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Abstract

ischemia.

improve short- as well as long-term graft outcome.

Inflammatory reactions in the graft have a pivotal influence on acute as well as long-term graft function. The main
reasons for an inflammatory reaction of the graft tissue are rejection episodes, infections as well as ischemia/
reperfusion (I/R) injury. The latter is of particular interest as it affects every solid organ during the process of
transplantation. I/R injury impairs acute as well as long-term graft function and is associated with an increased number
of acute rejection episodes that again affect long-term graft outcome.

I/Rinjury is the result of ATP depletion during prolonged hypoxia. Further tissue damage results from the reperfusion of
the tissue after the ischemic insult. Adaptive cellular responses activate the innate immune system with its Toll-like
receptors and the complement system as well as the adaptive immune system. This results in a profound inflammatory
tissue reaction with immune cells infiltrating the tissue. The damage is mediated by various cytokines, chemokines,
adhesion molecules, and compounds of the extracellular matrix. The expression of these factors is regulated by specific
transcription factors with NF-kB being one of the key modulators of inflammation.

Strategies to prevent or treat I/R injury include blockade of cytokines/chemokines, adhesion molecules, NF-kB, specific
MAP kinases, metalloproteinases, induction of protective genes, and modulation of the innate immune system.
Furthermore, preconditioning of the donor is an area of intense research. Here pharmacological treatment as well as
new additives to conventional cold storage solutions have been analyzed together with new techniques for the
perfusion of grafts, or methods of normothermic storage that would avoid the problem of cold damage and graft

However, the number of clinical trials in the field of I/R injury is limited as compared to the large body of experimental
knowledge that accumulated during recent years in the field of I/R injury. Future activities in the treatment of I/R injury
should focus on the translation of experimental protocols into clinical trials in order to reduce I/R injury and, thus,

Introduction

Inflammatory reactions fundamentally influence the
short-term as well as the long-term performance of solid
organ allografts. Thus, it is crucial to control such inflam-
matory reactions in order to improve graft function as
well as allograft survival. Inflammatory reactions are dif-
ferentially initiated in a graft following transplantation.
Important reasons for an inflammatory reaction of the
graft are alloantigen directed immune reactions of the
recipient resulting in rejection episodes with heavy
inflammation of graft tissue. On the other hand the trans-
plant procedure with its related ischemia/reperfusion (I/
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R) injury and the surgical trauma itself could result in
acute as well as chronic inflammatory reactions that
influence allograft function over the long-term [1]. This
review will focus particularly on the mechanisms related
to inflammatory reactions following ischemia/reperfu-
sion injury in the transplant setting and strategies for the
prevention as well as the treatment of I/R injury.

Molecular Mechanisms involved in the
Development of Tissue Injury after Ischemia/
Reperfusion

Different mechanisms participating in the development
of ischemia reperfusion injury will be reviewed in the fol-
lowing section. I/R injury is the result of a prolonged oxy-
gen deprivation in a tissue leading to hypoxia. This
results in an ATP-depletion of the cells leading to swell-
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ing of mitochondria eventually causing a release of cyto-
chrome c from the mitochondria. Cytochrome c activates
an apoptotic signaling cascade involving caspases 1 and 9.
These events participate in the induction of an inflamma-
tory response via generation of IL-1p as well as pro-
grammed cell death (apoptosis) by activation of different
caspases. Moreover, ATP depletion induces a cellular
edema that occurs particularly during cold ischemia
when Na/K ATPase is inhibited [2].

A crucial mediator of I/R injury are oxygen derived free
radicals [3]. Particularly hydrogen peroxide, a source of
oxygen-derived free radicals after hypoxia, can induce
TNF-a by an activation of p38 mitogen activated kinase
(MAPK) [4]. Additionally, a number of intracellular adap-
tive metabolic responses occur among them an increase
in the intracellular Ca+*-concentration with generation of
calcium pyrophosphate complexes and the formation of
uric acid. Calcium phosphate complexes and uric acid
that belong to a group of so called danger signals (DNA
fragments, cell membrane fragments, heat shock pro-
teins, etc.) can bind to intracellular protein complexes so
called inflammasomes [5]. The inflammasomes include
different adaptor molecules that mediate an increase of
the production and secretion of interleukin-1 (IL-1)f.
Furthermore also Toll-like receptors are stimulated
through danger signals eventually stimulating the secre-
tion of further proinflammatory cytokines/chemokines
through an activation of NF-«B [6].

The transcription factor NF-kB plays a central role in
the generation of an inflammatory response as it is acti-
vated under conditions of cell stress and inflammation
resulting in an activation and formation of other pro-
inflammatory factors such as IL-1f, tumor necrosis fac-
tor (TNF)-a, or interferon (IFN)-y and chemokines such
as IL-8, MCP-1, or RANTES potentiating the inflamma-
tory response. This is followed by an infiltration of lym-
phocytes, mononuclear  cells/macrophages, and
granulocytes into the injured tissue. Here adhesion mole-
cules like the leukocyte function associated antigen-1
(LFA-1) or the intercellular adhesion molecule (ICAM)-1
play an important role. The cellular infiltrate together
with the expression of cytokines/chemokines aggravates
the interstitial edema of the inflamed tissue.

Apart from the formation of calcium phosphate com-
plexes, the increase of the intracellular calcium concen-
tration also enhances the activation of phospholipases as
well as proteases. The latter group includes calpains
(cleaving protein kinase c, fodrin, components of the
cytoskeleton) and caspases which execute programmed
cell death (apoptosis).

An important effect of hypoxia on a tissue is the devel-
opment of metabolic acidosis. It occurs as a result of
hypoxia when anaerobic glycolysis is the only way to gen-
erate energy. However, it can induce an inflammatory
response when perfusion of the respective tissue is
restored after hypoxia as well as hypothermia [7].
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However, not only locally generated inflammatory
mediadtors like cytokines/chemokines [8] resulting from
I/R injury but also systemic inflammatory mediators in
the donor affect the graft after transplantation. Here
brain death profoundly contributes to a systemic inflam-
matory response through the release of cytokines from
the brain. This "cytokine storm" deteriorates organ func-
tion resulting in more acute rejection episodes and
decreased long-term function [9-11]. The significance of
such effects is underlined by experiments demonstrating
the deleterious influence of brain death on graft function
also over the long-term [12] even when cold ischemia has
been eliminated [13].

If the inflammation is resolved the tissue can heal with-
out sequale. However, if the inflammatory response is not
resolved, for example due to ongoing tissue injury, the
inflammation can become chronic, thus, stimulating tis-
sue remodeling that eventually can result in organ fibrosis
with a consecutive loss of function and graft failure [1].
Fibrosis with an accumulation of extracellular matrix is a
late non-specific result after I/R injury. However, extra-
cellular matrix breakdown plays also a role in mediating
acute tissue injury after I/R as discussed below. Further-
more, components of the innate immune system such as
Toll-like receptors or the complement system also partic-
ipate in the development of I/R injury.

Evidence exists that the temperature during ischemia
differentially affects tissue injury as in liver ischemia for
example cold ischemia (time when the graft is outside the
body during transport from the donor to the recipient)
affects more the sinusoidal cells while warm ischemia
(time when the graft is in the body during operation
before perfusion is reinstalled) affects primarily the hepa-
tocytes [14,15].

On the other hand cells do not only produce deleterious
factors promoting cell death and inflammation during
hypoxia but also form protective factors in order to sur-
vive hypoxic episodes. Here the transcription factor HIF
(hypoxia inducible factor)-1 plays an important role [16].
Interestingly, the HIF-1 system may not only be activated
under hypoxic conditions but also under inflammatory
conditions [17]. Basically cellular HIF-1 levels are low
under normoxic conditions while they increase under
hypoxic conditions to increase angiogenesis, erythropoe-
sis, vasomotor control of the vessels and alterate the cel-
lular energy metabolism as well as survival programs in
order to protect the cells from the effects of hypoxia.
Apart from transcription factors also protective genes
like hemogygenase-1, bcl-2 or A20 are induced to protect
cells after hypoxia [18].

Reducing or preventing ischemia/reperfusion injury is
a central strategy for an improvement of short-term as
well as long-term graft performance after transplanta-
tion.

Evidence for this concept is derived from the observa-
tions that organs from living donors have a better graft
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survival and graft performance than organs from cadav-
eric donors although the HLA mismatch is similar
because the ischemia times are significantly shorter in the
setting of living donor related transplantation [19,20].

Strategies to reduce I/R injury after solid organ trans-
plantation can be divided into pretransplant- and post-
transplant strategies. Pretransplant strategies for the
reduction of I/R injury include reduction of cold ischemia
time through a logistic optimization of graft transport,
machine-based perfusion procedures, or optimization of
preservation solutions.

A further strategy is preconditioning of the donor with
substances that have the capacity to reduce I/R injury.
Posttransplant strategies to reduce I/R injury include the
administration of substances that interfere with the
inflammatory process mainly with the action of chemok-
ines, cytokines, or leukocyte infiltration. On the other
hand, strategies interfering with programmed cell death
(apoptosis) have been investigated as well in order to
reduce cell death and thus, protect the graft from cell
loss. An ideal intervention would be a short course of a
treatment during the immediate peritransplant period
followed by a long-lasting effect in order to spare medica-
tions with their potential side effects. One practical prob-
lem in the prevention/treatment of I/R injury is that
many treatment options were successful in experimental
models while only few have been introduced into clinical
trials not to mention standard treatment protocols. Here
much work has to be done in the future to convert the
knowledge derived from experimental approaches into
successful clinical practice. In this review we will focus on
the different experimental strategies to interfere with I/R
damage and discuss strategies that have been already
introduced into clinical practice.

Therapeutic targets and strategies to interfere with
I/Rinjury

Chemokines/Cytokines

Most pro-inflammatory chemokines such as IL-8, MCP-
1, ENA-78, MIP-1a, MIP-1, or RANTES require activa-
tion by transcription factors such as nuclear factor (NF)-
kB or activating protein (AP)-1 [8]. A central kinase
required for the activation of these transcription factors
is p38 MAPK. Indeed, inhibition of this kinase reduced
pro-inflammatory cytokine production and I/R injury in
an experimental model of hypoxia [21].

The generation of chemokines is increased already a
few hours after transplantation. Inhibition of caspases,
particularly caspase-1, NF-kB, p38 MAPK all effectively
ameliorated I/R injury by reducing the generation of
chemokines in experimental models [8]. However, in
order to reduce chemokine effects it is not enough to only
reduce their production. Their effects have also to be
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blocked. A promising molecule for such purposes is Met
RANTES, a derivative of the chemokine RANTES, that
blocks the actions of RANTES at the receptor level.
Treatment with Met-RANTES at an early time period
from day O to day 10 after transplantation, when isch-
emia/reperfusion injury is present, reduced the develop-
ment of fibrosis in the graft in an experimental rat
transplant model [22]. This beneficial effect is supposed
to be due to a reduced inflammatory reaction after trans-
plantation resulting in better graft outcome over the
long-term. Similar effects have been achieved with block-
ade of MCP-1 and MIP in experimental models of I/R
injury [8,23].

Apart from chemokines also cytokines play a crucial
role in mediating I/R injury after transplantation. An
important group of pro-inflammatory cytokines is the
interleukin-1 family. Here particularly IL-1p is of interest
as it can link the effects of the innate immune system,
particularly the activation of Toll-like receptor 4, with the
cellular adaptive immune response [24]. IL-1fB induces
the expression of adhesion molecules on endothelial cells,
thus, facilitating cellular infiltration. Furthermore it
induces the production of prostaglandins through an
increased expression of cyclooxygenases and increases
the number of circulating neutrophils and thrombocytes.
The action of IL-1 is physiologically inhibited by IL1-RA
(receptor antagonist) [25]. We analyzed the effects of IL-1
RA on the development of renal I/R injury in an experi-
mental rat model [26]. Animals treated with IL-1RA had
a significantly lower I/R damage as well as reduced
inflammatory infiltrates and number of apoptotic cells as
compared to untreated controls. In these experiments a
substantial reduction of I/R damage was achieved with
compounds that have been introduced into clinical prac-
tice as IL-1 RA is available for the treatment of rheuma-
toid arthritis.

Adhesion molecules

Adhesion molecules, in particular the leukocyte function
associated antigen-1 (LFA-1) and the intercellular adhe-
sion molecule (ICAM)-1, are necessary for the infiltration
of immune cells from the vessel lumen into the tissue.
Experimental evidence suggests that a reduced expres-
sion of adhesion molecules ameliorates the development
of I/R injury [27-30] after transplantation.

LFA-1 has various functions in immune reactions
among them adhesion and trafficking of leukocytes, sta-
bilization of the MHC-T cell receptor complex as well as
providing costimulation signals. In a clinical study efali-
zumab, a humanized IgGl anti-LFA-1 antibody, was
administered to recipients of kidney grafts after trans-
plantation with a good tolerability [31]. However, infor-
mation on long-term effects on the grafts as well as the
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influence of this treatment on I/R injury are missing so
far as the study was aimed to analyze calcineurin inhibi-
tor sparing treatment protocols.

Another important adhesion molecule is ICAM-1. In a
phase I/II study an anti-ICAM-1 antisense-oligonucle-
otide was analyzed in order to prevent acute rejection
episodes. Altogether the oligonucleotide did not further
reduce the rate of acute rejections or improved graft sur-
vival as compared to a conventional immunosuppressive
protocol [32]. Anti-adhesion molecule directed therapies
could be of benefit in the transplant setting; however,
more data is needed before the clinical significance of this
therapeutic approach can be evaluated.

Interventions inhibiting NF-kB

The IKK complex is a key regulator of IkB degradation
and, thus, NF-«B activation [33]. Specific IKK complex
antagonists reduced I/R injury in the setting of experi-
mental myocardial infarction [34]. However, this
approach warrants further investigation in the setting of
transplantation.

Another way to inhibit IkB degradation would be the
inhibition of proteasomes that are responsible for a
breakdown and thus, termination of function, of specifi-
cally marked proteins. In renal, cerebral as well as hepatic
ischemia the respective injury could be prevented if the
proteasome inhibitor lactacystin or its derivative PS519
were administered before the initiation of ischemia [35-
37].

Experimental protocols have been introduced that ana-
lyzed the effects of gene therapy, inhibition of NF-«xB
nuclear translocation as well as oligodeoxynucleotide
interference with NF-kB [33]. However, all these
approaches have not been translated into larger clinical
trials so far.

Innate immune system

Toll-like receptors

It has been demonstrated that a genetic deletion of the
Toll-like receptor 2 [38] and the Toll-like receptor-4 [39]
in experimental ischemia/reperfusion models resulted in
a significantly reduced tissue injury as compared to con-
trols. Using adoptive transfer it has also been demon-
strated that the missing expression of Toll-like receptors
on the injured tissue rather than on the infiltrating
immune cells is the responsible mechanism for the pro-
tective effects. This fits to recent clinical observations
where grafts with defective TLR-4 signaling had a better
function and lower expression of pro-inflammatory
cytokines after transplantation than grafts with regular
TLR-4 signaling [40]. In our experimental I/R model a
double deletion of the TLR- 2 together with the TLR-4
did not result in an additional protective effect as com-
pared to the single deletions [41]. Thus, MyD88 indepen-
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dent signal pathways do not seem to play an important
role for the development of an I/R injury in this model.
Experimental evidence exists that also TLR antagonists
like glucan phosphate or the synthetic LPS analogue eri-
toran can prevent I/R injury in models of experimental
myocardial ischemia [42,43].

Complement system

The complement system consists of various components
that are activated upon different stimuli such as infec-
tious agents like bacteria, viruses, or non-infectious stim-
uli among them I/R injury [44-46]. Basically, activation of
the complement system leads to a binding of complement
factors to certain targets such as bacteria or injured cells,
chemotaxis as some components can attract inflamma-
tory cells to the site of injury, and destruction of target
cells by distinct lytic mechanisms. The inhibition of the
complement system has been proven effective in reduc-
ing I/R injury in experimental models [47,48]. Targeting
of the complement component C5 reduced I/R injury
after transplantation in an experimental model [49].
However, targeting of the complement system to reduce
I/R injury in clinical settings needs to be analyzed in the
future.

Protective genes

Cells possess a number of so called protective genes. The
expression of such genes is enhanced during periods in
which the cell is at danger due to otherwise detrimental
stimuli/influences and protects them by an inhibition of
programmed cell death (apoptosis) and inflammatory
responses (i.e. inhibition of NF-kB). Overexpression of
Bcl-2 [50-53] or hemoxygenase-1 (HO-1) [54-57] through
replication-defective viral vectors significantly reduced
tissue damage in different experimental models of I/R
injury as well as transplantation.

The inhibition of apoptosis seems to be of importance
in tissue protection as caspase inhibitors also substan-
tially reduced I/R injury together with a marked reduc-
tion of the inflammatory response [58]. Thus, inhibition
of apoptosis not only prevents loss of cells but also seems
to be associated with a reduction of inflammation. On the
other side substances known to promote apoptosis like
mTOR inhibitors have been demonstrated to aggravate I/
R injury when given in the early phase after an ischemic
insult to the kidney [59,60].

Zink finger protein A20

A molecule with potential protective effects is the zink
finger protein A20 as it combines anti-apoptotic as well
as anti-inflammatory effects [61]. It has ubiquitinating
and de-ubiquitinating properties, thus, activating and/or
inhibiting target molecules [62,63] which modulate regu-
latory adapter molecules. It regulates receptor mediated
apoptosis (for example through TNF-a) by modulation of
caspase-8 and exerts anti-inflammatory effects through
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an inhibition of Nf-«kB as well as Toll-like receptor 4 sig-
naling [64]. We analyzed the over-expression of A20 in a
hepatic as well as a renal I/R model [65]. Overexpression
of A20 resulted in a significantly reduced I/R injury in
both models that was mediated by a decreased activation
of NF-kB as well as a reduced expression of adhesion
molecules. In a liver transplant model the overexpression
of A20 resulted in a better graft regeneration as well as in
reduced graft rejection with improved graft survival [66].
So far, no clinical experiences regarding the protective
effect of A20 overexpression in the transplant setting
exist.

Serum and glucocorticoid regulated Kinase 1

The serum- and glucocorticoid-inducible protein kinase
1 (SGK1) is a serine-threonine protein kinase activated
through the phosphatidylinositol 3-kinase (PI3-kinase)
pathway counteracting apoptosis [67]. Expression and
activation of SGK1 are increased in various models of cell
stress [68-70]. Hypoxia/reoxygenation increased SGK1
transcript levels, SGK1 protein abundance and SGK1
phosphorylation in vitro. Furthermore, hypoxia/reoxy-
genation enhanced the percentage of apoptotic cells, an
effect significantly blunted by prior overexpression of
SGKI1.

In vivo experiments of renal I/R injury demonstrated
increased SGK1 transcript levels and SGK1 protein abun-
dance in renal tissue. The ischemia was followed by
enhanced apoptosis, an effect significantly more pro-
nounced in gene targeted mice lacking SGK1. Thus,
SGK1 is up-regulated following hypoxia/reoxygenation in
vitro and ischemia in vivo and counteracts apoptosis. It
has to be analyzed in the future whether such effects can
be demonstrated also in the transplant setting.

The extracellular matrix during I/R injury

Extracellular matrix turnover influenced by matrix met-
alloproteinases seems to play an important role for tissue
remodeling after ischemia/reperfusion injury. Particu-
larly the matrix metalloproteinases 2, 3, and 9 have been
shown to influence tissue repair. In experimental models
of I/R injury an inhibition of MMPs significantly reduced
tissue damage [71-73].

Experiments of our group in a chronic rat kidney trans-
plantation model demonstrated that, as expected, ani-
mals receiving delayed treatment (week 12-20 after
transplantation) with the matrix metalloproteinase inhib-
itor BAY 12-9566 developed severe fibrosis and proteinu-
ria as compared to non-treated animals [22]. However,
when BAY 12-9566 was administered early (day 0-10 after
transplantation), tissue damage was reduced with better
graft performance. This provides evidence for the con-
cept that an early time restricted intervention of an
inflammatory process would have long lasting positive
effects although the specific treatment has already been
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terminated. The reason for the beneficial effect of an
early MMP-inhibition after transplantation could be a
reduced degradation of basal membranes as well as other
extracellular matrix components resulting in a preserved
tissue structure as well as a reduced generation of
chemotactic substances reducing tissue infiltration with
inflammatory cells.

Strategies of organ preservation

Cold preservation

Cold preservation is to date the standard procedure in
reducing graft damage after ischemia and reperfusion.
Strategies to add new additives to existing storage solu-
tions or the development of completely new storage solu-
tions, respectively, are under investigation [74]. Additives
to cold storage solutions such as the p38 MAPK inhibitor
FR 167653, the colloid polyethylene glycol, that reduces
ATP depletion and inhibits calcium accumulation within
the cells, have been successfully used in order to reduce I/
R damage after transplantation [75-77]. However, the
problem of cold injury itself, the difficulty to assess organ
viability during cold storage and the development of I/R
injury all make passive cold storage difficult for future
improvements of strategies.

Donor preconditioning

Basically, the above mentioned strategies to modulate
chemokines/cytokines, NF-«B, and protective genes can
not only be applied in the recipient but also in the donor.
However, in clinical settings this poses some ethical/legal
as well as medical problems. It must be clarified that the
interventions to protect against the development of I/R
injury are not only helpful for the target organ but are
also not harmful for the other potentially transplantable
organs. Furthermore, donor preconditioning might be
more effective if it would be initiated even before the
diagnosis of brain death is established. However, this
could be rather difficult from an ethical point of view.

On this note, a study of donor preconditioning with
dopamine has been recently published [78]. In this ran-
domized controlled trial the authors treated donors after
the diagnosis of brain death with dopamine which
resulted in a better acute graft outcome with reduced
need for dialysis post-transplant although graft survival
did not differ significantly between the groups. The
authors suggested that these effects could be related to
the protection of endothelial cells during cold storage
from oxidative stress as hypothermic cell death and intra-
cellular calcium accumulation are reduced by dopamine.
Hypothermic machine perfusion
Hypothermic ex vivo perfusion of the graft using a perfu-
sion machine is under investigation since many years.
Clinical studies showed that a better graft function with a
reduced rate of delayed graft function after machine per-
fusion [79,80] which is in line with a metaanalysis sug-
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gesting a better graft outcome and cost effectiveness over
the long-term after hypothermic machine perfusion as
compared to the standard procedure of cold graft storage
[81]. However, future research must demonstrate the
practical clinical value of this approach.

Normothermic preservation

Normothermic preservation would have the potential to
overcome the mentioned problems of cold storage, I/R
injury, cold injury and problems to assess graft viability
during storage [74]. Normothermic preservation has not
only the potential to preserve organs but also to provide a
basis for better recovery of graft function as compared to
hypothermic preservation methods. The basis of the
technique is to provide a physiological environment for
the graft during the storage period using special perfu-
sion solutions. It can be performed in multiple ways
including blood based techniques with oxygenation. It
has been used in the setting of heart, kidney, and liver
transplantation with most experiences available in liver
transplantation while it still has to find its way into clini-
cal practice [82-84].

Summary

Ischemia/reperfusion injury belongs to the main reasons
for inflammatory reactions in solid organ allografts with
profound influence on acute as well as long-term graft
function. During recent years the interplay of the innate
immune system with the adaptive immune system has
become clearer for the pathogenesis of I/R injury. This is
mediated by a number of cytokines/chemokines, adhe-
sion molecules, transcription factors, and other pro-
inflammatory compounds which can be specifically
blocked resulting in a profound reduction of I/R injury.
However, most of these approaches have not been trans-
ferred into clinical trials or even clinical treatment proto-
cols. To date preservation techniques in the field of cold
storage are available for clinical use while techniques for
normothermic storage are intensely studied. Future
research will concentrate on donor pretreatment/precon-
ditioning as this would make prevention of I/R injury fea-
sible.
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