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Abstract

Activation of nuclear factor-kappa B (NF-κB) as a mechanism of host defense against infection and stress is the central
mediator of inflammatory responses. A normal (acute) inflammatory response is activated on urgent basis and is
auto-regulated. Chronic inflammation that results due to failure in the regulatory mechanism, however, is largely
considered as a critical determinant in the initiation and progression of various forms of cancer. Mechanistically, NF-κB
favors this process by inducing various genes responsible for cell survival, proliferation, migration, invasion while at
the same time antagonizing growth regulators including tumor suppressor p53. It has been shown by various
independent investigations that a down regulation of NF-κB activity directly, or indirectly through the activation of
the p53 pathway reduces tumor growth substantially. Therefore, there is a huge effort driven by many laboratories to
understand the NF-κB signaling pathways to intervene the function of this crucial player in inflammation and
tumorigenesis in order to find an effective inhibitor directly, or through the p53 tumor suppressor. We discuss here on
the role of NF-κB in chronic inflammation and cancer, highlighting mutual antagonism between NF-κB and p53
pathways in the process. We also discuss prospective pharmacological modulators of these two pathways, including
those that were already tested to affect this mutual antagonism.
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Introduction
Cancer is an extremely complex disease caused by cells
that have lost their usual control over growth. The appar-
ent cause of cancer formation may differ case by case,
however the basic mechanism is thought to be the fol-
lowing. There are two classes of genes that can control
cancer development. Oncogenes and tumor suppressor
genes belong to one class, while the other class belongs to
the caretaker genes. Healthy cells follow standard rules of
growth and proliferation, and have a definitive life span. In
contrast, cells with an oncogenic activation undergo much
faster cell division with an indefinite life span. Tumor
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suppressor genes are evolved to inhibit deregulated cell
growth. Usually cancer formation ensues when activation
and inactivation of an oncogene and a tumor suppres-
sor gene, respectively, occur in a cell at the same time.
The caretaker genes control the rate of mutation in the
genome. A defective caretaker gene would allow accu-
mulation of mutation in the genome and thus leading to
a higher rate of tumor formation. Therefore, cancer for-
mation occurs due to functional defects in multiple genes.
Heredity plays important role in cancer formation.

However, it appears to be a small causal factor com-
pared to incidence attributed to the modern lifestyle and
environment. Smoking, high calorie diet, obesity, alco-
hol consumption, chronic infection, exposure to radi-
ation and environmental pollutants are considered to
be the major risk factors for cancer formation [1]. In
fact about 95% cancer can link modern life style and
environment with inflammation as the basic underlying
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cause [2]. An acute inflammatory response is transient,
self regulatory and protects our tissues from infection in a
healthy cell. The level of pro-inflammatory cytokines that
rises to the peak at the height of the response eventually
leads to the production of anti-inflammatory cytokines
[3]. Thus an acute inflammatory response is faded off to
complete the process of healing. In contrast, chronic or
persistent tissue inflammation or irritation is correlated
with adverse effects and has long been linkedwith increas-
ing rate of tumor formation by epidemiological studies
[4-6]. Cancer promoted by chronic inflammation (called
‘arbuda’) has been cited in Ayurveda, a form of Indian
traditional/alternative medicine ˜5000 years ago. Virchow
(in1858) also had observed frequent cancer origination at
the site of chronic irritation [4].

Inflammation as a natural host protective
mechanism
As a default mechanism, a cell promptly responds to a
tissue injury through activation of innate immunity. The
first line of defense is launched by the resident immune
cells such as macrophages, dendritic cells, neutrophils,
eosinophils, mast cells, natural killer cells present in all
tissues. Although neutrophils are the first effectors in
acute inflammation, eosinophils are also recruited first
sometimes. Monocytes then move to the site of injury
and differentiate into macrophages which upon activation
release soluble mediators such as interleukin 1β (IL-1β),
tumor nicrosis factor α (TNF-α) interferon IFN-γ and
chemokines as major effectors of local microenvironment.
The mast cells as well affect the local microenviron-
ment at the site of inflammation by secreting sev-
eral pro-inflammatory mediators including histamines,
matrix remodeling proteases to signal migration of dif-
ferent leukocytes (neutrophils, eosinophils, basophils)
from adjacent blood vessels to the site of inflammation.
Transendothelial migration of a leukocyte is accomplished
through distinct sequential steps as follows: Attach-
ment of circulating neutrophil on the vessel endothelium;
Stretching and rolling of the attached leukocyte on the
endothelium surface; Immobilisation and transendothe-
lial migration of leukocytes to accumulate to the site
of inflammation [5,7]. The process of a leukocyte adhe-
sion and rolling on the vascular endothelium surface
is mediated by the interaction of the activated E-, and
P-selectins on the leukocyte with the intercellular adhe-
sion molecules ICAM1 and ICAM2 on the endothe-
lium. Tight interaction of integrins such as CD11a/αLβ2,
α4β1, α4β7 αLβ2 with the adhesion molecules VCAM1,
MadCAM1 help leukocytes immobilized on the vessel
endothelium to migrate to the site of injury [8,9]. Neu-
trophils are the first leukocytes to migrate to the site
of injury followed by monocytes. Leukocytes, at the
site of injury, release highly bioactive agents including

reactive oxygen species (ROS), nitric oxide (NO), cationic
peptides, eicosanoids, different matrix metalloproteases
(MMPs) and elastases, clear the cell debris and invading
agents through a phagocytosis like process [10,11].
An innate immune reaction (inflammation) associates

with appearance of correct profile of chemokines as well
as cytokines in an appropriate order at the site of inflam-
mation and is self limiting [12]. A normal inflammatory
response is followed by its resolution, and is accompa-
nied by down regulation of proinflammatory cytokines
by expression of anti-inflammatory cytokines such as IL-
10 [10,13]. Regulatory T cells (Tregs) serve as important
source of IL-10 [14]. Patients with mutation in IL-10
receptor develop aggressive diseases, and mice without an
IL-10 receptor spontaneously develop inflammation asso-
ciated colitis correlating with development of colorectal
cancer [15]. This function of IL-10 is mediated through
inhibition of NF-κB activity involving STAT3 resulting
the reduced expression of proinflammatory cytokines like
TNF-α, IL-6 and IL-12 [16-19]. Many oncogenic factors
are cooperatively regulated by STAT3 and NF-κB [20].
Another mode of NF-κB inhibition is mediated through
activation of TNFAIP3 gene encoding A20. A20, a ubiq-
uitin editing enzyme with E3 ubiquitin ligase as well as
deubiquitinase activities, negatively regulates NF-κB sig-
naling by stepwise deubiquitination and ubiquitination of
adaptor molecules associated with TNF-α and IL-1 recep-
tors [21]. CYLD, another deubiquitinase negatively regu-
lates NF-κB signaling by targeting several key molecules
including NEMO/IKKγ , and TNF receptors associated
factors TRAF2 [21].

Correlation between chronic inflammation and
cancer
Both epidemiologic as well as clinical studies strongly
correlate chronic inflammation with tumor formation
[5,12,22,23]. Many individual malignancies are known to
originate at the site of chronic infection where the source
of infection could range from environmental agents to
viral particles. It was estimated earlier that out of 2.2
million cancer cases diagnosed in the world on average
more than 15% cases (22% in the developed and 7% in the
developing world) can be rooted to infection [24]. There
is about 1.2 million new cases of colorectal cancer each
year which is majorly caused by chronic inflammation and
takes about 60000 lives per year [25]. Persistent inflam-
mation that may result from environmental factors such
as exposure to asbestos, smoke, and UV irradiation has
been underscored in lung and skin cancer [26,27]. Long
term alcohol consumption can cause chronic inflamma-
tion in the liver and thus cancer [28,29]. Chronic infection
by bacteria can be equally cancerous as well. Helicobacter
pylori infection has been strongly associated with stom-
ach cancer and MALT-lymphoma in the world [30,31].
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Gastric cancer is the second most prevalent cancer in the
world [32,33]. Chronic acid reflux is considered as a major
reason for esophageal cancer [34].
Schistosomiasis, caused by infection with parasite genus

Schistosoma predisposes individuals with increased risks
of cancer in internal organs such as bladder and colon
[5,35,36]. In fact, schistosomiasis is a socioeconomically
devastating disease in developing countries like Asia and
Africa [37]. The parasite Opisthorchis viverrini infection
can lead to cancer in the bile duct, a rare kind of adenocar-
cinoma [38]. Inflammatory bowel disease such as Crohn’s
disease and chronic ulcerative colitis are two good exam-
ples of intestinal diseases caused by chronic infection that
affect millions of people in the world each year [35,39,40].
Persistent viral infection is thought to be a major cause

of hepatocellular carcinoma (HCC). HCC is a third major
cause of cancer related death worldwide which claims
about 60000 lives each year. About 90% of HCC devel-
ops due to chronic infection caused by various agents
such as hepatitis B and hepatitis C viruses and, long
term alcohol consumption or non alcoholic fatty liver
[28,41-44]. Activation of oncogenes is caused by direct
insertion of viral DNA such as human papilloma virus
(HPV) and Epstein bar virus (EBV), although other mode
of actions including degradation of tumor suppressor by
viral protein could be critical player in the carcinogene-
sis process. In cervical cancer E6 protein of HPV degrades
p53 tumor suppressor [45]. EBV, a common virus found
in human, is conditionally responsible for several can-
cers such as Hodgkins lymphoma, Burkitt’s lymphoma,
nasopharangial carcinoma and lymphoma in the cen-
tral nervous system (CNS) [5,46,47]. Inflammation was
thought to be an essential component in Rous sarcoma
virus mediated tumor formation as well [48].
While chronic inflammation is a cause of various can-

cer as described above, prolong suppression of innate
immune response pathway has also been attributed to
increased risk for cancer [12,49]. Long term use of antibi-
otics has been attributed to increased risk of breast cancer
[50]. Use of antibiotics has been reportedly associated
with increased prostagalandin E2 production catalysed by
cyclooxygenases [51]. In fact, mice defective in produc-
ing interferon gamma and granulocyte stimulating factor,
spontaneously carry low level of inflammation in various
tissues that have been correlated with different types of
cancer [22,52].

Role of NF-κB in chronic inflammation and cancer
Role of NF-κB in inflammation was anticipated from
the early phase of its discovery; it was activated by
various cytokines to subsequently activate the same
and other proinflammatory cytokines, chemokines, and
adhesionmolecules, acute phage proteins, inducible effec-
tor enzymes, regulators of cell proliferation and apoptosis.

Based on the functional significance associated with
innate and adaptive immunity and cell proliferation it is
expected that the NF-κB activity is tightly regulated in a
cell such asmacrophage, dendritic cell or lymphocyte [53].
NF-κB was first discovered as an activity that binds to

the κB elements on the immunoglobulin kappa light chain
enhancer in the B cells although it occurs, as discovered
soon after, in all cell types [54,55]. NF-κB, refers to a
group of five structurally related and conserved proteins
in mammals i.e., RelA/p65, Rel/cRel, RelB, NF-κB 1/p50,
and NF-κB 2/p52. The p50 and p52 are synthesised as
larger precursors of p105 and p100, respectively [56]. The
family members consist of well defined domain structure
correlated with their distinct functions. The N-terminal
rel homology domain (RHD) is required for formation of
homodimers, or heterodimers between the members that
is necessary to execute their transcriptional function [57].
The nuclear localization signal (NLS) resides towards the
c-terminus of RHD. A major regulation in NF-κB activity
is executed through controlling the trafficking of NF-κB
between the nucleus and cytoplasm [53]. In unstimulated
cells, the majority of cellular NF-κB is sequestered in the
cytoplasm by binding to the inhibitor IκB. IκB, specifi-
cally inhibits NF-κB DNA binding function by trapping
the NF-κB in the cytoplasm. In IκB-NF-κB complex, the
NLS of NF-κB subunits is masked by ankyrin repeats
[58]. Except p50/p50 and p52/p52 that are implicated in
the repression of transcription, most NF-κB heterodimers
act as transcriptional activators [59]. p50/50 and p52/p52
homodimer do not have an activation domain but can
activate gene expression by a nuclear mediator [57,60,61].
Activation of NF-κB is mediated by various receptors

located on the extra and intracellular membrane. Major-
ity of the knowledge on NF-κB activation pathway came
from studying the activation of family of receptors in
the class of IL-1 and TNF-α. Cytokines such as IL-1β ,
TNF-α, can act in paracrine as well as autocrine man-
ner to activate the NF-κB activity through their cognate
receptors on the cell surface. Toll like receptors (TLRs)
belonging to the IL receptor family are a group of mem-
brane anchored receptors activate NF-κB in response to
specific pathogen associated molecular patterns (PAMPs)
including LPS, flageller protein like flagellin, viral dou-
ble stranded RNA and many pro-inflammatory cytokines
(Figure 1) [53,62,63]. Nod (nucleotide-binding oligomer-
ization domain)-like receptors (NLRs) often considered
cytoplasmic counter parts of TLRs are a group of 20
receptors activated by bacterial components and toxins
to activate NF-κB [64-67]. NLRs localized in the cytosol
in mammals are also sensitive to signals created by the
presence of dying and injured cells [68,69]. C-type lectin
receptors (CLRs) are another group of integral mem-
brane bound receptors present predominantly on the
myeloid cells i.e., monocyte, macrophage, granulocyte and
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Figure 1 Activation of NF-κB signaling through canonical and alternative pathways. Different cytokines and pathogen associated molecules
(PAMs) interact with their specific receptors (cytokine receptors:TNF receptor, IL1 receptor; PAMs recognize TLRs present on outer cell membrane
(TLR1,-2,-4,-5,-6, and -10) or on the endosomal membrane (TLR3, -7, -8 and -9) in the initial stage of NF-κB activation pathway. The activated receptor
recruit the adapter components (not shown) such as Myd88 and TRIF (TIR domain-containing adaptor inducing IFN-γ , except TLR3 which utilizes
TRIF without Myd88 (Myeloid differentiation primary response protein 88) to transmit the signal through activation of several mediators
components including IRAK4 (IL1 receptor associated kinase 4), TRAF6 (TNF receptor associated factor 6), to activate IKKK i.e., MEKK1 (mitogen
activated protein (MAP) kinase/extracellular signa l regulated kinase (ERK) kinase kinase 1), MEKK3 and TAK1 (transforming growth factor β activated
kinase) to act to phosphorylate IKK complex. The activated IKK modifies the inhibitor IκB for its proteasomal degradation. NF-κB is released free to
enter into the nucleus for transcriptional activation of the target genes. The canonical pathway is active in innate immunity, inflammation and cell
survival; the alternative pathway mediates the humoral immunity.

dendrtic cells work in conjunction with the TLR and
NLR [70]. Triggering receptors expressed onmyeloid cells
(TREM) proteins are yet another group of cell surface
expressed receptors that are involved in the regulation of
inflammatory response by leukocytes and differentiation
of immune cells [71]. TREM-1 protein expressed on neu-
trophils and monocytes activates NF-κB in response to
bacterial products [72-74].
Upon interaction with a ligand, an activated recep-

tor transmits the signal to IκB kinase (IKK) complex
through a mediator kinase [75]. Several kinases have been
identified to act on IKK. Transforming growth factor β-
activated kinase 1 (TAK1) mediated phosphorylation of
IKK has been reported in response to several different
stimuli such as IL-1 [76] and ubiquitin [77], TNFα [78]
and LPS [79]. MEKK3 is another kinase that has been
implicated in IKK activation in response to certain stimuli

[80,81]. Role of autophosphorylation in IKK activation
has also been implicated in certain virus-induced NF-κB
activation [75,82].
There are two distinct NF-κB signaling pathways:

canonical and non-canonical or alternate pathway. The
canonical pathway involved in innate immunity is acti-
vated by pro-inflammatory stimuli including e.g., TNF-α,
various interleukins, microbes, and virus related ligands.
The alternative pathway on the other hand is associated
with adaptive immunity such as lymphoid organogene-
sis and is stimulated by B cell activating factor (BAFF)
[83-85], CD40 ligand, lymphotoxin β (LTβ) [84] and
receptor activator of NF-κB ligand (RANKL) [86].
The IKK complex is a critical regulator of NF-κB acti-

vation pathway. The IκB kinase (IKK) involved in the
canonical pathway is composed of IKKα IKKβ and the
regulatory subunit IKKγ or NEMO [87-89]. Although the
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three components of IKK complex is crucial for activa-
tion for NF-κB, evidence of NF-κB independent function
of IKKβ also exists [90]. In contrast, the IKK involved in
the alternate/noncanonical pathway is composed of IKKα

and IKKβ [84]. The alternative pathway deals with the
processing of p100 and translocation of p52-RelB dimer,
and depends on the phosphorylation of IKKα not IKKβ

by NF-κB inducing kinase (NIK) [53,83,84]. The activated
IKK phosphorylates conserved residues on both IκBα (at
ser32 and ser36) and IκBβ (at ser19 and ser23) [82,91,92].
Phosphorylation induced conformation change tags IκB
for recognition by the receptor subunit βTrCP for polyu-
biquitination by specific E3 ubiquitin ligase of Skp1-
Cull/F-box (SCF) family [93-95]. The polyubiquitinated
IκB undergoes rapid degradation by proteasome, allow-
ing NF-κB such as p50:p65 heterodimer to enter into the
nucleus, and bind to the κB motif on the target gene
promoters for activation [53,56,96]. Because of the pres-
ence of activation domain (AD), only NF-κB containing
RelA/p65, RelB and cRel subunits can act as activator. Due
to lack of AD, p50 and p52 homo and heterodimer asso-
ciate with gene repression. The κB boundNF-κBmediates
transcription activation function through recruitment of
various coactivator including p300/CBP, or PCAF. Differ-
ent post-transcriptional modifications (PTMs) including
phosphorylation, acetylation, ubiquitination, nitrosylation
of NF-κB were shown to influence this process [54,97].
For example, phosphorylation of p65 subunit by PKA
and or MAPK at ser276 and ser311 by PKCζ stabilizes
RelA/p65-CBP interaction [97].
An innate immune response initiated by infection or

injury recruits immune cells (such as neutrophils) at the
site of injury as a protection mechanism. During this pro-
cess neutrophils release several highly active antimicrobial
agents such as reactive oxygen species, charged peptides,
and proteases. Normally, these antimicrobial activities
are required for a short period of time as the wound
is repaired and self limiting. Secretion of these agents,
however, for more than normal period may result in the
induced genotoxicity complicated by the constant pres-
ence of inflammatory cells. A chronic inflammation asso-
ciates with a constitutive activation of NF-κB as a result
of either an imbalance in the inflammatory signaling net-
work such as inefficient anti-inflammatory mechanism,
or persistent infection with pathogens. Furthermore, con-
stant presence of pathogen proteins, activation of a kinase,
over expression of a cytokine, and PAMP receptor can
drive NF-κB mediated gene expression to promote tumor
initiation, progression, invasiveness and its persistence. In
fact, the link between NF-κB and cancer was first sus-
pected by its close structural similarity with viral oncopro-
tein v-Rel [98,99]. Identification of translocation of Bcl3, a
member of IκB family in chronic lymphoblastic leukemia
(CLL) had at that time reaffirmed the connection of

NF-κB with cancer [100]. The significance strengthened
when it was discovered that many cancer had constitu-
tively active NF-κB, and that down regulation of NF-κB
makes these cells more sensitive to treatments includ-
ing chemo and radiation therapies [101,102]. Directed
inhibition of NF-κB activity regresses tumor growth in
mouse models of lung and colitis associated cancers in
addition to tumor suppression in xenograft experiments
[25,103-105].
Deregulation at any stage in the NF-κB activation

pathway can lead to persistent NF-κB activation/chronic
inflammation and eventually cancer [12,23,106]. Under
this condition, resident immune cells such as macro-
phages and mast cells constantly monitor the tissue
microenvironment, and sense the invading pathogen with
pathogen associated molecular pattern (PAMP) through
toll like receptors (TLRs) (Figure 1). Thus, TLRs are
the first line of sensors for activation of innate immune
response. Both epidemiological as well as genetic data link
NF-κB activating receptors with cancer [106].Mutation in
TLR cluster TLR1-6-10 in combination with interleukin
receptor associated kinase (IRAK) 1 and 4 has been linked
with greater risk of prostate cancer [107]. An elevated
expression of several TLRs has been associated with dif-
ferent cancer types as well [108,109]. In both mouse and
human colorectal cancer TLR4 is over expressed, and
mice deficient in TLR4 are insensitive to colon cancer
[110]. Thus, TLRs are potentially important drug targets
for cancer treatments. As well testing TLR expression
profiling in patients is being considered as cancer diagnos-
tic marker [111]. Linkage analysis detected association of
30 different genes including mutation in NOD2, a mem-
ber of PAMP receptor with the increased incidence of
Crohn’s disease [112,113] and inflammatory bowel dis-
ease [114]. This has been linked with increased IL-1β
production in the inflammatory milieu [23,115]. Several
other findings associate DNA mutation with enhanced
IL-1β activity, particularly in gastric cancer [116,117].
Notably, abundant IL-1β level in cancer environment
associated with increased cancer invasiveness and is con-
sidered a good therapeutic target [23,118,119]. Many can-
cers originate due to paracrine/autocrine expression of
cytokines such as IL-1β and TNF-α which constitutively
activate NF-κB by activation of their cognate receptors
[53,120,121].
Abnormal activation of IKK has been implicated in

many different cancer types including breast, prostate,
brain and colon cancer, melanoma mantle cell lymphoma
as recently reviewed elsewhere [75,121]. Vlantis et al.
[105] showed that a constitutive overexpression of IKKβ

in the intestinal epithelial cells (IEC) resulted in both
inflammation and tumorigenesis. The IKKβ overexpress-
ing in IECs have elevated levels of pro inflammatory
cytokines such as TNF-α, IL-1β and various chemokines
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attracting increased level of infiltrated inflammatory
immune cells. The elevated cytokine and chemokine levels
modulate Wnt/βcatenin signaling leading to the activa-
tion of several IEC-associated stem cell factors providing
a possible explanation for a switch from inflammation
to transformation. Role of Wnt/β -catenin pathway in
intestinal cancers has already been implicated [122].
These studies noted IKKβ as a potential therapeutic tar-
get in colorectal cancer. In MALT lymphoma resulting in
AP12-MALT1 fusion leads to the constitutive activation
of NF-κB through aberrant IKK activity [16]. MUC1 over
expressed in several cancers activate NF-κB -p65 through
direct interaction with IKKβ and IKKγ [123]. In normal
B lymphocytes CARD11 acts as a cytoplasmic scaffolding
protein which coordinates the signal mediated- activa-
tion of IKK activity. Mutation in the coiled-coil domain of
this protein resulting in the gain of function in the form
of constitutive activation of IKK as observed in the dif-
fuse B cell lymphoma [124]. In human T cell leukemia
virus 1 (HTLV1) mediated transformation of host cell,
the HTLV-1 protein Tax constitutively activate NF-κB by
direct interaction with the IKK complex [125].
Thus far a constitutively active mutation in the NF-

κB protein itself has not been found. Bcr-Abl, a tyrosine
kinase, supports acute lymphoblastic leukemia (ALL) and
chronicmyelogenous leukemia (CML) by inducing NF-κB
function through enhancing nuclear translocation of NF-
κB. A defective IκB leads to constitutively active NF-κB in
theHodgkin cells [126]. An overexpression of tissue trans-
glutaminase (TG) underlies a basis of many aggressive and
drug resistant cancers including pancreatic ductal carci-
noma [127]. Mann et al. have shown that elevated levels
of TG drives constitutive NF-κB overexpression in these
cancers [128].
While NF-κB promotes oncogenic potential of cells by

driving expression of genes encoding prosurvival and pro-
liferative functions, it is also antagonistic with tumor sup-
pressor such as p53 [106,129]. For example, NF-κB target
gene MDM2, an ubiquitin E3 ligase drive p53 for protea-
somal degradation [130]. P53 can also antagonise NF-κB
by competing for cellular p300/CBP and vice versa [131].
Several other tumor suppressors including ARF (p14ARF)
and PTEN may also antagonize transcriptional activation
and function of NF-κB [132-135]. Putative tumor sup-
pressors LZAP (LXXLL/leucine-zipper-containing ARF-
binding protein), transcription elongation factor A like 7
(TCEA7) and CHFR (check point with forkhead and ring
finger domains) can also antagonize with NF-κB activity
by interfering with the transcriptional activities of RelA
subunit [136-138]. While cross-talk activities of NF-κB
with the tumor suppressors is finely controlled during
normal cellular homeostasis, a deregulation in any of the
control points can result in its deregulation adding to
tumor promoting capability of NF-κB [133,139].

Role of p53 in inflammation: p53 and NF-κB
antagonizes each other’s function
Tumor suppressor p53 is one of the most extensively stud-
ied proteins due to its functional association with the
maintenance of genomic integrity. In fact, in more than
50% cancers the p53 protein is either absent or nonfunc-
tional due to various other reasons. p53 is termed ‘the
guardian of genome’ for the major function it plays in pro-
tecting cells from transformation and genomic mutation
in response to a various stressors including DNA damage,
oxidative stress, and oncogene activation through activa-
tion of cellular process like cell cycle arrest, apoptosis,
or senescence [140,141]. Activation of p53 also associates
with induction of other important processes including
autophagy, angiogenesis, cell migration, and differentia-
tion [141].
A healthy cell constitutively maintains p53 at low level

[142]. Usually, in an unstressed condition p53 is constantly
ubiquitinated byMDM2, an E3 ubiquitin ligase to channel
it to proteasomal degradation pathway [143]. MDM2, a
p53 transcriptional target gene, is upregulated as p53 level
goes up; an elevated MDM2 in its turn checks the normal
low level of p53 in the cell by funneling extra level of p53
to proteasome for degradation. Thus p53 andMDM2 con-
stitutively controls each others activity in a normal healthy
cell. MDM2 executes this function as a heterodimer with
a structurally related protein MDM4 (MDMX) [144,145].
MDM2 controls the activity of MDM4, also a p53 tar-
get gene, through its E3-ubiquitin ligase activity. Thus
p53 activity is tightly controlled by two autoregulatory
loops; one through MDM2 and another through MDM4.
The association of p53 with MDM2 and MDM4 is dis-
rupted with phosphorylation by various enzymes such
as DNA-PK, ABL, ATR, ATM and CHK -all activated
by genotoxic stressors [146]. Phsophorylation of MDM2
at ser17 and MDM4 at Tyr99 by DNA-PK [147] and c-
ABL [148], respectively, drives dissociation ofMDM2, and
activation of p53.MDM2was reported to inhibit p53 tran-
scription function by blocking p53 surface that interact
with the basal transcription factors such as TFIIE [149].
ATM and CHK1 kinases induced by genotoxic stress sig-
nals activate p53 by driving dissociation of MDM2 and
MDM4 through phophorylation [150]. In contrast, activa-
tion of AKT kinase function in cancer stabilizes MDM2
and MDM4 interactions resulting in inhibition of p53
activity [151,152]. In addition to simple dissociation of
p53 from its negative regulatorMDMproteins, removal of
ubiquitin moiety from p53 by ubiquitin proteases can lead
to its stabilization as well [142].
In fact, the major part of p53 tumor suppressor

activity is explained by its transcriptional activation
function. The active p53 undergoes extensive post-
translational modifications including phosphorylation,
acetylation, monoubiquitination, and neddylation guided
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by specific stress signals. A particular posttranslational
modification targets p53 to a subset of its target gene pro-
moters [153,154]. Furthermore, p53 executes its tumor
suppressor activity in tissue specifc manner [155,156].
A specific posttranslational modification may allow p53
to interact with a partner protein, or a promoter DNA
sequence contributing to tissue specific gene activation
[154,157].
Depending on the nature of signal p53 induces a

set of target genes resulting in a definite cell fate. For
example, expression of p21/WAF1, 14-3-3σ and Cdc25c
genes links with reversible cell cycle arrest at differ-
ent stages of cell cycle [158-161]. Elevated expression of
genes such as Puma (p53-upregulated modulator of apop-
tosis), Noxa, Bax (Bcl-2 associated X protein), Apaf-1
(Apoptotic protease activating factor-1) results in cel-
lular apoptosis [162]. Expression of Pai-1 (plasmino-
gen activator inhibitor type 1) and p21 associates with
a state of an irreversible cell cycle arrest or replica-
tive senescence [163,164]. Induction of DRAM (Damage-
regulated autophagy modulator) leads to autophagy [165].
In addition to its role in transcriptional activation, p53
is also implicated in transcriptional repression of many
genes involving various mechanisms [166].
In principle p53 should be induced in an inflamma-

tory condition, however, this is not the case normally. In
fact most cells have mechanisms to suppress p53 when
NF-κB is activated to tilt the situation in favor of the
cellular transformation process. Through various mecha-
nisms, NF-κBmay cripple cellular p53 activities (Figure 2)

[129,167]. MDM2-p53 network discussed earlier can be
interrupted by NF-κB. First, MDM2 is a NF-κB target
gene. NF-κB can suppress p53 levels by upregulating
the MDM2 expression mediated through Bcl3 [168], or
IKKβ [169]. It has been shown that DNA damage induced
upregulation of Bcl3 can inhibit p53 through upregula-
tion of Hdm2 gene transcription [168]. Bcl3, a member of
IκB family, helps activate NF-κB in a cooperative manner
in cellular proliferation [168]. It has been shown that the
presence of an active IKKβ can block doxorubicin induced
p53 mediated apoptosis and this event requires IKKβ

kinase function which is mediated by NF-κB through
MDM2 [169].
Activation of AKT (a serine threonin kinase) by PI3

kinase in response to growth factor, plays important role
in cancer cell growth and proliferation (mediated by
induction of anti-apoptotic mechanism). AKT favors pro-
survival pathway by inhibiting p53 and supporting NF-κB
activities at the same time. It inactivates proapoptotic Bad
protein through phosphorylation at three positions (at
ser112, -136 and -155) which prevents its binding with
anti-apoptotic protein Bcl-xL [170,171]. Bad, a member
of Bcl2 family proteins, is p53 target gene [171]. AKT
can block p53 accumulation and apoptosis by augment-
ing ubiquitin ligase activity of MDM2 activity through
phosphorylation [172]. AKTmediated phosphorylation of
MDM2 at ser166 and ser186 facilitates nuclear entry of
MDM2 and faster degradation of p53. AKT also activates
NF-κB through phosphorylation of both IKKα and IKKβ

subunits of IKK that facilitates nuclear translocation by

MDM2

NF-kB p53
p300/CBP

IKK

p300/CBP

-TrCP1

AKT

ARF

CHK1

ATR

Oxidative
phosphorylation

NFkB-IkB

-TrCP1

MDM2

Aerobic 
glycolysis

Inflammation

Survival

Growth

Proliferation
Growth arrest

Apoptosis

Senescence
DNA repair

Figure 2 NF-κB and p53 antagonises each others activity. Various mediators involved in the pathways are indicated. In addition, p53 and NF-κB
can inhibit each other by direct physical interaction through their multimerization domain. Eventually, the effect of activation NF-κB pathway
prevents the activation of p53 pathway and vice versa. The detail is described in the text. The black colored upward arrows adjacent to NF-κB and
p53 indicate activation of these transcription factors. MDM2: mouse double mute 2; β-TrCP1: beta transducing repeat containing protein1; ARF:
alternate reading frame of INK4/ARF locus; ATR: ATM-Rad3 related; CHK: check point kinase; IκB: inhibitior of kB; IKK: inhibitor of kappaB kinase.
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IκB phosphorylation and degradation [173]. Furthermore,
AKT was reported to activate IKKα in response to PDGF
[174], and IKKβ in response to TNFα [175].
IKKβ can also block cellular p53 stability through direct

post translational modification while activating NF-κB
through phosphorylation of IκB. It was shown that p53
can be phosphorylated at ser366 and potentially at ser362
by IKKβ facilitating its ubiquitination by β-TrCP, a mem-
ber of SCFb-TrCP E3 ligase complex and proteosomal
degradation [176].
ARF tumor suppressor known as p14ARF and p19ARF

in human and mice, respectively, induced upon onco-
gene such as E2F activation, has been shown to facili-
tate p53 activation [134]. ARF induces p53 accumulation
by inhibiting p53 association with MDM2/Hdm2 [177].
In addition, ARF was shown to block NF-κB function.
ARF inhibits NF-κB activation by inducing association
with histone deacetylase, HDAC1 [134]. RelA/p65 sub-
unit when phosphorylated at thr505 by Chk1 kinase was
shown to associate with HDAC1. ARF induction activates
Chk1 kinase via induction of ATR kinase [178].
An effect of p53 products on cell fate can be neutralized

by the products of the NF-κB target genes; NF-κB induced
antiapoptotic genes including Bcl2 can abrogate the pro-
apoptotic functions of PUMA, and Noxa induced by p53
[179].
In addition, Ikeda et al. showed that NF-κB/RelA

and p53 can inhibit each other’s activity through direct
physical interaction with multimerisation domains of the
transcription factors [180].
A major interference of p53 activity by NF-κB is medi-

ated by their use of a common coactivator p300 and CBP
for their optimal activity in response to a stress signal
[181,182]. It has been shown that through the depletion
of limited pool of cellular p300/CBP, NF-κB competes out
and thus represses p53 function [183]. IKKα mediated
phosphorylation of a specific amino acid residue on CBP
makes it preferentially utilized by NF-κB instead of p53
[131,184].
It was shown that ectopic expression of p53 inhibits NF-

κB function in a unique way; expression of p53 enhanced
NF-κB DNA binding but blocked it transactivation func-
tion [185]. NF-κB and p53 cross action has been asso-
ciated with the regulation of actin cytoskeleton function
and integrin signaling both of which play important role in
tumor progression. It has been shown that in the absence
of p53, STAT3 is constitutively activated in an NF-κB-
dependent manner which regulate lamellipodia formation
via integrin signaling [186].
Glucose metabolism is another aspect which is inversely

controlled by p53 and NF-kB. Absence of p53 enhances
NF-κB activity through activation of IKK kinase and
thereby increase the rate of glycolysis. It was shown
that absence of p53 upregulates expression of high

affinity glucose transporter GLUT3 as observed in tumor
microenvironment [187]. In contrast, activation of p53 has
been linked with reducing the expression of several glycol-
ysis regulating factor including glucose transporters [188].
In addition to slowing down glucose uptake, p53 induc-
tion was shown to promote oxidative phosphorylation
[189,190].
Finally, an inverse correlation between NF-κB and p53

has been demonstrated in model animals. First, it was
shown that mice bearing p53 null homozygous mutation
was born normal from embryonic stem cell but prone
to tumor formation during development starting at 6
month of age [191]. Later it was shown that p53-/- mice
had relatively higher level of proinflammatory cytokines
and chemokines and reduced level of oxidation prod-
ucts, while those mice ectopically expressed p53 carried
lower level of those cytokines compared to their respec-
tive controls. Komarova et al. also shown that LNCaP
cells transduced with p53 suppressor element expressed
much lower level of proinflammatory markers [192]. Fur-
thermore, treatement of cells with inducer of p53 caused
inhibition of NF-κB target genes expression [103,104].
Recently, Natarajan et al. shows that transduction of cells
with NF-κB activating polypeptides isolated by genetic
selection called as NF-κB activating selectable peptides
(NASP), reduced p53 accumulation [106].

Small molecule NF-κB inhibitors as
chemopreventive agents
The presence of constitutively active NF-κB apears to
be a common underlying factor in inflammation related
cancer (responsible for constitutive induction of different
prosurvival genes such as antiapoptotic genes: Bcl2, Bcl-
x; proangiogenic gene: VEGF; genes encoding metastatic
and invasion activities: MMPs). Consistently, both clinical
and epidemiological data suggest strong chemopreventive
potential for NF-κB inhibitors. Chemoprevention refers
to use of chemicals, including even food supplements to
prevent the development and progression of cancer.
Given the significance of NF-κB function, many lab-

oratories have undertaken prime interests to deliver a
specific and potent inhibitor of NF-κB pathway (Table 1).
A series of small molecules acting on single as well
as multiple steps in the NF-κB signaling pathway have
been reported, some of which are in various stages
of clinical trials [58,129,193,194]. The nature of these
molecules includes protein/antibodies, small peptide,
small RNA/DNA, and small molecular weight chemi-
cals. Development of inhibitors targeting basically every
possible step in the NF-κB signaling pathway is under-
way including molecules interfering with the receptor-
ligand interaction, interference of the adapter with the
activated receptor, activation of IKK and subsequent
phosphorylation leading to proteasomal degradation of
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Table 1 Selective inhibitors of NF-κB signalingpathways that inhibits IKK activity and IκBα phosphorylation and/or
degradation

Molecule Point of inhibition References

BMS-345541 (4(2-Aminoethyl)amino-1,8-dimethylimidazo(1,2-a) quinoxaline)
and 4-amino derivatives

IKKα and IKKβ kinase activity [210]

2-amino-3-cyano-4-aryl-6-(2-hydroxy-phenyl)pyridine derivatives IKKβ activity [211]

Acrolein IKKβ activity/p50 DNA binding [212]

1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole IKKβ activity [213]

Dihydroxyphenylethanol IKKβ activity [214]

MLB120 (small molecule) IKKβ activity [215]

SC-514 (small molecule) IKKβ activity [215,216]

Thienopyridine IKKb activity [217]

Amino-pyrimidine derivative IKK activity [58]

Benzoimidazole derivative IKK activity [58]

Butein IKKβ activity [218]

Beta-carboline IKK activity [219]

Berberine IKKβ activity [220]

IMD-0354 IKKβ activity [221]

PS-1145 (MLN1145) IKKβ activity [222]

17-Acetoxyjolkinolide B IKK activity [223]

CML-1 IKK activity [224]

CT20126 IKK activity/NIK [225]

Furonaphthoquinone IKK activity [226]

3-Formylchromone IKKβ activity/p65 DNA binding [227]

Indolecarboxamide derivative IKK activity [58]

(Amino) imidazolylcarboxaldehyde derivative IKK activity [58]

Imidazolylquinoline-carboxaldehyde derivative IKK activity [58]

ML120B IKK activity [228]

Pinitol IKK activity [229]

PMX464 IKK activity [230]

Pyrazolo[4,3-c]quinoline derivative IKK activity [58]

Pyridooxazinone derivative IKK activity [58]

N-(4-hydroxyphenyl) retinamide IKK activity [231]

Thalidomide (and thalidomide analogs) IKK activity [232]

Salubrinal IKK activity/degradation [233]

GS143 Blocks IκB ubiquitylation [208]

Delphinidin Phosphorylation [234]

Digitoxin Phosphorylation [235]

Dihydrotestosterone Phosphorylation [236]

Kaempferol Phosphorylation [237]

Tomatidine Phosphorylation [238]

Allylpyrocatechol Degradation [239]

Clomipramine/imipramine Degradation [240]

Glucosamine (sulfate or carboxybutyrylated) Degradation [241]

Losartan Degradation/NF-κB expression [242]

Pectenotoxin-2 Degradation [243]

Sevoflurane/isoflurane Degradation [244]
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IκB, nuclear translocation of NF-κB, binding of NF-κB
with the target gene promoter, and interaction of the acti-
vator with the co-activator (for detail list of inhibitors
see [194]). Normally the outcome of activation of NF-
κB is determined by the cross-talk among the paral-
lel signaling pathways such as p53, PTEN, and p38
MAPK [133].
A major point of regulation in the NF-κB activation cas-

cade involves signal induced release of NF-κB from IκB in
the cytoplasm (Table 1). A signal activated IKK phospory-
lates IκBα which is targeted by β-TrCPmediated ubiquiti-
nation and subsequent proteosomal degradation. β-TrCP,
the F-box component of SCF-E3 ubiquitin ligase, through
its WD40 domain recognizes the destruction motif of
IκBα in phosphorylation dependent manner [93-95].
β-TrCP inhibitors which target IκBα degradation in the
NF-κB activation pathway blocking the release of NF-κB
for entry into the nucleus have shown a great promise
in the treatment of disease such as multiple myeloma
(MM) [58,195]. MM cells are very sensitive to a pro-
teasome inhibitor like bortezomib due to two reasons:
a constitutively activated NFκB and an over dependence
on proteasome activity [196]. Bortezomib (or Velcade)
was the first drug as proteasome inhibitor (reversible
inhibitor) approved by US food and drug administration
for treatment of MM [197-199] (Table 2). By defini-
tion, however, proteasome inhibitors will be nonspecific
because cellular proteins recognized by the proteasome
regulating various signaling pathways will also be sen-
sitive to this treatment. For example, many proteasome
substrates not related to NF-κB pathway having pro-
apoptotic and cell cycle regulatory activities will be stabi-
lized and thus enhance bortezomib activity [200]. These
players include program cell death regulator (PDC4)
[201], myeloid cell leukemia 1 (Mcl-1) [202] and cell cycle
division cycle homologue 25A (CDC25A) [203,204]. Fur-
thermore, bortezomib treatment stabilizes a factor like β-
catenin, also a β-TrCP substrate. In fact, an elevated level
of β-catenin has been observed in several cancers includ-
ing colorectal and liver cancer [58,205-207]. However,
GS143, a proteasome inhibitor was reported to degrade β-
catenin. It was reported to block IκBα degration, not its
phosphorylation [208]. MG-132 was reported as another
specific, potent, reversible, and cell-permeable protea-
some inhibitor with Ki= 4 nM. It was shown to reduce
the degradation of ubiquitin-conjugated proteins in mam-
malian cells and in strains of yeast (with membrane per-
meable ability) by the 26S complex without affecting its
ATPase or isopeptidase activities. MG132 can also inhibit
NF-κB activation with an IC50 of 3 μM. MG-132 by
blocking IκBα degradation has been shown to potently
inhibit TNF-α-induced NF-κB activation, interleukin-8
(IL-8) gene transcription, and IL-8 protein release in A549
cells [209].

Although 35% MM patients respond to bortezomib, it
was a great success for treating MM and mantle cell lym-
phoma patients. Nevertheless, acquisition of resistance to
bortezomib in MM patients is common with reported
over expression of or mutation in the β5 subunit of the
proteasome catalytic core complex. This has led to the
development of second generation proteasome inhibitor
carfilzomib. Carfilzomib, reported to be a potent and
an irreversible inhibitor of the proteasome, that drives
higher rate of apoptosis has completed phase III clini-
cal trial [193,266-268]. Marizomib is another proteasome
inhibitor with increased potency and sustained inhibitory
activity compared to bortezomib [269-271]. Marizomib,
isolated from marine actinomycete Salinspora tropica is
the first irreversible proteasome inhibitor from natural
sources, had been in phase I clinical trial to assess its
efficacy against solid tumors and treatment of refrac-
tory multiple myeloma [272,273]. Marizomib blocks all
three catalytic sites of 26S proteasome. In addition, several
newly developed proteasome inhibitors including CEP-
18770, MLN-9709, ONX-0912, NPI-0052 are currently in
various phases of clinical trials for their efficacy against
myeloma and solid tumors [199,274-277].
Thalidomide and its analogues known as immunomod-

ulatory drugs (IMiDs), have anticancer as well as anti-
inflammatory effects. Recently, these agents, including
IMiD CC-5013 and IMiD CC-4047 [278], have shown
promise in clinical trials for the treatment of different
cancers. Among several different hypotheses, the inhibi-
tion of NF-κB activation has been proposed to explain
the therapeutic activity of thalidomide and related drugs
[279]. In endothelial cells, thalidomide blocks the degra-
dation of IκB-α by inhibiting IKK-β , which is consis-
tent with its role in inhibiting cytokine-induced NF-κB
activation [279]. The inhibitory effect of thalidomide
on TNF-α and H2O2-induced NF-κB activation is also
seen in other cell types, including T lymphocytes, and
myeloid and epithelial cells [280]. IMiD-induced apoptosis
in multiple myeloma cells is associated with downreg-
ulation of NF-κB DNA-binding activity, as well as the
reduced expression of NF-κB-dependent proteins [281].
Hence a major part of the immunosuppressive effects
of thalidomide might be due to inhibition of NF-κB
activation.
Cyclopentenone prostaglandins (cyPGs) are naturally

occurring prostaglandin metabolites which inhibit NF-κB
activation or activity [282]. This effect could be partly
due to the ability of cyPGs to activate the peroxisome
proliferation-activated receptor-γ (PPAR-γ ), which was
shown to antagonize NF-κB transcriptional activity [283].
The treatment of peritoneal macrophages with the cyPG
15-deoxy-�12, 14-prostaglandin J2 (15d-PGJ2) inhibits
the expression of inducible nitric oxide synthase (iNOS),
as well as NF-κB activity in a PPAR-γ -dependent manner.
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Table 2 Small moleculesmodulators of both NF-κB and p53 signalingpathways

Name of compounds Structure of the compounds Molecular
weights

Signaling pathways affected References

R-Roscovitine 354 a) Abrogates induction of NF-κB by
preventing IκB kinase (IKK) kinase activity,
NF-κB /p65-536ser phosphorylation
b) Induces p53 by disrupting p53-MDM2
interaction

[245-247]

Flavopiridol 438 a) Blocks steps in the NF-κB activation
pathway such as IκBα kinase and p65
nuclear translocation, and p65-529-ser
phosphorylation b) Reversibly activates p53
by inhibiting MDM2

[248-250]

Nutlin-3 581 a) Inhibits NF-κB targets ICAM1 and MCP1
transcription in p53 dependent manner.
b) Potent inducer of p53 by inhibitingMDM2
interaction

[251,252]

Curcumin 368 a) Inhibits IKKkinase, promoinflammatory
gene promoters such as TNF-2α, COX-1,
COX-2 b) p53 activation by inhibiting MDM2
c) modulation of other signaling pathways

[253-256]

Quinacrine 473 a) Inhibits both constitutive and inducible
form of NF-κB irrespective of the p53 status.
b) Activates p53

[104,167]

Curaxin (CBL 137) 338 a) Simultaneously suppress NF-κB both basal
and inducible states and activate p53 by tar-
geting FACT b) Inhibits NF-κB, activates p53
by inhibition of FACT complex

[103,167,257]

Benfur 322 Inhibits NF-κB activity which is
predominantly dependent on p53-mediated
pathway

[258]

Resveratrol 228 Inhibits NF-κB /p65 and p53
transcriptional functions by deacetylation of
specific residues

[259-262]

Pifithrin-α 367 Activation of NF-κB through blockade of
p53-p300 interaction

[263,264]

Bortezomib 384 Block of NF-κB and stabilization of p53 by
inhibiting E3 ubiquitin ligases

[265]

Here only parents compounds were mentioned. Compounds are in dervatizations for better functional efficacies are described/referred in text/table.
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However, cyPGs can directly inhibit activation of NF-κB
pathway by blocking IKK-β activity [284].
Nonsteroidal anti-inflammatory drugs (NSAIDs) are

known to act as protective agents in cancer treatments,
in particular inflammation associated cancer in model
animals and humans. Although NSAIDs are popularly
known as the blocker of prostaglandin (PGE) synthesis by
COX-2, they have considerable NF-κB inhibitory activi-
ties unrelated to COX inhibition. COX-2, the rate limiting
enzyme for production of PGE from arachidonic acid
is NF-κB inducible [285-287]. Indomethacin and related
compounds sulindac, sulindac sulfide and sulindac sul-
fone, were shown to block IKKβ kinase activity in colon
cancer and other cell lines [288]. Aspirin and salicylate
act as competitive inhibitors of IKK-β for its ATP bind-
ing pocket and thus prevent IκB phosphorylation and
NF-κB activation [289]. These NSAIDs are also shown to
blockNF-κBmediated expression of VCAM-I and ICAM-
I induced by TNF-α [288]. Salicylate is also reported
to prevent expression of endothelial leukocyte adhesion
molecule and leukocyte transmigration through endothe-
lial monolayer [290]. Sulphasalazine is another NSAID
that is widely used to treat inflammatory bowel disease.
This compound is cleaved following oral administration
to 5-amino-salicylic acid (5-ASA) and sulphapyridine.
The treatment of human colonic epithelial cells with sul-
phasalazine, but not 5-ASA or sulphapyridine, inhibits
NF-κB activation through blocking IκB phosphorylation
and degradation in response to TNF-α, LPS or phorbol
esters [291]. However, in a more recent study, 5-ASA
was shown to block NF-κB activation by inhibiting both
IKK-α and IKK-β kinase activity in mouse colonic cells
[292]. Mesalamine, a related aminosalicylate, can block
phosphorylation of p65 without affecting IκB degradation
[293]. These results indicate that these agents can block
the NF-κB activation pathway at multiple steps.
‘The development of selective IKK or NF-κB inhibitors

has been undertaken by several pharmaceutical indus-
tries (Table 1). Yet, no potent IKK-α-specific inhibitors
have been described so far. Several compounds, which
are under development, can inhibit IKK-α kinase activ-
ity in the low micromolar range, although these agents
were initially identified as IKK-β inhibitors. The unique
role of IKK-α in the alternative pathway, important for
B-cell mediated responses, and the recent demonstration
of the auxiliary role of IKK-α in the classical pathway,
indicate that IKK-α might be an important target for ther-
apeutic intervention in autoimmune diseases and cancer
[84,294-296]. By comparison, the development of specific
IKK-β inhibitors has progressed rather rapidly. Although
most IKK-β inhibitors reported so far are still in pre-
clinical stages of development, a number of novel small-
molecule inhibitors of IKK-β have been described. For
example, SPC-839, a member of a series of quinazoline

analogues developed by Celgene [297-299], is one of
the more extensively studied IKK-β inhibitors. SPC-839
inhibits IKK-β with an IC50 of 62 nM, and has a 200-
fold selectivity for IKK-β over IKK-α (IC50 = 13 μM).
Several groups have indicated the inhibition of IKK-β
activity by β-carboline derivatives [222,300,301]. PS-1145,
which was developed from a β-carboline natural prod-
uct inhibits the IKK complex with an IC50 of 150 nM,
blocks TNF-α-induced IκB phosphorylation and degrada-
tion in HeLa cells [222]. Another molecule that inhibits
IKK-β is BMS-345541, which is an imidazoquinoxaline
derivative [210,302]. BMS-345541 shows greater than ten-
fold selectivity for IKK-β (IC50 = 0.3μM) over IKK-α
(IC50 = 4μM). In addition, several other compounds
like ureidocarboxamido thiophenes [303-305], 2-amino-
3-cyano-4,6,-diarylpyridines [306-308], anilinopyrimidine
derivatives [309], a group of optically active pyridine
analogues [310], and a group of related pyridyl cyano-
guanidines [311,312] have been reported as nanomolar-
range selective inhibitors of IKK-β kinase activity. Bay
11-7082 (BAY) is an inhibitor of κB kinase (IKK) that has
pharmacological activities that include anticancer, neu-
roprotective, and anti-inflammatory effects. BAY-11-7082
selectively and irreversibly inhibits NF-κB activation by
blocking TNF-α-induced phosphorylation of IκB-α with-
out affecting constitutive IκB-α phosphorylation [313].
Dehydroxymethylepoxyquinomicin (DHMEQ), derived

from the structure of an antibiotic epoxyquinomicin C
is a novel NF-κB inhibitor. DHMEQ could be qualified
as a candidate for a new chemotherapeutic agent against
human hepatoma [314]. It can also enhance antitumor
activities of taxanes in anaplastic thyroid cancer (ATC)
cells. DHMEQ blocks the nuclear translocation of NF-κB.
Inhibition of NF-κB by DHMEQ creates a chemosensitive
environment and greatly enhances apoptosis in taxanes-
treated ATC cells in vitro and in vivo [315].
I3C/DIM Indole-3-carbinol (I3C) is a glucosinolate

when given orally is converted to diindolylmethane (DIM)
and other oligomers catalyzed by stomach acid. DIM is
the predominant active agent and that I3C is a precursor.
Combinatorial treatment of I3C/DIMwithN-acetyl-S-(N-
2-phenethylthiocarbamoyl)-l-cysteine (PEITC-NAC) and
myo-inositol (MI) caused marked reductions in the acti-
vation of Akt, ERK and NF-kB in lung tumor tissues
and thereby demonstrated the promise of combination
therapy using I3C/DIM for the chemoprevention of lung
carcinogenesis in smokers [316].

Small molecule inhibitors of NF-κB from natural
sources
From the beginning of civilization, herbal medicines, fruit
and vegetables have been used in the disease treatment
and well being of humans. It is also believed that plant
based treatments are without side effects. Interestingly,
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many phytochemicals with NF-κB inhibitory activity with
cancer cell type specificity have been isolated (for a detail
review on inhibitors see [194]) (Table 3). These com-
pounds can make cancer cells sensitive to apoptosis or
inhibit the expression of genes responsible for growth,
proliferation and the metastasization of cancer cells. Dif-
ferent groups isolated battery of compounds from differ-
ent traditional and ethnic medicinal plant sources against
cancer cells of different tissue origins such as multiple
myeloma cells (U266 line and MM.1 line), prostate cancer
cells. Mode of action of these compounds is increasingly
becoming clear. Many of these compounds inhibit both
inducible as well as constitutively active NF-κB activi-
ties. Compounds with diverse specificity have been iso-
lated with specificity towards the IKK or IKKK (IKK
kinase), IκBα stability, p65 translocation or DNA binding
in the NF-κB activation pathway. Celastrol isolated from
Celastrus orbiculatus inhibit various stimuli -induced
phophorylation of IκBα and its degradation. Importantly,
celastrol is found to block IKK function and IKKβ activ-
ity in dose dependent manner [225]. Epicatechin present
in green tea, for example, prevents constitutive NF-κB
activity facilitating apoptosis by preventing p65 translo-
cation to nucleus [317]. Apigenin, a flavonoid present in
most fruits and vegetables blocks p65 phosphorylation by
inhibiting IKK function [318,319].
An administration of antioxidant N-acetyl-L-cysteine

(NAC) suppresses LPS-induced NF-κB activity [333]. In
another study it is shown that vitamin C inhibits TNF-
α- and IL-1β-induced IKK phosphorylation of IκB-α
and subsequent NF-κB DNA binding in endothelial cell
lines [334]. Further studies reveal that dehydroascor-
bic acid (DHA), which is the oxidized form of ascor-
bic acid, suppresses TNF-α-induced NF-κB activation
by the direct inhibition of IKK-β kinase activity inde-
pendent of p38 MAPK [335]. It should be noted that
antioxidants can also inhibit the activity of other com-
ponents of NF-κB signaling pathways, including TNF
receptors and the proteasome, without any direct effect on
IKK [336].
Various molecules have been isolated that target IKK

include xantholhumol from hops [255], epigallocatechin-
3-gallate from green tea [337], genistein from soy
[338], capsaisin from chilli pepper [339], boswellin from
Boswellia serrata [340], and sulforaphane from crucif-
erous vegetables [341] (Table 3). Aggarwal and col-
leagues have isolated and functionally characterized a
group of compounds targeting the NF-κB activation
pathways [121]. Some of these include a pentacyclic
triterpenoid escin isolated from horse chestnut whose
extract is used as traditional medicine in China. Escin
inhibits activation of IKK activity [328]; Sesamin isolated
from sesame seed inhibits IKK kinase [329]; Bharangin,
a diterpenoid quinonemethide isolated from Premna

herbacea, an Indian medicinal plant also has similar
activity [342].
Other compounds from natural/dietary sources, with

NF-κB inhibitory activity and are currently in preclini-
cal or clinical trials include Luteolin and parthenolide.
Luteolin, a polyphenol flavonoid, has been reported to
sensitize colorectal cancer cells to TNF-induced apopto-
sis through suppression of NF-κB. Accumulation of ROS
induced by luteolin plays a pivotal role in suppression of
NF-κB and potentiation of JNK to sensitize lung cancer
cells to undergo TNF-induced apoptosis [331]. Zerum-
bone, isolated from subtropical ginger has been shown to
inhibit angiogenesis through inhibition of NF-κB in gas-
tric cancer cell line [343]. Parthenolide is a major active
component of the herbal medicine feverfew (Tanacetum
parthenium), which is conventionally used in Europe to
treat inflammatory diseases such as fever, migraine, and
arthritis [344]. Parthenolide has been shown to inhibit
growth or induce apoptosis in a number of tumor cell
lines [345-348]. Many mechanisms are postulated to be
involved in the antitumor effect of parthenolide, includ-
ing inhibition of NF-κB [347]. It has also been shown that
parthenolide sensitizes cancer cells to various apoptosis-
inducing agents mainly through inhibition of NF-κB
[349].
Several compounds have been isolated from tradition-

ally used plants that have inhibitory activities against
multiple components of NF-κB activation pathway [121].
Curcumin from common Indian spice turmeric and
resveratrol from grape have drawn a lot of attention
because of their activity against multiple signaling path-
ways. Curcumin inhibits IKK- mediated phosphoryla-
tion of IκB as demonstrated in Burkitt lymphoma cells.
Curcumin prevents NF-κB/p65 phospohorylation at ser-
ine 536 and its acetylation through p300 inhibition
(Table 2) [350]. Burkitt lymphoma cells expressing wild
type Bax protein undergo apoptosis by curcumin treat-
ment. Curcumin sensitizes Bax negative Burkitt lym-
phoma cells to TNF-related apoptosis inducing ligand
(TRAIL) which activates apoptosis through the extrinsic
pathway [351]. As a transcriptional regulator, it inhibits
production of eicosanoids prostaglandin E (PGE2) and 5-
hydroxyeicosatetraenoic acid (5-HETE) and is in phase
II clinical trial for different malignancies including pan-
creatic colorectal cancers [352,353]. Recently, curcumin
has been described to block proteasome function in cell
based assays [354]. Curcumin was described to block
the chymotrypsin like activity of the catalytic core of
rabbit 20S and cellular 26S proteasome. In a recent
study curcumin was described to target different com-
ponents of ubiquitin proteasome pathway [355]. Resvera-
trol, a plant polyphenol found in different fruits (grapes,
berries etc) came to lime light in 1997 for its anti tumor
activity tested against various tumors such as myeloid,
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Table 3 NF-κB inhibitors from dietary/natural products

Name of phytochemicals Dietary/natural source Chemical nature Mechanism of action References

Celastrol
Root extracts of Celastrus Tripterygium
wilfordii(Thunder god vine), and Celastrus
orbiculatus,Celastrus regelii

A quinone methide triterpenoid a) Blocks cytosolic IκBα degradation and nuclear translocation
of RelA.

[247,320]

b) Blocks IKK function and IKKβ activity. [225]

Epicatechin Green Tea, Cocoa, Grapes Pentahydroxyflavane a) Blocks constitutive NF-κB activity by blocking p65 nuclear
translocation. [317]
b) Inhibits NF-κB DNA-binding activity

Epigallocatechin-3-gallate (EGCG) Green Tea Ester of epigallacatechin and gallic
acid (a type of catechin)

a) Inhibits IKK activation, IκBα degradation, and NF-κB
activation. In addition, EGCG inhibited phosphorylation of the
p65 subunit of NF-κB.

[321]

b) Prevents nuclear translocation of p65 [322]

Apigenin Parsley, Thyme, Peppermint Trihydroxyflavone a) Blocks p65 phosphorylation by inhibiting IKK function [318]

b) Suppress NF-κB translocation to nucleus and inhibits IκBα
phosphorylation and degradation

[323]

Xantholhumol Hops, Beer Prenylated chalconoid Inhibits NF-κB through suppression of IκBα phosphorylation [324]

Genistein Soybeans, Fava beans 4,5,7-trihydroxyisoflavone a) Blocks activation of NF-κB concomitant with degradation of
IκBα

[325]

b) Exerts its inhibitory effect on NF-κB signaling through Akt
pathway

[326]

Capsaicin Chilli pepper 8-methyl-N-vanillyl-6-nonenamide a) Blocks IκB-α degradation and nuclear translocation of p65
b) Inhibits NF-κB activity by blocking IκB-α degradation and
phosphorylation

[258]

Boswellin Produced by plants in the genus Boswellia Pentacyclic triterpene Inhibits constitutively activated NF-κB signaling by inhibiting
IKK activity

[327]

Escin Aesculus hippocastanum (the horse
chestnut).

Pentacyclic triterpene Inhibits TNF-induced IKK activation, IκBα phosphorylation and
degradation

[328]

Sesamin Isolated from the bark of Fagara plants and
from sesame oil

Lipid soluble lignan a) Blocks NF-κB activation by blocking IκB-α degradation and
phosphorylation

[329]

b) Down regulates both constitutive and inducible NF-κB
activation. Suppress p65 phosphorylation and nuclear
translocation

[330]

Luteolin Celery, broccoli, green pepper, parsley,
thyme

A polyphenol flavonoid
[2-(3,4-Dihydroxyphenyl)-
5,7-dihydroxy-4-chromenone]

Inhibition of NF-κB activity by accumulation of ROS [331]

Parthenolide occurs naturally in the plant feverfew
(Tanacetumparthenium)

Sesquiterpene lactone Inhibits of NF-κB both indirectly by inhibiting IKK, and directly
bymodifying p65 at a key cysteine residue in its activation loop

[332]
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breast, and prostate [356]. Resveratrol has been shown
to down regulate the expression of many antiapoptotic
genes. Resveratrol inhibits constitutive activation of NF-
κB by inhibiting both IKK as well as p65 phosphorylation
[357,358]. Preparation of resveratrol deratives for better
afficacy is underway [259].

Small molecule activators of p53 pathway
A significant cancer population carries a non-functional
p53 tumor suppressor gene. The p53 functional defect can
result due to the overexpression of its negative regulator
MDM2 and orMDMX, or mutation in the gene body pro-
ducing p53 non-functional for not properly folding. An
elevated level of MDM2/MDMX prevents proper accu-
mulation of p53. As conceivable, a mis-folded p53 can be
dysfunctional in DNA binding or interaction with itself or
another protein. Some population of p53 associated can-
cer is known to carry a nonsense mutation in their p53
gene. Given the strong mechanistic link between p53 and
cancer, many small molecule activators of p53 with poten-
tial pharmacological values have been reported with some
targeting the p53 defects discussed above. See [157] for
review on p53 activators.
The first non-peptide small molecule that demonstrated

the possibility of inhibiting the p53–MDM2 interaction
was 4,5 dihydroimidazoline (nutlin; Roche) [252]. The
crystal structure of nutlin 3a when bound to MDM2, pro-
vided the template for the design of better inhibitors such
as the benzodiazepinedione family of compounds [359],
chromenotriazolopyrimidine [360], terphenyls [361,362]
and chalcones [363,364]. At the same time, structure-
based screening of compounds combined with molecu-
lar modelling enabled the development of a new class
of inhibitors like the spiro-oxindole based molecules.
This led to the identification of MI219, which has a
subnanomolar affinity for MDM2, can taken orally. MI-
219 has good pharmacokinetic and pharmacodynamic
(PK/PD) properties and increases the level of p53 as well
as the p53 target genes CDKN1A and MDM2 [365]. The
same group also developed a series of diastereomeric
spiro-oxindoles such as MI888 which is a potent MDM2
inhibitor (Ki= 0.44 nM) with a superior pharmacokinetic
profile and enhanced in vivo efficacy [366]. Simultane-
ously, other drugs that have been reported so far include
pyrazole and imidazole compounds [367], imidazole-
indoles [368], isoindolinones [369] pyrrolidinones such as
PXN822 [370,371], piperidines [372], spirooxindoles [373]
and the sulphonamide NSC279287 [374].
Restoration of p53 activity by inhibition of the p53-

MDM2 interaction has been considered an attractive
approach for cancer treatment. Currently, the most
advanced MDM2 inhibitors include RG7112 (Roche),
RO5503781 (Roche), MI773 (Sanofi), DS3032b (Daiichi
Sankyo), which are at various stages of Phase I clinical

trials [157]. After the discovery of RG7112, which was
the first small-molecule p53-MDM2 inhibitor in clin-
ical development, many groups reported the discov-
ery and characterization of a second generation clinical
MDM2 inhibitor, with superior potency and selectiv-
ity like RG7388 [375], RO5353 and RO2468 (two new
potent, selective, and orally active p53-MDM2 antago-
nists [376], AM-8553 (a potent and selective piperidinone
inhibitor of the MDM2-p53 interaction.with promising
potential for clinical development) [377] and AMG 232
(an extremely potent MDM2 inhibitor with remarkable
pharmacokinetic properties and in vivo antitumor activ-
ity) [378]. Recently a putative small-molecule inhibitor of
p53-MDM2 interaction, pyranoxanthone, was discovered
using a yeast p53 transactivation assay based approach
[379]. Pyranoxanthone mimicked the activity of known
p53 activators, leading to p53 stabilization and activa-
tion of p53-dependent transcriptional activity. A novel
and promising lead structure for the development of
anticancer drugs as MDM2-p53 interaction disruptor, 3-
benzylideneindolin-2-one derivative, was also identified
recently using both pharmacophore- and structure-based
approaches [380].
A few preclinical lead compounds which restore the

activity of mutant p53 also recently completed Phase I
trials. PRIMA1 (a 2,2bis(hydroxymethyl)-3quinuclidinone
and its structural analogue PRIMA-1Met (APR246, devel-
oped by Aprea) have been shown to restore mutant
p53 activity in vitro and in vivo [381-383]. PRIMA-1Met

seems to lead to the formation of covalent adducts on
mutant p53-R175H and p53-R273H proteins, but its exact
mechanism of action has yet to be fully understood
[384] and needs further investigation. PRIMA-1Met also
seems to be able to restore the function of mutant p63
(a p53 homologue) [385,386]. Other therapeutics that
target mutant p53 via various mechanisms have been
described; for example, NSC176327 and RETRA disrupt
the binding interactions between mutant p53 and p73,
whereas MIRA1 eliminates mutant p53 [371,387].
Two nonsense mutations at position R196X and R213X

in p53 gene have been linked with large number of cancer
patients. Thus, small molecules and drugs that promote
the read-through of nonsense codons in p53 could pro-
vide a novel approach for treating tumours carrying this
type of mutation [388,389]. A recent study showed that
treatment of the human tumour cell line HDQP1, which
contains a homozygous nonsense mutation at codon 213
(CGA-TGA), with the read-through-promoting amino-
glycoside antibiotic G418 led to a dramatic increase in the
level of TP53 mRNA and full-length p53 protein [390].
This restored full-length protein might re-establish the
p53-MDM2 feedback loop, so a combination of G418 and
nutlin may be especially effective. There are a number of
potential read-through drugs in development because of
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high demand due to the association of p53-readthrough
mutation with genetic diseases like Duchenne muscular
dystrophy [157].
Cell-based screens for activators of the p53 pathway

have identified large numbers of compounds which have
unknown targets and incompletely defined mechanisms
of action. In a few cases, the mechanisms by which these
compounds activate p53 have been determined. These
include the small molecule RITA (to target p53 itself )
[391] (cyclin-dependent kinase (CDK) inhibitors such as
roscovitine [246,392], RNA polymerase inhibitors such
as actinomycin D [393], exportin 1-binding compounds
such as leptomycin B and KPT-330 [394], the NEDD1
(neural precursor cell expressed developmentally down-
regulated protein 1) ligase inhibitor MLN4924 [395] and
sirtuin inhibitors such as the tenovins [396]. All of the
compounds described above (with the possible exception
of RITA) act on targets that will affect other pathways
in addition to the p53 pathway and will therefore require
careful evaluation in preclinical models.
Several MDM2 inhibitors derived from natural prod-

ucts have also been identified, such as the prenylated
xanthones α-mangostin (from the fruit of Garcinia man-
gostana L.) and gambogic acid (from the resin ofGarcinia
hanburyi) [379,397]. These molecules are thought to
bind in a manner similar to nutlins and open up future
prospect for the development of new classes of non-toxic
inhibitors. As natural products, they also offer potential as
chemopreventive anticancer agents without side effects.
Marine organisms are now also being considered as a
potential resource for a variety of lead compounds. For
example, the siladenoserinols, derived from the marine
invertebrate family Didemnidae, were recently reported to
inhibit the p53–MDM2 interactions [398].

Small moleculemodulators of both p53 and NF-κB
pathways
Cancer is a complex disease and results due to defect
in multiple signaling pathways [399]. Thus drug target-
ing multiple pathways is thought to be a better option
in cancer therapy than a single component [102,129]. In
fact, combinatorial therapy or drugs that affect multiple
signaling pathways or multiple steps in one pathway are
expected to be more effective in cancer treatment. Crit-
ical roles of NF-κB in cancer include induction of genes
that prevent cell death and promote cell proliferation, and
antagonize tumor suppressor p53. Several compounds
simulteneously targeting more than one pathways such
as inhibition of NF-κB while activating p53 have been
considered very promising chemopreventive agents with
some already are in the various phases of clinical tri-
als (Table 2). Anti-malaria drug quinacrine was identified
to have dual activities of inhibiting NF-κB and activat-
ing inactive cellular p53 by cell based assays. Quinacrine

as well as other derivatives of aminoacridines are DNA-
damage mimetic, non genotoxic with excellent anticancer
therapeutic potential as tested in mouse xenograph mod-
els. This is notable because anticancer agents like cis-
platin induces p53 by formation of covalent-DNA adducts.
Quinacrine inhibits both constitutive and inducible form
of NF-κB [104]. This NF-κB inhibitory activity has been
shown to be independent of the p53 status of a cell because
quinacrine strongly inhibits NF-κB irrespective of their
p53 status [104]. The p53 inducing activity of quinacrine
which acts in micromolar range is thought to be based on
its ability the planar molecule to intercalate between the
adjacent DNA base pairs with its side chain interacting
with the minor groove [103]. Quinacrine can also target
several signaling pathways such as PI3K/AKT/mTOR in
addition to NF-κB and p53 [257]. Curaxins are newly dis-
covered prospective anticancer drugs that at nano molar
concentration simultaneously down regulate NF-κB while
activating the p53 [400]. Like quinacrine, curaxins acti-
vate p53 without detectable damage in the cellular DNA.
These carbazol structure based compounds intercalates
between the DNA base pairs while its side chain binds the
minor group of nucleic acids. Mechanistically, the anti-
cancer property of this group of compounds may rely
on the trapping of the transcription elongation factor
FACT (facilitates chromatin transcription) on the chro-
matinmaking it unavailable for transcription of theNF-κB
target genes that are dependent on FACT [401,402]. FACT
upon binding to DNA-curaxin complex induces casein
kinase 2 (CK2). Activated CK2 phosphorylates p53 (at ser-
ine 392) to drive p53 for interaction with FACT. Curaxins
apparently does not interfere with other aspects in the
NF-κB activation pathway such as nuclear translocation of
p65/p50 heterodimer. FACT, originally implicated as his-
tone H2A/2B chaperone and a heterodimer of SSRP1 and
Spt16 is utilized by RNA polymerase II for transcription
of nucleosomal DNA [403]. Lippard and colleagues ear-
lier identified FACT complex by its ability to bind cisplatin
modified DNA [404].
R-Roscovitine (seliciclib, CYC202), a 2, 6, 9 substituted

purine analogue is another small molecule that pre-
vent tumor growth by targeting multiple signaling
pathways simultaneously. It blocks constitutively active
NF-κB activity while activating the p53 tumor suppres-
sor and in phase II clinical trial for its anticancer property.
It was shown that R-Roscovitine abrogated TNF-α and
IL-1 mediated induction of NF-κB by preventing IκB
kinase (IKK) kinase activity [245]. The purine analogue
also blocks p65 phosphorylation at ser536 by IKK that is
required for nuclear translocation and chromatin remod-
eling function. At the level of transcription, R-Roscovitine
represses transcription of NF-κB target genes MCP-1,
ICAM-1, COX2 and IL-8 [245,392]. R-Roscovitine origi-
nally isolated as cyclin dependent kinase inhibitor (CDK),
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induces p53 by disrupting p53-MDM2 interaction. R-
Roscovitine was shown to downregulate MDM2 both
at the level of protein and mRNA [247]. Retinoblas-
toma protein phosphorylation and activation of MAP
kinase are other identified functions of R-Roscovitine
[405].
Flavoridol (Table 2), an inhibitor of multiple CDKs

(CDK1, -2, -4 and -7) as well simultaneously inhibits
NF-κB and activates p53 is considered as an agent in
combinational chemotherapy. A semisynthetic flavonoid,
flavoperidol blocks TNFα induced NF-κB induction by
blocking steps in the NF-κB activation pathway such as
IκBα kinase and p65 nuclear translocation, and cyclin
D1 transcription [250]. Flavoperidol inhibits cellular tran-
scription through targeting positive transcription elon-
gation factor (pTEFb), a kinase targeting the serine 2
residue of largest subunit of RNA polymerase II [249,406].
Flavoperidol was shown to reversibly activate p53 by
inhibiting MDM2, and sensitize cells towards apoptosis
[406,407].
Nutlin was isolated as the first specific interrupter of

p53-MDM2 interaction and is considered as a potent
inducer of p53. It was also shown to inhibit activation of
NF-κB target genes such as ICAM-1 and MCP-1 through
p53 dependent manner in lung cancer cells [251,252].
While p53 can induce MDM2 expression; MDM2 on the
other hand can influence p53 activity in multiple ways
including inhibition of transactivation function, remov-
ing the tumor suppressor out of nucleus, and directing
it to the proteasomal degradation pathway through its
own E3 ubiquitin ligase activity [408]. Grasberger and col-
leagues also isolated benzodiazepinedione based MDM2
inhibitors with similar functional properties [359,409].
A number of compounds (peptide/small molecules) are
being studied that is thought to stabilize p53 activity
inducing proper folding correcting readthrough error in
the p53 gene to activate p53 functions that include for
example, PRIMA-1 [383] or RTC13 [410], respectively.
Compounds that are doubly inhibitory against MDM2
and MDM4 have also been under investigation [146].
These later group of compounds should be used along
with MDM2 inhibtors for effective p53 accumulation. In
principle these compounds would be able to work like
nutlins mechanistically for their anticancer properties.
Synthetic derivative of benzofuran lignan (Benfur) has

a reported antitumor activity. Benfur-mediated cell death
is partially regulated by the inhibition of NF-κB activ-
ity but it is predominantly dependent on p53-mediated
pathway [258]. Benfur potentially inhibits NF-κB DNA
binding activity by inhibiting IκBα and thereby block-
ing the nuclear translocation of p65 in both Jurkat and
U937 cells. Benfur treatment was shown to increase
p53 level by inhibiting Sp1 binding on the MDM2
promoter [258].

Conclusions
NF-κB, a central regulator of innate immune response,
normally is activated in a time dependent manner as a
host protection mechanism. It has been now established
by numerous independent studies that a persistent long
term activation of this factor is tumorigenic and block-
ade of the activities of an inflammatory mediator regress
tumor progression as well as its aggressiveness. Stud-
ies from various independent laboratories have already
pinpointed some mediators in the NF-κB activation path-
way that undergo aberrant regulation in various cancers.
Studies from many laboratories have firmly established a
reverse correlation of activation between the NF-κB and
p53 pathways highlighting a prospective avenue in cancer
chemotherapy. Several small molecules of natural or syn-
thetic originmany of which target multiple signaling path-
ways including NF-κB and p53 apparently hold a great
promise to move the cancer treatment and management
in the desired direction. In this direction, various potential
pharmacological agents have been isolated that activate
p53 in tumor cells with high potency at very low concen-
tration. Most of these small molecules appears to have at
least part their mode action through inhibition of NF-κB.
Conversely, it is conceivable that the anticancer activity
of many NF-κB inhibitors is partly due to their ability to
induce p53 in cancer cells. Efforts are already underway to
find small molecules that will with higher specificity rec-
tify the defect in the pathways to suppress NF-κB activity.
Clearly, more studies are needed to provide us with more
insightful understanding of the mechanism of deregula-
tion and the underlying cause. Given the role of NF-κB in
innate immunity and cancer, a desired objective would be
to achieve the ability to turn off and on the function of
NF-κB with high precision and as needed.
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