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Abstract
Background: Endocannabinoids (eCBs) are ubiquitous lipid mediators that act on specific (CB1, CB2) and non-specific 
(TRPV1, PPAR) receptors. Despite many experimental animal studies proved eCB involvement in the pathogenesis of 
stroke, such evidence is still lacking in human patients. Our aim was to determine eCB peripheral levels in acute stroke 
patients and evaluate their relationship with clinical disability and stroke volume.

Methods: A cohort of ten patients with a first acute (within six hours since symptoms onset) ischemic stroke and a 
group of eight age- and sex-matched normal subjects were included. Groups were also matched for metabolic profile. 
All subjects underwent a blood sample collection for anandamide (AEA), 2-arachidonoylglycerol (2-AG) and 
palmitoylethanolamide (PEA) measurement; blood sampling was repeated in patients on admission (T0), at 6 (T1) and 
18 hours (T2) thereafter. Patients neurological impairment was assessed using NIHSS and Fugl-Meyer Scale arm 
subitem (FMSa); stroke volume was determined on 48 h follow-up brain CT scans. Blood samples were analyzed by 
liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry.

Results: 1)T0 AEA levels were significantly higher in stroke patients compared to controls. 2)A significant inverse 
correlation between T0 AEA levels and FMSa score was found. Moreover a positive correlation between T0 AEA levels 
and stroke volume were found in stroke patients. T0 PEA levels in stroke patients were not significantly different from 
the control group, but showed a significant correlation with the NIHSS scores. T0 2-AG levels were lower in stroke 
patients compared to controls, but such difference did not reach the significance threshold.

Conclusions: This is the first demonstration of elevated peripheral AEA levels in acute stroke patients. In agreement 
with previous murine studies, we found a significant relationship between AEA or PEA levels and neurological 
involvement, such that the greater the neurological impairment, the higher were these levels.

Background
During the last decade numerous studies have addressed
the role of the endocannabinoid (eCB) system in different
pathological conditions. Endocannabinoids (eCBs), e.g.
anandamide (AEA) and 2-arachidonoylglycerol (2-AG),
are lipid mediators synthesized "on demand" that inhibit
neurotransmitter (glutamate and GABA) release and
modulate neuroinflammation by activating specific CB1
(highly expressed in the CNS, where they mediate the
psychotropic effects of Δ9-tetrahydrocannabinol) and
CB2 (expressed by immune cells, including brain resident

microglial cells) receptors, respectively. Cannabinoid
receptor-inactive eCB-related molecules, e.g. palmitoyle-
thanolamide (PEA), also exert neuroprotective effects[1-
3], presumably by preventing mast cell degranulation [4],
and directly activating peroxisome proliferator-activated
receptor (PPAR)-α [5], or by enhancing the effects of
AEA on cannabinoid receptors, transient receptor poten-
tial vanilloid type-1 (TRPV1) channels and PPAR-γ
receptors [6].

Previous murine and cell culture studies on stroke and
hypoxia postulated a neuroprotective role of eCBs, given
their ability to decrease NMDA-mediated toxicity in vas-
cular penumbra through a CB1-mediated mechanism [7].
Increases of AEA content, of the AEA biosynthetic pre-
cursors (e.g. N-acyl phosphatidylethanolamines), and of
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CB1 receptors expression in ischemic brain regions of
murine stroke models have been described [8-11]. CB1
knockout mice develop larger stroke volumes than wild-
type animals, with consequent increased post-stroke dis-
ability and mortality [12]. In addition, CB1 agonist admin-
istration was associated with a decrease of infarct volume
and with an improvement of clinical symptoms in stroke-
treated mice [13]. Interestingly, there is evidence that also
low-doses of CB1 receptor antagonists, such as rimona-
bant, reduce infarct volume in stroke models [9,10,14,15],
possibly by enhancing TRPV1-mediated actions [14]. It
has been also suggested that part of the neuroprotective
effects of CB1 receptor agonists in stroke is due to their
capability of lowering body temperature, and that CB1, as
opposed to CB2, receptors might otherwise play a coun-
terprotective role in cerebral ischemia [15].

Indeed, also CB2 receptors have been implicated in the
pathogenesis of stroke. Since such receptors are particu-
larly expressed on activated microglia and peripheral
immune cells (mastcells, macrophages and lymphocytes),
they may act by modulating the inflammatory response
to stroke [16], which is triggered 24-48 hours after symp-
toms onset and is mainly responsible for the delayed neu-
ronal death [17]. Indeed CB2 agonists administration was
associated with a reduction of infarct volume and neuro-
logical impairment in murine models of stroke and cere-
bral ischemia [15,18]. However, such evidence is still
lacking in humans, despite the fact that a single case
report described an increase of AEA and PEA content in
the ischemic hemisphere of a stroke patient [19].

Aim of this study was to evaluate the possible involve-
ment of the eCB system in stroke patients, by measuring
plasma AEA, 2-AG, and PEA levels in the acute phase of
the disease and by correlating eCB and PEA plasmatic
levels with measures of neurological impairment and vol-
ume of the ischemic brain tissue.

Methods
Subjects
10 patients (Group A; M/F = 5/5; mean age 70 ± 13 years)
affected by a first ischemic stroke involving the Middle
Cerebral Artery (MCA) territory with at least arm
impairment and symptoms onset ≤ 6 hours before admis-
sion, and 8 age-matched healthy volunteers (Group B; M/
F = 4/4; mean age 70 ± 12 years) were enrolled. Patients
with other neuropsychiatric diseases, substance and/or
alcohol abuse, or systemic inflammatory diseases were
excluded. The study was approved by the local institu-
tional ethical committee and each participant (or relative,
in case of aphasia/impaired consciousness) gave written
informed consent in accordance with the Declaration of
Helsinki. On admission (T0), patients underwent CT
brain scanning, evaluation of neurological impairment

with the NIHSS [20] and the Fugl-Meyer arm subitem
scale (FMSa) [21], calculation of the Body Mass Index
(BMI), blood sampling for routine laboratory analysis
(Cholesterol, Triglycerides, Fasting Blood Glucose) and
for eCB measurements. Blood sampling for eCB determi-
nation was repeated at 6 hours (T1) and 18 hours (T2)
after admission. A follow-up brain CT scan was per-
formed 48 hours after admission.

Control subjects (Group B), after written informed
consent, underwent blood sampling for eCB and labora-
tory analysis; their BMI was also calculated.

Endocannabinoid determination
Blood was collected in EDTA and immediately centri-
fuged at 400 g for 30 min at room temperature. Extrac-
tion, purification of AEA, 2-AG and PEA, and their
quantification by isotope-dilution liquid chromatogra-
phy-atmospheric pressure chemical ionization-mass
spectrometric analysis were performed as previously
described [22].

Brain CT analysis
Twenty-eight contiguous 5 mm-thick axial slices, cover-
ing the whole brain, were obtained for each patient with a
multislice TOSHIBA AQUILION scanner, with 120 kV,
250 mA and 2 s acquisition time (Toshiba Medical Sys-
tems). Thereafter, using Analyze 4.5 (Biomedical Imaging
Resource, Mayo University) and a semi-automated rou-
tine, two blinded examiners (FCG and GP) calculated the
total lesion volume in mL, as the sum of the stroke area in
each slice multiplied by slice thickness (Fig. 1).

Statistical analysis
Using the SPSS 13.0 statistical software package (SPSS
Inc.), inter-group differences were evaluated with the
Mann-Whitney U test, while the Spearman rho test was
used to evaluate correlations between eCBs plasma levels
and the clinical and radiological data.

Results
Groups were comparable with regard to age, gender, BMI,
and laboratory findings (Tab. 1). Mean AEA, PEA, and 2-
AG blood levels in the control group (Group B) were sim-
ilar to previously reported values [22-25] and correlated
with total cholesterolemia and BMI.

At T0, AEA plasma levels in the stroke patient group
were significantly higher than in the control group (Tab. 1
and Fig. 2; Mann-Whitney U test: p < 0.05). In addition,
AEA levels at T0 showed a significant inverse relationship
with the FMSa scores (Fig 3; Spearman rho = -0.819, p =
0.004), so that patients with greater neurological impair-
ment (lower FMSa score) had higher AEA levels. There
was also a positive correlation between T0 plasma AEA
levels and the volume of the ischemic brain region on CT
scans (Spearman rho = 0.667, p < 0.05).
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No significant differences between groups in PEA plas-
matic levels were observed. Nevertheless, there was a sig-
nificant correlation between PEA levels at T0 and the
NIHSS scores (Fig. 4; Spearman rho = 0.823, p = 0.003),
such that the greater the neurological impairment, the
higher the PEA levels.

Plasma 2-AG levels were lower in stroke patients, but
group differences did not reach statistical significance.

No significant differences in AEA or PEA content were
observed at later time-points (T1 and T2) between
groups (Tab. 1).

Discussion
Previous studies showed an involvement of the eCB sys-
tem in various neurological conditions [26]. To our
knowledge, this is the first study addressing the potential
involvement of eCBs and a related mediator in acute
stroke in a cohort of human patients.

Since eCBs have been proposed to act as local media-
tors and not as circulating hormones, the physiopatho-
logical consequences in stroke of the observed alterations
in eCB plasma levels cannot be easily inferred. Neverthe-
less, there are several reports of changes in plasma endo-
cannabinoid levels in patients affected by various

neurological and neuropsychiatric conditions, including
multiple sclerosis [27], Huntington's chorea [28],
migraine [29,30], schizophrenia [22], depression [31] and
anorexia nervosa [23]. Therefore, although one would
expect that such conditions alter endocannabinoid sig-
nalling mostly in the brain, there is clearly a "spill-over"
effect to the peripheral circulation, the extent of which
often reflects, as in the present case, the severity of CNS
pathology. Accordingly, endocannabinoid blood levels
usually are 1-2 orders of magnitude lower than brain lev-
els. Interestingly, a recent review by Maccarrone's group
emphasized the relationship between brain diseases and
endocannabinoid peripheral dysregulation, showing that
peripheral eCBs could be a marker of CNS pathologies
[32].

Peripheral AEA levels at T0 were significantly
increased in stroke patients and showed a positive corre-
lation with neurological disability and stroke volume.
Likewise, plasma PEA levels showed a significant correla-
tion with neurological disability. There was also a trend to
reduced 2-AG levels in stroke patients. On the other
hand, AEA and PEA levels at later time-points were not
different between groups. These observations parallel the
findings of a single case study in a patient with hemi-

Figure 1 Follow-up brain CT scans of two stroke patients. Two examples of CT scans of two stroke patients at 48 hours since admission. The red 
outline circumscribes the ischemic area. The patient in panel A had a total occlusion of right middle cerebral artery, presenting with left hemiparesis 
and hemianopia (Female; Age = 80 yrs.; T0 AEA = 7.31 pmol/lipid mg; T0 NIHSS = 17; T0 aFMS score = 12). The patient in panel B was admitted for a 
left hemiparesis due to a partial occlusion in right middle cerebral artery territory (Female, Age = 82 yrs.; T0 AEA = 3.93 pmol/lipid mg; T0 NIHSS = 10; 
T0 aFMS score = 18).
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spheric stroke in which AEA and PEA contents were pre-
cociously increased in microdyalisates of tissue
surrounding the ischemic lesion [19]. They also parallel
several studies showing early increases of AEA and PEA,
but reduced 2-AG, in ischemic brain regions in animal
models of global and focal cerebral ischemia [33]. Inter-
estingly, Maccarrone's group found an increase of CSF

and plasmatic AEA, but not 2-AG, content in multiple
sclerosis patients during relapses [27]. In addition, the
same group recently demonstrated that an increase of
striatal AEA levels may result in a decrease of 2-AG bio-
synthesis, thus suggesting an inverse relationship
between AEA and 2-AG levels, under certain conditions
[34].

Table 1: Demographic and laboratory data of stroke patients and control subjects.

Group A Group B p

Sex (M/F) 5/5 4/4 n.s.

Age yrs. (mean ± SD) 70 ± 13 70 ± 12 n.s.

NIHSS score (median ± SD; range) 22 ± 10; 3-29 - -

Fugl-Meyer Scale-arm score (median ± SD; range) 11.50 ± 9; 8-44 - -

CT ischemic area Volume (mL; mean ± SD) 76.10 ± 43.46 - -

Body Mass Index (mean ± SD) 25.20 ± 2.74 24.63 ± 2.39 n.s.

Cholesterol (mmol/L - mean ± SD) 11.69 ± 2.31 11.64 ± 2.04 n.s.

Triglycerides (mmol/L - mean ± SD) 6.97 ± 2.33 6.82 ± 1.00 n.s.

Blood Glucose (mmol/L - mean ± SD) 5.61 ± 0.71 5.77 ± 0.74 n.s.

AEA T0 (pmol/lipid mg - mean ± SD) 3.42 ± 2.71 1.81 ± 1.53 0.026

AEA T1 (pmol/lipid mg - mean ± SD) 2.87 ± 2.34 - n.s.

AEA T2 (pmol/lipid mg - mean ± SD) 3.11 ± 2.72 - n.s.

PEA TO (pmol/lipid mg - mean ± SD) 2.47 ± 0.96 2.05 ± 0.31 n.s.

PEA T1 (pmol/lipid mg - mean ± SD) 2.28 ± 1.01 - n.s.

PEA T2 (pmol/lipid mg - mean ± SD) 2.17 ± 0.67 - n.s.

2-AG T0 (pmol/lipid mg - mean ± SD) 3.42 ± 7.22 6.80 ± 9.50 n.s.

2-AG T1 (pmol/lipid mg - mean ± SD) 4.65 ± 4.98 - n.s.

2-AG T2 (pmol/lipid mg - mean ± SD) 3.29 ± 3.10 - n.s.

Demographic, clinical, radiological data and endocannabinoid or PEA plasma levels in stroke patients (Group A, at T0, T1, and T2 time-points) 
and control subjects (Group B). p = p values (Mann-Whitney U test); n.s. = not significant.

Figure 2 Box-plot of plasma AEA levels in control and stroke pa-
tient groups (at T0). * At T0, mean plasma AEA levels were significant-
ly higher in the stroke patients group (p < 0.05, Mann-Whitney U test).

Figure 3 Scatterplot of plasma AEA levels versus aFMS score in 
stroke patients at T0. Significant inverse correlation between AEA 
levels and aFMS score (Spearman rho = -0.819, p = 0.004).
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The overall effect of activation of the eCB system in
response to ischemia is not yet fully elucidated. In our
study, plasma AEA and PEA contents in stroke patients
correlated with neurological disability, but this relation-
ship does not per se imply a potential neuroprotective
effect. Recently, Schomacher reported that i.p. adminis-
tration of AEA or PEA in rats 30 min after transient MCA
occlusion significantly reduced the size of the infarcted
tissue [3]. Since AEA acts as an endogenous agonist for
CB1 and CB2 receptors, its neuroprotective effect may be
mediated by inhibition of citotoxic glutamate release and
by reducing the probability of the opening of voltage-
operated calcium channels through CB1-mediated mech-
anisms. Indeed, CB1-knockout mice develop larger stroke
volumes than wild-type animals [12]. CB2 mediated
effects have also been implicated in stroke and in this
case the eCBs may act by modulating the inflammatory
response that contributes to the delayed neuronal death
[33]. Such response might also be reduced by elevation of
PEA levels, since PEA plays anti-inflammatory and neu-
roprotective effects via several potential mechanisms
[3,35].

Conclusions
Our findings in stroke patients show an early increase in
plasma AEA content which correlates with neurological
disability and infarct volume. Our study extends previous
observations from the case report by Schäbitz and col-
leagues [19], showing a relationship between plasma AEA
content and neurological disability. However, our present
findings do not allow to determine, for instance, whether
the increase in AEA levels is a consequence of stroke and
exerts a possible protective effect, or whether it is part of

the mechanisms leading to neurological damage during
stroke. Therefore, further studies are warranted to
address the therapeutic potential of eCB system modula-
tion in stroke patients, as already explored in several
(pre)clinical studies on other neurological diseases, such
as multiple sclerosis, Alzheimer's disease, and brain
trauma [26,36]. Finally, the role and mechanism of action
of PEA in neuroprotection against cerebral ischemia also
needs to be more deeply investigated.
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