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Abstract

Background: Mixed CLA isomers variably affect bone resorption in animals and decrease
osteoclast formation and activity in murine osteoclasts. These variable effects may be due to the
different isomers present in commercial preparations of CLA, and the effects of the predominant
individual isomers, 9cis, | Itrans (9,1 1) and |0trans,|2cis (10,12) CLA are not clear. The objectives
of this study were to determine the effects of the individual CLA isomers on osteoclast formation
and activity from human CDI4* monocytes, and to determine whether any changes are
accompanied by changes in cathepsin K, matrix metalloproteinase-9 (MMP-9), receptor activator
of NF-xB (RANK) and tumour necrosis factor alpha (TNFa) gene expression. Osteoclasts were
identified as TRAP* multinucleated cells. Osteoclast activity was quantified by the amount of TRAP
in the cultured media.

Results: At 50 uM, 9,11 CLA inhibited osteoclast formation by ~70%, and both 9,11 and 10,12
CLA decreased osteoclast activity by ~85-90%. Both isomers inhibited cathepsin K (50 uM 9,11 by
~60%; 10,12 by ~50%) and RANK (50 uM 9,11 by ~85%; 50 uM 10,12 by ~65%) expression, but
had no effect on MMP-9 or TNFa expression.

Conclusion: 9,1 | CLA inhibits osteoclast formation and activity from human cells, suggesting that
this isomer may prevent bone resorption in humans. Although 10,12 CLA did not significantly
reduce osteoclast formation, it reduced osteoclast activity and cathepsin K and RANK expression,
suggesting that this isomer may also affect bone resorption.

Background

Dietary conjugated linoleic acid (CLA) has been reported
to have inconsistent effects on bone mass [1-13] and on
the differentiation and function of cultured bone cells
[3,14-16]. Of these studies, only a few have examined the
effects of CLA on bone resorption in vivo [5,7,9,11-13]
and on osteoclast formation and function in vitro [14].
Moreover, none of these studies have examined the effects
of the individual bioactive 9cis,11trans (9,11) and

10trans,12c¢is (10,12) CLA isomers on osteoclast forma-
tion and activity from cells of human origin.

All of the studies conducted to date on the effects of CLA
on bone resorption and osteoclast formation or function
have used mixed preparations of CLA, which contain
approximately equal amounts of the bioactive 9,11 and
10,12 isomers. Because the individual isomers of CLA
could have different effects on bone physiology, it is
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important to examine the effects of separate preparations
of the major biologically active isomers.

The 9,11, but not 10,12, isomer of CLA has been shown
to increase mineralized bone nodule formation from
human osteoblast-like SaOS-2 cells [15]. These findings
suggest that 9,11 CLA may also affect bone resorption
based on the knowledge that osteoblasts regulate osteo-
clast formation by altering the production of receptor acti-
vator of NF-xB ligand (RANKL) and osteoprotegerin
(OPG) [17], and that CLA modulates RANKL signalling in
murine osteoclasts in vitro [14]. Osteoclast precursors
express receptor activator of NF-xB (RANK), which when
activated by the binding of RANKL [18], induces osteo-
clast differentiation and the expression of osteoclast-spe-
cific genes such as those encoding tartrate-resistant acid
phosphatase (TRAP), cathepsin K and matrix metallopro-
teinase-9 (MMP-9) [19]. In contrast, OPG acts as a decoy
receptor to inhibit bone resorption by binding to RANKL,
which prevents the binding of RANKL to RANK and,
therefore, inhibits osteoclast formation and activity.
TRAP, cathepsin K and MMP-9 are commonly used as
markers of osteoclast formation, and are involved in bone
resorption by dissolving mineral (TRAP) [20] and degrad-
ing hydroxyapatite (cathepsin K [21] and MMP-9 [22]).
Serum concentrations of TRAP have been shown to corre-
late with the rate of bone resorption in vivo [23,24]. In
vitro, the quantity of TRAP released into cell culture media
correlates with bone resorption when osteoclasts are
seeded onto bone slices [25].

RANKL belongs to the tumour necrosis factor (TNF)
super-family [26,27]. TNFa is a potent pro-inflammatory
and bone-resorbing cytokine that binds to the TNF recep-
tor 1 (TNFR1) in osteoclast precursors and augments the
stimulatory effects of RANKL on osteoclast differentiation
[28,29] thereby inducing bone resorption in vitro [30] and
in vivo [31]. Moreover, when RANKL interacts with RANK,
TNFo mRNA expression is upregulated and the TNFa pro-
tein is released from osteoclast progenitors to stimulate
osteoclast differentiation [29]. Mixed CLA isomers have
variable effects on TNFo gene expression [32-35] and
inhibit TNFa-induced inflammatory processes [36,37]. In
murine RAW264.7 cells, mixed CLA isomers inhibit oste-
oclast formation and activity by modulating RANKL sig-
nalling, as evidenced by a reduction in RANKL-induced
TNFo [14], suggesting that CLA may also inhibit TNFa
gene expression in human osteoclast precursors.

The objectives of this study were to determine the direct
effects of the individual 9,11 and 10,12 isomers on osteo-
clast formation, activity and osteoclastogenic gene expres-
sion from cells of human origin.

http://www.lipidworld.com/content/8/1/15

Results

Effects of CLA on the formation of TRAP* multinucleated

cells from CD14* monocytes

Multinucleated cells were first observed under a phase-
contrast microscope (100x magnification) after 10 days of
treatment (Day 13). As demonstrated in Figure 1a, 50 uM
9,11 CLA decreased osteoclast formation by ~70%. In
contrast, 10,12 CLA had no effect on osteoclast formation
(Figure 1b).

Effects of CLA on TRAP activity in culture media from
CD14* monocytes

TRAP released into the medium was first measurable after
6 days of treatment and increased with duration of treat-
ment. Figure 2 shows the effects of CLA on TRAP activity
in the culture media after 14 days of treatment. As seen in
Figure 2a, 9,11 CLA inhibited TRAP activity at all concen-
trations examined in a dose-dependent manner by ~35%
(6.25 uM) to 90% (50 uM). The 10,12 isomer of CLA also
reduced TRAP activity in the culture media (~67-85%),
but there was no dose-response effect at the concentra-
tions tested (Figure 2b).

Effects of CLA on cathepsin K, RANK, MMP-9 and TNF«
gene expression in CD14* monocytes

The effects of 9,11 and 10,12 CLA on cathepsin K, RANK,
MMP-9 and TNFa gene expression were tested after 3 days
of treatment. As seen in Table 1, 12.5 to 50 uM of both
9,11 and 10,12 CLA reduced cathepsin K gene expression
by ~40-60%. At 6.25-50 uM of 9,11 CLA, RANK expres-
sion was reduced by ~60-90%, while 50 uM 10,12 CLA
reduced RANK expression by ~70%. Neither 9,11 nor
10,12 CLA affected MMP-9 or TNFa expression.

Discussion

The present study demonstrates that 9,11 CLA, the most
abundant isomer found in food products from ruminant
animals, inhibits osteoclast formation (TRAP+ multinucle-
ated cells) from human CD14+ monocytes. This effect was
accompanied by a decrease in TRAP activity and a reduc-
tion in both cathepsin K and RANK gene expression. The
10,12 isomer of CLA appeared to also inhibit osteoclast
formation, however, this effect was not significant (p =
0.07). Consistent with a possible inhibitory effect of
10,12 CLA on osteoclast formation, this isomer also
reduced osteoclast activity. The results demonstrating no
dose-response effect of 10,12 CLA on osteoclast activity,
yet a suppression of activity at all concentrations tested,
suggests that lower doses of 10,12 CLA may be effective at
inhibiting osteoclast activity. The reduction in osteoclast
activity following treatment with 10,12 CLA was also
accompanied by a reduction in cathepsin K and RANK
expression. Our data demonstrate that 9,11 CLA strongly
inhibits osteoclast formation from CD14+ monocytes,
and suggest that 10,12 CLA may also inhibit osteoclast
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Figure |

Effects of increasing concentrations of 9,11 (Figure 1a) and 10,12 (Figure I1b) CLA on osteoclast formation
from CDI14* monocytes after 14 days of treatment as determined by the number of TRAP* multinucleated (>
3 nuclei) cells. Values (n > 3) are expressed as the mean £ SEM of one experiment and the results have been replicated in a
second independent experiment. Bars with different letters have significant differences at P < 0.05.
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Figure 2

Effects of increasing concentrations of 9,11 (Figure 2a) and 10,12 (Figure 2b) CLA on TRAP released into the
media from CD14* monocytes on day |14 of treatment. Values (n = 4) are expressed as the mean + SEM of one exper-
iment and the results have been replicated in a second independent experiment. Bars with different letters have significant dif-
ferences at P < 0.05.
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Table I: Gene expression in CD14* monocytes following treatment with CLA for 3 days?

Cathepsin K RANK MMP-9 TNF-o
9cis, | Itrans CLA (uM)
0 1.002 1.002 1.002 1.002
6.25 0.88 + 0.152 0.72 + 0.0420 1.15+0.172 1.08 £ 0.072
12.5 0.59 + 0.08bc 0.50 £ 0.16° 0.85 £ 0.162 1.14 £ 0.162
25 0.44 £ 0.03¢ 0.50 £ 0.05¢ 1.00 = 0.072 0.99 £0.172
50 0.43 £ 0.05¢ 0.14 £ 0.05¢ 0.82 £ 0.102 091 £0.10
|0trans, | 2cis CLA (uM)
0 1.002 1.002 1.002bc 1.002bc
6.25 0.80 £ 0.092 0.66 + 0.07° 1.22 + 0.06° 1.19 + 0.082bc
12.5 0.55 + 0.06° 0.60 £ 0.12b¢ 0.88 £ 0.10¢ 1.40 £ 0.19>
25 0.53 £ 0.09° 0.55 £ 0.09b¢ 0.86 + 0.07¢ 0.96 + 0.092bc
50 0.47 +0.140 0.37 + 0.02b¢ 0.66 + 0.08¢ 0.85 £ 0.09¢

aValues represent the mean + SEM (n > 3), expressed as relative arbitrary units (R.A.U.) for mRNA expression, determined by real-time RT-PCR.
Values with different letters represent significant differences within isomer treatment at P < 0.05.

formation from these cells. These effects appear to be spe-
cific to CLA, rather than a non-specific effect of treatment
with fatty acids, because linoleic acid did not inhibit oste-
oclast formation from these cells (data not shown).

To our knowledge, this is the first study to examine the
effects of CLA on osteoclast formation and activity from
human cells and to examine the effects of the individual
9,11 and 10,12 isomers on osteoclast function. Our
results are consistent with the findings from a previous
study that showed that mixed CLA isomers reduced oste-
oclast formation from murine RAW264.7 monocytes
[14]. In those cells, 25-100 uM mixed CLA isomers
reduced osteoclast formation, as determined by the
number of TRAP+ multinucleated cells, in a dose-depend-
ent manner. At 50 uM, the mixed CLA isomers also
reduced resorptive pit formation on Osteoclast Activity
Assay Substrate plates, while 100 uM mixed CLA isomers
reduced TRAP, cathepsin K and MMP-9 gene expression
[14]. However, this study used mixed CLA isomers and,
therefore, the individual effects of 9,11 and 10,12 CLA
were not examined. Our results suggest that the inhibitory
effect of mixed CLA isomers on osteoclast formation and
activity observed in murine RAW264.7 cells was likely due
to the combined effects of both the 9,11 and 10,12 iso-
mers. Moreover, the results from murine RAW264.7 and
human CD14+ monocytes suggest that CLA inhibits oste-
oclast formation in both rodents and humans.

Unlike the experiments in RAW264.7 cells, 100 uM of the
individual isomers of CLA appeared to induce apoptosis
or were toxic to human CD 14+ monocytes. After treatment
with 100 uM of either 9,11 or 10,12 CLA the number of
adherent CD14+ monocytes was drastically reduced (data
not shown). These cells were unable to proliferate and,
therefore, the reduction in cell number likely represents

an increase in apoptosis or a toxic effect of 100 uM of 9,11
or 10,12 CLA. CD14+ monocytes may be more sensitive to
higher concentrations (100 uM) of CLA. In addition, the
negative effect of CLA on CD14* monocytes may be due to
higher levels of the individual isomers. The 100 uM solu-
tion of mixed CLA isomers represents approximately 40%
of 9,11 and 10,12 CLA and, therefore, approximately 40
uM of each individual isomer. This concentration is lower
than the maximum concentration (50 uM) of the individ-
ual isomers reported in the present study. In addition,
RAW264.7 cells are clonal and more robust than primary
cells (CD14* monocytes) and may, therefore, be more
resistant to any toxic effects of CLA.

In murine RAW264.7 cells, CLA inhibits osteoclast forma-
tion and activity by modulating RANKL signalling, as
demonstrated by an inhibition of NF-xB and TNF-a
expression. RANKL, which is produced and secreted by
osteoblasts, regulates osteoclast differentiation and activ-
ity by binding to RANK on the surface of osteoclast precur-
sors. Thus, any effects of CLA on RANK expression may
also affect osteoclast formation and activity. The results
from the present study demonstrate that both 9,11 and
10,12 CLA inhibit RANK gene expression, supporting the
hypothesis that CLA inhibits osteoclast formation by
modulating RANKL signalling, and suggest that CLA mod-
ulates RANKL signalling by suppressing RANK expression.
Although mixed CLA isomers inhibited RANKL-induced
TNFa production in murine RAW264.7 cells, individual
CLA isomers had no effect on TNFo gene expression in
human CD14+ cells. It is possible that CLA inhibits the
translation of TNFa. mRNA to protein rather than affect-
ing its expression, or that the inhibitory effect of CLA on
TNFa protein production is species specific. Although
both isomers inhibited cathepsin K gene expression, nei-
ther isomer affected MMP-9 expression.
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During osteoclast differentiation, MMP-9 is the earliest
marker expressed by these cells and is detectable before
the precursors become committed to the osteoclast line-
age, whereas cathepsin K is predominantly expressed in
mature osteoclasts [38]. Thus, the apparent discrepancy
between the effects of CLA on cathepsin K and MMP-9
gene expression may be explained by CLA affecting a later
stage of differentiation, after the precursors have commit-
ted to the osteoclast lineage. In addition, MMP-9 expres-
sion is regulated by many growth factors, interleukins and
cytokines, including TNFa. As such, the lack of effect of
CLA on TNFa expression is consistent with the absence of
changes in MMP-9 expression.

Only one study has examined the effect of CLA on bone
resorption in humans. This study demonstrated that,
compared to placebo (palm/bean oil blend), supplemen-
tation with 3 g of CLA per day for 8 weeks had no effect
on markers of bone resorption such as serum collagen
degradation products, urinary Pyr and dPyr, or serum or
urinary calcium levels [13].

Rodent studies demonstrate inconsistent findings regard-
ing the effects of CLA on bone resorption in vivo
[5,7,9,11,12] and in vitro [14]. In young, male mice, a diet
containing 0.5% mixed CLA isomers reduced bone
resorption after 14 weeks of supplementation compared
to a diet containing 0.5% safflower oil [7]. Similarly, in
middle aged female mice, a diet supplemented with 9.5%
corn oil and 0.5% mixed CLA isomers for 10 weeks
decreased serum levels of RANKL and reduced osteoclast
function as determined by a reduction in TRAP activity
compared to a diet containing 10% corn oil [5]. In adult
ovariectomized rats, a diet supplemented with 0.5% or
1% mixed CLA isomers for 9 weeks reduced urinary Pyr
crosslinks and dPyr, which are markers of bone resorp-
tion, compared to a diet containing 1% soybean oil [11].
In contrast, in young male rats, a diet supplemented with
1% mixed CLA isomers for 8 weeks had no effect on levels
of urinary Pyr crosslinks, compared to a diet containing
1% soybean or safflower oil [9]. Similarly, in weanling
male rats, a diet containing 6% corn oil and 1% mixed
CLA isomers for 8 weeks had no significant effect on bone
resorption compared to the control diet containing 7%
corn oil [12]. Inconsistencies among animal studies may
be due to differences in the species, strain, age and sex of
the animals, or to the different doses and durations of
CLA treatment [10,13,39-42].

The findings from the present study suggest a beneficial
effect of 9,11 CLA on bone mass because osteoclasts
degrade bone. When osteoclast mediated bone resorption
outweighs osteoblast mediated bone formation, bone loss
occurs with each bone remodeling cycle. Compounds that
prevent osteoclast formation and activity, such as 9,11

http://www.lipidworld.com/content/8/1/15

CLA, may prevent bone loss by maintaining the balance
between osteoclast and osteoblast activity. This study sug-
gests that CLA inhibits osteoclast formation and activity
by modulating RANKL singalling. RANKL is produced and
secreted by osteoblasts, and we have previously demon-
strated that 9,11 CLA increases osteoblast mediated bone
formation in vitro [15]. Taken together, the results from
these two studies suggest that 9,11 CLA has the potential
to improve bone health by maintaining the balance
between osteoclast and osteoblast activity during the bone
remodeling process, thus preventing bone loss.

Conclusion

Our findings demonstrate that 9,11 CLA inhibits osteo-
clast formation and activity from cells of human origin,
and suggest that this isomer may prevent bone resorption
in humans. The results also suggest that 10,12 CLA inhib-
its osteoclast formation and activity, but to a lesser degree
than 9,11 CLA. The inhibition of RANK expression by
both 9,11 and 10,12 CLA is consistent with the hypothesis
that CLA inhibits osteoclast formation by modulating
RANKL signalling. Although isolated cells are useful for
testing directly the effects of purified CLA isomers on oste-
oclast function, they do not account for differences in CLA
metabolism or bone physiology, which are both affected
by a number of factors including age, sex, diet and genetic
variability. Findings from this study warrant further inves-
tigation of the effects of these individual isomers on bone
resorption in vivo.

Methods

Materials

The CD14+ monocytes (2W-400), which are capable of
forming osteoclasts in vitro, were obtained from Lonza
Walkersville (Walkersville, Maryland, USA). The 9,11 and
10,12 (> 98% pure) isomers of CLA were purchased from
Matreya (Pleasant Gap, Pennsylvannia, USA). Fetal
bovine serum (FBS) was purchased from Cansera (Etobi-
coke, Ontario, Canada). Antibiotic-antimycotic was pur-
chased from GIBCO (Burlington, Ontario, Canada) and
o-MEM and PBS were purchased from the Central Techni-
cal Services, University of Toronto. M-CSF and RANKL
were obtained from MJS BioLynx Inc. (Brockville,
Ontario, Canada). All other chemicals were purchased
from Sigma Chemical Co. (St. Louis, Missouri, USA).

Cell Culture

The CD14+ monocytes obtained from Lonza were isolated
from the peripheral blood of screened, healthy donors, by
apheresis followed by density centrifugation to remove
red blood cells and neutrophils. CD14+ monocytes were
isolated using positive immunomagnetic selection
directed against the cell surface marker, CD14.
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CD14+ monocytes were seeded in basal media (a-MEM
containing 10% FBS and 1% antibiotic-antimycotic solu-
tion) in 96-well plates at a density of 105 cells per well.
The following day, the medium was replaced with basal
media supplemented with 30 ng/ml each of M-CSF and
RANKL (differentiation media). On the third day the cells
were treated with varying concentrations (6.25, 12.5, 25,
50 and 100 uM) of 9,11 or 10,12 CLA or vehicle (0.1%
ethanol and 1 g/L of fatty acid-free BSA). The media were
replaced two times per week during the two weeks of treat-
ment.

CLA Sample Preparation

CLA was added to the medium by first dissolving it in eth-
anol, which was then added to FBS supplemented with 1
g/L of fatty acid-free bovine serum albumin (BSA) to pro-
duce a 10x stock of CLA. The CLA-FBS-BSA solutions were
stored at -20°C until needed. These solutions were diluted
in serum-free differentiation medium, containing no FBS,
prior to each experiment to produce 1x concentrations of
CLA and a final FBS concentration of 10%. The final con-
centration of ethanol and BSA in each well was 0.1% and
1 g/L, respectively.

Quantification of Osteoclast Formation

Osteoclasts were identified as TRAP+ cells containing 3 or
more nuclei. The wells were viewed field by field under a
phase-contrast microscope at 100x magnification, and the
total numbers of osteoclasts per well were quantified as
the sum of each field. For TRAP staining, the cells were
fixed with 2.5% gluteraldehyde for 5 minutes, washed two
times with PBS that was preheated to 37°C and treated
with TRAP stain for 20 minutes at 37°C. TRAP staining
was carried out using the protocol described in BD Bio-
sciences Technical Bulleting #445. The TRAP staining
solution consisted of 50 mM acetate buffer, 30 mM
sodium tartrate, 0.1 mg/ml Naphthol AS-MX phosphate,
0.1% Triton X-100, and 0.3 mg/ml Fast Red Violet LB.
After staining, the cells were washed twice with dH,O and
maintained in dH,O0.

Determination of TRAP (Tartrate-Resistant Acid
Phosphatase) Activity

TRAP activity was determined in cultured media using an
adapted Sigma protocol as described [43]. Briefly, media
were added to ELISA plates containing the phosphatase
substrate p-nitrophenyl phosphate (PNPP) and 40 mM
tartrate acid buffer and incubated at 37°C for 30 minutes.
The reaction was stopped with the addition of 2N NaOH,
and absorbance was measured at 405 nm. TRAP catalyzes
the conversion of PNPP to p-nitrophenol (PNP), which
has a maximal absorbance at 405 nm, and represents
TRAP activity in the sample. TRAP activity was calculated
from a standard curve obtained from PNP standards.

http://www.lipidworld.com/content/8/1/15

RNA Isolation and Real-Time, One-Step RT-PCR

After 3 days of treatment, the cells were washed twice with
PBS and lysed in 0.5 ml of nucleic acid purification solu-
tion (Applied Biosystems). Total RNA was isolated using
the 6100 Nucleic Acid PrepStation (Applied Biosystems).
A one-step reaction was performed in an ABI Prism® 7000
Sequence Detection System (Applied Biosystems) to
reverse transcribe the mRNA into cDNA, which was then
amplified using the QuantiTect Multiplex RT-PCR Kit
(Qiagen) and TagMan® Gene Expression Assays (Applied
Biosystems). All reactions were performed in 96-well
plates with a final volume of 25 pl per well. Cycling con-
ditions were 20 minutes at 50°C followed by 15 minutes
at 95°C to activate the HotStar Taq DNA Polymerase, and
50 cycles of 45 seconds at 94°C, and 45 seconds at 60°C.
The TagMan® Gene Expression Assays used for cathepsin
K, RANK, MMP-9 and TNFa were Hs01080388_ml,
Hs00187189_m1, Hs00957555_m1 and
Hs00174128_m1, respectively. The target genes were co-
amplified with VIC-labelled B-2-microglobulin (Applied
Biosystems, #4326319E) as an internal control. Data were
obtained as threshold cycle (C;) values, which represent
the cycle at which the first significant increase in fluores-
cence is detected, and corresponds to the amount of start-
ing template in the sample. The difference in C; values
(AC;) between the internal control (VIC-labeled B-2-
microglobulin) and target gene of interest (FAM-labelled)
was calculated to determine the relative change in Cval-
ues between samples. The average AC; of control samples
was subtracted from the AC; of treatment samples to
derive a AACvalue, which represents the change in mRNA
expression between treatments relative to controls. Rela-
tive mRNA levels were calculated as 2-2ACT and expressed
as fold change relative to control samples that produce a
2-AACTyalue of 1.

Statistical Analyses

Results are expressed as mean + SEM with at least 3 repli-
cates in each group. Differences were analyzed using a
one-way ANOVA followed by Tukey's test for multiple
comparisons. P values < 0.05 were considered significant.
All data were analyzed using GraphPad Prism Software,
Version 4.0.
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