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Abstract

Background: Tissue velocity echocardiography is increasingly used to evaluate global and regional cardiac
function. Previous studies have suggested that the quantitative measurements obtained during ejection are reliable
indices of contractility, though their load-sensitivity has been studied in different settings, but still remains a matter
of controversy. We sought to characterize the effects of acute load change (both preload and afterload) and
change in inotropic state on peak systolic velocity and strain as a measure of LV contractility.

Methods: Thirteen anesthetized juvenile pigs were studied, using direct measurement of left ventricular pressure
and volume and transthoracic echocardiography. Transient inflation of a vena cava balloon catheter produced
controlled load alterations. At least eight consecutive beats in the sequence were analyzed with tissue velocity
echocardiography during the load alteration and analyzed for change in peak systolic velocities and strain during
same contractile status with a controlled load alteration. Two pharmacological inotropic interventions were also
included to generate several myocardial contractile conditions in each animal.

Results: Peak systolic velocities reflected the drug-induced changes in contractility in both radial and longitudinal
axis. During the acute load change, the peak systolic velocities remain stable when derived from signal in the
longitudinal axis and from the radial axis. The peak systolic velocity parameter demonstrated no strong relation to
either load or inotropic intervention, that is, it remained unchanged when load was systematically and progressively
varied (peak systolic velocity, longitudinal axis, control group beat 1-5.72 + 1.36 with beat 8-6.49 +1.28 cm/sec, 95%
confidence interval), with the single exception of the negative inotropic intervention group where peak systolic
velocity decreased a small amount during load reduction (beat 1-3.98 +0.92 with beat 8-2.72 +0.89 cm/seq).
Systolic strain, however, showed a clear degree of load-dependence.

Conclusions: Peak systolic velocity appears to be load-independent as tested by beat-to-beat load reduction, while
peak systolic strain appears to be load-dependent in this model. Peak systolic velocity, in a controlled experimental
model where successive beats during load alteration are assessed, has a strong relation to contractility. Peak systolic
velocity, but not peak strain rate, is largely independent of load, in this model. More study is needed to confirm this
finding in the clinical setting.
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Introduction

Since its introduction tissue velocity echocardiography
(TVE) has opened new possibilities for non-invasive
quantification of myocardial function [1]. Tissue Doppler
echocardiography is an established cardiac diagnostic
method for measurement and characterization of both
the systolic and diastolic cardiac dysfunction [2-5]. Myo-
cardial velocity is the most widely used and validated
parameter from this method [6-8]. Through further der-
ivation and integration of tissue velocities, additional
parameters like displacement, strain rate and strain can
be calculated. Strain is a dimensionless quantity, which
is the product of stress. It represents the fractional
change (or percentage) from the original or unstressed
dimension. Positive strain indicates expansion or length-
ening and negative strain compression or shortening.

An ideal index of myocardial contractility should be
independent of loading conditions (preload and after-
load), heart size and mass, and sensitive to changes in
inotropy [9]. In this study, we have focused only on the
issue of systolic velocities and load, since the load-
dependence of diastolic tissue velocities has been well
demonstrated [10,11].

The issue of load-dependency and tissue velocities
during systole has been raised earlier, and clinical find-
ings have been published that support the idea that load
reduction can lead to decrase in systolic velocities [12]
or alternatively increase in systolic velocity [13-15] , and
in these cases, the authors have suggested mechanism
other than load change (decrease) that lead to higher tis-
sue velocities. Some preliminary findings for controlled
load reduction in an experimental setting have shown
that systolic velocities may decrease in conjunction with
load decrease [16]. In the pediatric population with con-
genital heart disease, acute load reduction with inferior
vena cava occlusion caused significant decrease in peak
systolic velocities in the right ventricle [17].

We hypothesized that TVE systolic measures of the
left ventricular function, peak systolic velocity (PSV) and
systolic strain, would change in relation to loading
changes. We further hypothesized that PSV and strain
would behave in the same fashion during pharmaco-
logically altered contractile status. We aimed to test
these hypotheses in an experimental large animal model,
which included exposure to positive and negative ino-
tropic drugs and carefully controlled transient load
changes. We also aimed to compare tissue velocities and
strain measured from different directions with respect to
myocardial axis.

Methods

After approval from the Umed Regional Animal Ex-
perimental Ethics Committee, and in conformation
with the Guide for the Care and Use of Laboratory
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Animals (US National Academy of Sciences, 1996,
USA), 13 juvenile Yorkshire/Hampshire pigs with a
mean weight of 36.7 kg (SD =4.1) were anaesthetized
and instrumented, using methods that have been well
described previously [18].

Preparation

The animals were premedicated with ketamine 10 mg-kg™,
xylazine 2.2 mg-kg, and atropine 50 pg-kg . Anaesthesia
was induced with pentobarbital 12 mgkg' iv. and
maintained by a continuous infusion of pentobarbital
5 mgkg'-h™, midazolam 0.3 mg-kg*-h™ and fentanyl
20 pg-kg-h™'. After tracheotomy, animals were intubated
and ventilated in volume-controlled mode (Evita4, Drager,
Germany) to achieve normoxia and normocapnea (Artema,
Artema Medical, Stockholm, Sweden) with a mixture of
oxygen and room air. During the entire experiment IV
fluids were administered: Ringer’s Acetate 15 mlkg'-h™.
Arterial and venous catheters were placed through cut
downs in the cervical region to access the jugular and ca-
rotid vessel systems. Arterial and venous catheters, includ-
ing a 7 F Swan-Ganz catheter (Optimetrix, Abbott, Illinois,
USA) were advanced to appropriate position. A combined
pressure-conductance catheter, with 12 electrodes and
8 mm spacing (CA-71083-PN, CD Leycom, Zoetermeer,
Holland), was placed in the long axis with the pigtail tip in
the apex of LV with the help of fluoroscopy. A 7.5 F balloon
occlusion catheter (Vascular Technologies, Solna, Sweden)
was placed in the inferior vena cava in order to facilitate a
controlled transient restriction of venous return (VCBO
maneuver) leading to a beat-by-beat progressive reduction
in preload and afterload over a restricted range of normal
operating pressures and volumes. Selected sequences from
these load reduction periods were then further analyzed.

Measurements

The method of left ventricular volume measurement with
dual field conductance volume measurements is well
described before elsewhere [19]. The conductance cath-
eter was connected to a signal conditioning-amplifier set
to dual-field mode (Leycom Sigma 5DEF, CD Leycom,
Zoetermeer, The Netherlands). Parallel conductance and
flow reference ratio [20] were determined for LV volume
calibration. Left ventricular pressure (Sentron, Roden, The
Netherlands) and conductance data were recorded with a
frequency of 250 Hz (PC Conduct, Cardiodynamics, Zoe-
termeer, The Netherlands). All circulatory parameters
were recorded digitally and analyzed (Acqknowledge,
Biopac Systems, Santa Barbara, California). Pressure-
volume data analysis was performed with custom-made
non-commercial software. Cardiac performance was
assessed by heart rate, stroke volume, end-diastolic vol-
ume, end-systolic volume, cardiac output, and stroke
work. Systolic load-dependent LV parameters include
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ejection fraction (EF), end-systolic pressure(P.s, maximal
rate of pressure change (dP/dty,,,), and load-independent
LV function parameters as the linear slope of the end-
systolic PV relationship, defined as end-systolic elastance
(Ees) [21] and preload recruitable stroke work (PRSW)
[22]. Diastolic load-dependent LV function was assessed
by the LV end-diastolic pressure (P.q), isovolumic relax-
ation time constant (tau), minimal rate of LV pressure
change (dP/dt,,;,) and the ratio for end-systolic elastance/
arterial elastance (Ees /Ea) [23].

Echocardiographic recordings, long axis and apical
four chamber, were recorded with a frame rate of 100—
140 frames per second using an ultrasound system
(Vivid 7, GE Healthcare, Horten, Norway). Digitally
stored data were analyzed offline using commercial soft-
ware (EchoPac 6, GE Healthcare, Horten, Norway). Peak
systolic velocities and strain was estimated by measuring
the spatial velocity gradient over a computation area of
6x6 mm or 6x12 mm. The region of interest (ROI) was
continuously positioned within the LV inferior wall
when measuring radial measurements and within basal
part of septum for longitudinal measurement. The strain
length was chosen as 6 mm for posterior wall and
12 mm for septum [24]. The tissue tracking was done
manually, frame-by-frame, to keep the ROI in the same
position during the controlled transient restriction of
venous return (VCBO maneuver) which included at least
8 consecutive beats. Baseline registrations were collected
before each VCBO sequence.

Protocol

Each measurement sequence was recorded during a
period of apnea with 0 cm H,O airway pressure. The in-
ferior vena cava balloon was inflated, and progressive
beat-to-beat decreases in left ventricular pressure and
volume were recorded. Beats selected for analysis from
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the balloon inflation period were those where there was
a progressive beat-by-beat decrease in both LV end-
diastolic and end-systolic volume and pressure at the
beginning and end of the sequence. At least 8 consecu-
tive beats, from the point where load reduction began to
be noted were used for further analysis.

Concerning measurement sequences after inotropic
interventions, a measurement was collected at baseline
before the inotropic intervention was started, and then
during adrenaline infusion with target pulse rate raise of
approximately 20% from the baseline. After a second rest
period, 30 minutes after discontinuation of adrenaline in-
fusion, a negative inotropic intervention was administered,
which consisted of an intravenous injection of metoprolol
40 mg and then verapamil 15 mg (all over a within a few
short minutes), with a brief infusion of phenylephrine to
counterbalance the immediate vasodilatatory effects of
verapamil, which was quickly weaned off as soon as it was
not needed.

Statistics

Data are expressed as mean + SEM or +95% confidence
intervals. The effects of load alterations were analyzed
using repeated measurements analysis of variance
(repeated measures ANOVA). Comparison of the first
beat (baseline) with the last (eighth) beat in an unload-
ing sequence was performed using the paired Student t-
test. A p value <0.05 was considered to be statistically
significant.

Results

The anaesthetized pigs all demonstrated central circulatory
parameters consistent with health during rest before the
start of the protocol. All 13 animals completed the protocol,
with simultaneous tissue velocities echocardiography mea-
surements together with LV pressure volume results for
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Figure 1 A representative pressure-volume measurement sequence during controlled load reduction by transient vena cava balloon
occlusion is shown. This demonstrates that there are progressive beat-by-beat reductions in both pre- and post-systolic volumes and pressures,
indicating systematic and progressive reduction in preload and afterload. The volumes and pressures for this measurement sequence are within
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Figure 2 End-diastolic and end-systolic volumes for the load alteration sequences are shown here, grouped by beat in the sequence.
All the first beats are grouped together, all the second beats, etc. The change in load, as demonstrated by volumes for the sequences collected
during experimental alteration in inotropic status, is clearly shown. These load ranges correspond to the grouped tissue velocity and strain
measures in later figures. Data are presented as mean + SEM, n=13. Filled diamond = Control; Open triangle = Adrenaline; Open square = Beta-
blockade. EDV =end diastolic volume; ESV =end systolic volume. # p < 0.05 with repeated measures ANOVA.

beat no

each sequence. Load changes were achieved by the VCBO,
where the first eight beats in the sequences (Figure 1) are
analyzed and a clear load alteration (reduction in end-
diastolic volume, as well as reduction in stroke work) is
shown, and this was consistent with all 3 inotropic

conditions and in both projections (radial/short axis and
longitudinal/long axis) (Figure 2).

Hemodynamic results show that the animals had their
VCBO sequences with start and end ventricular pres-
sures and volumes not in extreme ranges (Figures 1 and 2).

Table 1 LVPVR parameters during control, adrenaline and beta-blockade

Control Adrenalin Beta blockade
Apnea measurement
HR (bpm) 122+14 122+14 # 100 £
sV (mL) 552+55 66.5+12.6# 481+83 #
cOo (L/min) 6.7+£09 96+19 # 4809 #
Ves (mL) 409+48 36.1+£80 683144 #
Ved (mL) 925+70 97.7+158 1139+186 #
Pes (mm Hg) 1213£53 121.0£96 105.0£96 #
Ped (mm Hg) 146+33 14139 187+32
dPdt max (mm Hg/s) 2745+ 252 5532+752 + 1557+318 #
EF (%) 59.7+36 68174 # 430£56 #
SW (mm Hg-mL) 6227 +697 8215+ 1471 # 4306+926 #
Tau (ms) 343+30 233+£18# 4644123
PHT (ms) 21115 146£13 # 30970 #
dPdt min (mm Hg-mL) -2919+175 -3587 401 # -1986 + 289 #
PWR max (mm Hg-mL/s) 44105 £ 5647 68020 + 15038 # 32687 £5784 #
PWR max /EDV? 529+085 783+213 # 3.02+1.02 #
dPdt /EDV (mm Hg/s/mL) 300+30 623161 # 15357 #
VCBO measurement
Ees (mm Hg/mL) 1.04+£0.20 1.74+£0.54 1.06+£0.31
PRSW (mm Hg) 74.1+102 1040+ 148 # 513+129#

Data are presented as mean +95% confidence intervals, n=13. #=p < 0.05 using paired T-test vs. Control. HR heart rate, SV stroke volume, CO, cardiac output;

Ves, end-systolic volume; Ved, end-diastolic volume; Pes, left ventricular end-systolic pressure; Ped, left ventricular end-diastolic pressure; dPdt ., maximal rate of
pressure increase; EF, ejection fraction; SW, stroke work; Tau, isovolumic relaxation time constant; PHT, pressure half time during diastole: dPdt ,,;,, maximal rate of
pressure decrease; PWR,,.,, maximal power; Ees, end-systolic elastance; PRSW, preload recruitable stroke work.



A'roch et al. Cardiovascular Ultrasound 2012, 10:22
http://www.cardiovascularultrasound.com/content/10/1/22

Page 5 of 9

(cm/s) PSV - control (cm/s) PSV - adrenaline
8.00 1 12.00 -
7:001 10.00
6.00-
5.00 W 8.00 -
4,00 6.00
8001 4.00
2,00
1004 2.00
0.00+——F—+—F—+—+—+— 00+—FF—F—F—T—F—T
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
beat no beat no
(cm/s) PSV - beta blockade
6.00 7
5.00 4
4.00 +~—+\+_+\+_+\+__+
2.00 #
1.00 A
0.00 — R
o 1 2 3 5 6 7 8
beat no

Figure 3 Peak systolic velocity (PSV) showed no change in PSV value during progressive load reduction for 5 of these 6 groups, and
the decrease in PSV for the longitudinal axis measurement in the negative inotropy group was small. Data are presented as mean + SEM,
n=13. Filled diamond = Radial projection; Open square = Longitudinal projection. # p < 0.05 with Repeated Measures ANOVA.

Inotropic interventions, both positive and negative, achieved
significant changes in contractile status as exemplified by
change in PRSW from baseline 74.1+10.2 mmHg to
104.0 £ 14.8 mmHg in positive inotropic status and to
51.3+12.9 mmHg in negative inotropic status (Table 1).

The PSV results during the unloading sequence of 8
consecutive beats remained relatively unchanged in both
short and long axis at baseline (Figure 3), and behaved
in the same manner in the pharmacologically-induced
positive inotropic condition. In negative inotropic state,
in the short axis results, no significant change in PSV
was observed, though in the long axis there was a sig-
nificant decrease in PSV during the course of the pre-
load reduction sequence.

Systolic strain findings (Figure 4) showed that during
the unloading sequence of 8 consecutive beats, peak sys-
tolic strain had a tendency for increase in short axis in
baseline and positive inotropic condition, but reached sig-
nificance only in negative inotropic condition. For the long
axis results, a reduction in systolic strain was observed
which reached statistical significance in baseline and nega-
tive inotropic conditions.

The inotropic interventions led to differences in the
tissue\ velocity parameters (Table 2), where PSV increased
with the positive inotropic intervention, for both the lon-
gitudinal and radial axis measurements. PSV decreased, at

least for the radial measurement, with the negative ino-
tropic intervention. There was no clear relation observed
for systolic strain and inotropic status. There was no dif-
ference between the absolute strain levels for the negative
and positive inotropic interventions (Figure 4).

When the radial and longitudinal axes for PSV were
compared, there were no differences between the longi-
tudinal axis and radial axis measurements for the resting
control and negative inotropic measurements. For the
positive inotropic measurement, the PSV average for the
longitudinal axis measurement was greater than for the
radial axis measurement.

Discussion

The main findings in this study were that PSV was load-
independent in this model. The tissue velocity parameter
PSV increased with inotropic status increase, and
decreased with the negative inotropic intervention. It
has been recognized for many decades that there is a
strong relation between load and ventricular perform-
ance, though it is not yet clear how strongly related tis-
sue velocities are on ventricular performance. These
results support the idea that PSV changes, increases or
decreases, reflect changes in contractile status (for ex-
ample as brought about by inotropic interventions in
this model).
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Figure 4 Systolic Strain. Systolic strain increased during load reduction in half the group, and notably for the negative inotropy groups. Data
are presented as mean + SEM, n=13. Filled diamond = Radial projection; Open square = Longitudinal projection. # p < 0.05 with Repeated

J

Previous reports have been mixed concerning the rela-
tion of tissue velocity to load: some pulsed Doppler vel-
ocities in the AV plane during load alteration results
have supported the idea that PSV is load-independent
[16,25-27], others that PSV is load-dependent [28]. Some
have performed these studies using human subjects,
where although a load or inotropic intervention can be
implemented, the actual load-altering effect of these
interventions can be difficult to assess and verify [29]. In
this experimental model, both loading conditions and
contractile status were carefully controlled, and altered
independently for serial comparisons.

The results for strain in relation to load supported the
idea that strain is load-dependent, in contrast to PSV.
Though not reaching statistical significance for all the
inotropic conditions, strain appeared to increase gener-
ally with decreasing load, in this model, and this agrees
with some previously published results [25,30]. There
was relatively more variation in the grouped measures
for strain (grouped by beat in the preload alteration
sequence) compared to PSV. There was relatively less
variability in the strain assessments in the longitudinal
axis compared to that from the radial axis, and this was

expected since conducting measurements in the same
tissue plane with the radial axis is more challenging.
Strain did not seem to be as affected by inotropic state
compared to PSV, also supporting the idea that strain is
not a good method for identifying changes in contractile
function [31,32].

There are measurement-technical aspects which can
affect the quality of the signals. We analyzed velocities
which were measured in the basal aspect of the inter-
ventricular septum. Signal from the ventricular lateral
wall was also acquired, but there was often inadequate
imaging quality during the VCBO, so that we could only
consistently use the septal assessment for futher analysis.
It is possible that there was some minimal drift of the
strain curves over time, since the (Echopac) proprietary

Table 2 Effect of inotropic interventions, resting apneic
heart cycle

Radial projectjon Longitudinal projection

Control cm/sec 433+1.29 572+136
Adrenaline cm/sec  6.77+2.34 886+2.18
Beta blockade cm/sec 3.82+1/02 3.08+0 92
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Figure 5 (See legend on next page.)
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Figure 5 Tissue velocities, radial axis. This representative example shows the tissue velocities from the inferior/posterior left ventricular base,
with aortic valve opening (AVO) and aortic valve closure (AVC) marked. Isovolumic contraction (IVC) and the peak systolic velocity (PSV) are also
shown. Isovolumic relaxation (IVR) is sometimes a subtle finding, and early diastolic velocity (E) and late diastolic velocity (A') are marked. E' was
often difficult to identify during the whole preload reduction sequence, as load decreased. b. Tissue velocities from apical 4 chamber image,
septal base region, signal from multiple beats during vena cava occlusion and adrenaline intervention. PSV coincides with the maximal velocities,
which remain relative constant throughout the load reduction (see also progressively changing E" and A’, which move to a fusion curve during
the last beats in the sequence. The goal in signal acquisition (septum) was to be as close to the septal annulus as possible, though as illustrated
here, occasionally, signal quality dictated that interrogation was performed a small distance from the annulus. This was accepted since the main
findings involve relative changes from beat-to-beat over the load reduction sequence. c. Strain in the apical 4 chamber view. The values at zero
represent zero deformation during diastole, and the peak systolic strain starts at values of approximately —45% (long axis shortening). In the radial

axis, peak systolic strain is positive, starting from a diastolic zero deformation, since the ventricular wall thickens.

software uses drift compensation. We examined signals
both with and without drift compensation. Without this
software-driven compensation the baseline was consist-
ently drifting. We are confident that the absolute
amount of strain was adequately assessed. Strain rate
was examined for all VCBO sequences, thought the sig-
nal had enough ‘noise’ that clear maximum strain rates
were not reliably identified. Therefore, no strain rate
results are shown.(Figure 5)

This study was conducted with an undisturbed thorax.
In cases where the thorax and pericardium are open, it
is likely that there is an effect on wall motion and tissue
velocities [33]. There have been reports that suggest that
transthoracic echocardiographic studies are limited in
pigs [31], but imaging was definitely adequate in our
experiments with possibly a more modern generation of
hardware and software. Also, in a healthy heart, the axis
of shortening is not only in the long or short axis
[34,35]. It is reasonable perhaps measure in one particu-
lar area and then extrapolate to other regions of the
heart. In a diseased or injured heart, inhomogeneity of
tissue velocities may be known or presumed. In our
model, there was not injury. Still, this is not readily
generalizable to the clinical setting.

The clinical relevance [35] of these findings is that
PSV shows promise as a potential bedside means to ob-
tain a quantitative assessment of contractile function
during serial measures in a patient. A recent expert
group [36] has suggested that pre-systolic myocardial
loading must be taken in account for any clinical appli-
cation of these parameters. There is a well-recognized
degradation of myocardial function, for example with
age or illness, which can be followed. Alterations up and
down in the range of potential contractile status or func-
tion for any individual are part of normal myocardial
function, and these can make single beat assessment of
general myocardial condition very difficult, since despite
implementing an alteration in load, it is much more dif-
ficult to absolutely control contractile status, as long as
the autonomic nerve system is responsive. On tradition
has been to measure single beat parameters in patients
at rest, but this may not be adequate for assuring

repeatable autonomic nerve system conditions for serial
measures. Contractile status needs to be quantitatively
assessed, taking advantage of situations where the effect
of beat-to-beat loading changes on mechanical systolic
function can be approximated. It is possible to do this
with high precision measurement of load and mechan-
ical effect for families of beats where load is slightly
different for each beat (as has been done here), though
the current methodologies for direct ventricular pressure
and volume measurements are highly invasive.

This type of assessment is needed today in settings where
myocardial dysfunction is suspected, or where inotropic
drug intervention is contemplated. Peak systolic velocity
shows promise as a relatively load-independent parameter,
which reflects systolic mechanical myocardial function, and
more clinical experience needs to be gathered.

In summary, these results showed that peak systolic
velocities showed a strong load-independence during
acute load reduction, though this was not so for strain.
We conclude that PSV is a clinically robust parameter of
LV regional and global performance under changing
load. Peak systolic strain seems to be load-dependent,
and has no clear relation to inotropic changes in serial
measures. These findings support a broader use of PSV
in serial measures in patients to assess changes in ven-
tricular function.
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