (P< 0.03) in the HIV group (n = 9; 1.77± 0.26,
1.33± 0.09 target to background ratio-max (TBRmax)) than in
the control group (n= 5; 1.05± 0.10, 1.03 ±0.05 TBRmax). Aorta
18FDG uptake tended (P= 0.18) to be greater in HIV (n = 5; 1.50 ±0.16
TBRmax) vs control group (n = 4; 1.24 ±0.05 TBRmax).
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This study has limitations. We had a small sample size
and we may have been underpowered to detect certain
between group differences. But, these are expensive im-
aging studies, and therefore we intended these data to
show proof-of-principle for larger clinical studies. On
average, the HIV infected adults tended to be older than
the healthy controls. Advanced age is associated with
more vascular inflammation and 18FDG uptake. But, the
focus of this study was not on “what causes vascular in-
flammation in HIV?” Instead, the focus was on a dichot-
omous outcome; i.e., can we detect vascular
inflammation using 18FDG uptake in HIV with mild
CVD risk? The intent was not to address the question
“is vascular inflammation worse in age-matched HIV vs
healthy controls?” This is an excellent follow-up study,
now that we have developed the technique and we
understand the usefulness of 18FDG PET-CT imaging
for detecting early, low-level vascular inflammation in
people living with HIV. We did not attempt to quantify
18FDG uptake in the coronary vessels; these are very
narrow, in motion, and surrounded by the glucose-
consuming heart muscle. Attempts to image inflamma-
tion in the coronary vessels using 18FDG have been
made [57]. We cannot determine the specific risk factor
that caused greater 18FDG uptake in HIV participants (e.
g., tobacco use, hypertension, glycemic control, higher
triglycerides) because the two groups were selected
based on their distinctly different cardiometabolic phe-
notypes. Likewise, the study was not designed to deter-
mine whether HIV-infection per se, or which specific
anti-HIV medication caused greater 18FDG uptake in the
HIV+ participants. However, these pathogenesis ques-
tions can be addressed given the proof-of-principle
findings reported here. Indeed, recent studies have
begun to investigate these questions using 18FDG PET-
CT [58].

Conclusion
Carotid 18FDG PET-CT imaging detected significant
vascular inflammation in HIV- infected men and women
with low Framingham CHD risk scores, suggesting that
this molecular imaging method is sensitive to early pro-
atherosclerotic processes in a clinical population sus-
pected of having chronic, low-grade inflammation-
induced cardiovascular disease.
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