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Abstract

Hepatitis C virus (HCV) infects hepatocytes and leads to permanent, severe liver damage. Since the
genomic sequence of HCV was determined, progress has been made towards understanding the
functions of the HCV-encoded proteins and identifying the cellular receptor(s) responsible for
adsorption and penetration of the virus particle into the target cells. Several cellular receptors for
HCV have been proposed, all of which are associated with lipid and lipoprotein metabolism. This
article reviews the cellular receptors for HCV and suggests a general model for HCV entry into

cells, in which lipoproteins play a crucial role.

Review

Hepatitis C virus (HCV) and cellular receptors for HCV
Hepatitis C virus (HCV) is a major cause of chronic liver
disease, with approximately 170 million people infected
worldwide [1]. Infection with HCV can lead to hepatocel-
lular carcinoma [2]. To study the adsorption, penetration
and replication of the virus, a major obstacle has been the
lack of an efficient and reproducible in vitro infection sys-
tem. Thus, the identification of the HCV receptor on the
surface of susceptible cells, especially hepatocytes,
remains a major challenge for the development of both in
vitro cell culture systems, and for the design of successful
therapies [3,4].

Several cellular receptors have been proposed to mediate
the entry of HCV into cells, namely the CD81 receptor
[5,6], the scavenger receptor class B type I (SR-BI) receptor
[7], and the low density lipoprotein (LDL) receptor [8,9].

CD8I as a receptor for HCV

The tetraspanin CD81 (also named TAPA-1) is a widely-
expressed cell surface protein of 26 kDa that is involved in
pleiotropic activities such as cell adhesion, motility,
metastasis, cell activation and signal transduction [10]. It
physically associates with a variety of other membrane
proteins such as integrins, lineage-specific molecules and
other tetraspanins. It is expressed in most human tissues
with the exception of the red blood cells and platelets.
Association of CD81 with other molecules has been
extensively studied with B and T cells.

It was shown that the expression of CD81 on nonpermis-
sive human, but not murine, hepatic cells enabled the
entry of HCV pseudoviruses. The inhibition of viral entry,
achieved by application of anti-CD81 monoclonal anti-
bodies, occurred at a step following viral attachment to
target cells [11]. When the HCV envelope glycoproteins
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E1 and E2 were expressed in a baculovirus system, the
purified E1-E2 heterodimer interacted with CD81, as well
as with the LDL receptor [12]. The human CD81 protein
was expressed in bacteria, and the critical amino acids in
CD81 involved in the interaction with the viral envelope
protein E2 were identified [13]. HIV-HCV pseudotypes
bearing native HCV glycoproteins were infectious to the
human hepatoma cell lines Huh7 and PLC/PR5. The
infectivity was inhibited by recombinant soluble CD81,
suggesting that CD81 was a component of the receptor
complex [14]. CD81 chimeras, but not wild-type CD81,
could internalize recombinant E2 protein and E2-envel-
oped viral particles from the serum of HCV-infected
patients into Huh7 hepatoma cells [15]. Moreover, the
expression of CD81 in human liver-derived cells, HepG2
and HH29, that were previously resistant to infection con-
ferred permissiveness to HCV pseudotype infection [16].

In contrast, in several studies, no correlation between
CD81 expression and HCV binding has been observed. It
has been suggested that HCV binding to hepatocytes
might not entirely depend on CD81 [17]. Instead, these
authors proposed that CD81 may be an attachment recep-
tor with poor capacity to mediate the viral entry, and that
reducing environments may not not favor CD81-HCV
interaction. Indeed, it was shown that the binding of E2 to
CD81 was not predictive of an infection-producing inter-
action between HCV and host cells [18]. Moreover, the
binding of HCV-like particles was CD81-independent and
did not correlate with the expression of the LDL receptor
[19]. Finally, human CD81 transgenic mice that lacked
expression of the endogenous mouse CD81 were resistant
to HCV infection [20]. These authors concluded that the
expression of human CD81 alone was not sufficient to
confer susceptibility to HCV infection in the mouse.

SR-BI as a receptor for HCV

Scavenger receptors are cell membrane proteins that bind
chemically modified lipoproteins, such as acetylated and
oxidized LDLs. These receptors have been categorized into
broad classes (A, B, C, D, etc), according to their structures
[21]. The SR-BI receptor is involved in bidirectional cho-
lesterol transport at the cell membrane and can bind both
high density lipoproteins (HDL) and low density lipopro-
teins [22]. The cholesterol uptake is different from the
classic LDL receptor-mediated endocytosis pathway, since
it appears to involve initial transfer to the plasma mem-
brane [23]. SR-BI is highly expressed in hepatocytes [24],
and is located in the cholesterol-rich lipid raft membrane
compartment [25]. The HCV E2 protein could bind to
hepatoma cell lines independently of the CD81 receptor.
SR-BI was identified as a mediator of this binding. This
interaction was selective, since neither the mouse SR-BI
nor the closely related human scavenger receptor CD36,
were able to bind E2. The E2 recognition by SR-BI was

http://www.lipidworld.com/content/4/1/9

competitively inhibited, in an isolate-specific manner, by
a monoclonal antibody raised against the hypervariable
region 1 (HVR1, a 27 amino acid segment located at the
N-terminus of the E2 poplypeptide) [7].

LDL receptor as a receptor for HCV

The LDL receptor is an endocytic receptor that transports
lipoproteins, mainly the cholesterol-rich lipoprotein LDL,
into cells through receptor-mediated endocytosis [26,27].
This process involves the cell surface receptor recognizing
an LDL particle, followed by its internalization through
clathrin-coated pits [28,29]. It has been suggested that
HCV might enter the cells via the LDL receptor [8,9]. The
binding of low density HCV particles correlated with the
extent of the LDL receptor at the cell surface, but not sol-
uble CD81 [30]. In contrast, the binding of HCV-like par-
ticles did not correlate with the LDL receptor expression,
but was CD81-independent. These hepatoma and lym-
phoma cells were directly incubated with the virus-like
particles [19], without previous removal of the cell-bound
lipoproteins. Moreover, free beta-lipoproteins in human
serum may influence the rate of infection of hepatocytes
by competing with the virus. In support of this, it has been
shown that the LDL receptor can function as a HCV recep-
tor and that beta-lipoproteins competitively inhibit the
infection of hepatocytes with HCV through the LDL recep-
tor [31]. Indeed, it has been suggested that the removal of
the cell-bound lipoproteins is a crucial prerequisite for the
infection of hepatocytes with HCV [32]. In the latter
study, the viral inoculum that was employed was com-
posed of a virus-lipoprotein complex, as described else-
where [33,34].

HCYV and exosomes

Exosomes are small membrane vesicles secreted by cells
upon fusion of multivesicular endosomes with the cell
surface [35,36]. They are 60 to 100 nm in diameter and
originate from late endosomes. Exosomes are secreted
from most hematopoietic and epithelial cells in vitro.
Intracellularly, they are formed by inward budding of the
endosomal membrane in a process that sequesters partic-
ular proteins and lipids [37]. The unique composition of
exosomes may confer specific functions to them upon
secretion.

Recently, it has been shown that the HCV envelope pro-
teins were associated with exosomes [38]. In the absence
of the human CD81, HCV envelope proteins were almost
completely retained in the endoplasmic reticulum of
hamster CHO cells. Instead, when the human CD81 was
present, a fraction of the HCV envelope proteins passed
through the Golgi apparatus, matured acquiring complex
sugars and was found extracellularly associated with exo-
somes. It was proposed that the HCV-CD81 complex exits
the cells in the form of exosomes, circulates in the blood
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as a complex and exploits the fusogenic capabilities of
these vesicles to infect cells even in the presence of neu-
tralizing antibodies. Therefore, the human CD81 may in
fact act as an exit receptor for HCV. The authors concluded
that a fraction of HCV RNA was bound to CD81 in
patients infected with HCV, because it was difficult to esti-
mate the exact fraction of HCV RNA in human plasma
that was associated with exosomes. Differential centrifu-
gation was employed for the purification of the exosomes,
so that the buoyant density of these vesicles was not meas-
ured. This measure would be important to discriminate
between free and bound HCV [38].

Lipid raft-associated protein sorting has been involved
with exosomes. Some molecules are released in the extra-
cellular medium via their association with lipid raft
domains of the exosomal membrane. The presence of
lipid microdomains in exosomal membranes is suggest-
ing their participation in vesicle formation and structure,
as well as the direct implication of exosomes in regulatory
mechanisms [39]. Buoyant density is the quality for a
compound to rise or float in a liquid. The measure of this
density can be employed for the discrimination of exo-
somes, for example. Exosomes float to a density close to
1.13 g/ml (as revealed by ultracentrifugation), but this
may vary from cell to cell depending of the exosome pro-
tein content [37,40]. In several studies, the buoyant den-
sity of exosomes originating from B lymphocytes has been
determined to be in the range 1.08-1,22 g/ml with a peak
at 1.13-1.15 g/ml [41,42].

Interestingly, hepatitis C virus is structurally migrating
with buoyant densities lying in the same range as those
determined for low density lipoproteins and exosomes. It
was shown that HCV was associated with beta-lipopro-
teins having buoyant densities between 1.03 g/ml and
1.20 g/ml in the human serum [33,34]. Moreover, action
of lipoprotein lipase on hepatitis C virus in human sera
was shown to be virolytic [43]. In order to analyze the
potential HCV-lipoprotein complex, the binding of
sucrose gradient-purified low-density particles (1.03 to
1.07 g/cm3), intermediate-density particles (1.12 to 1.18
g/cm3), recombinant E2 protein, or control proteins to
MOLT-4 cells, foreskin fibroblasts, or LDL receptor-defi-
cient foreskin fibroblasts, was assessed. This revealed that
the low-density HCV particles, but not intermediate-den-
sity HCV or controls, bound to MOLT-4 cells and fibrob-
lasts expressing the LDL receptor. Binding correlated with
the extent of cellular LDL receptor expression and was
inhibited by LDL but not by soluble CD81. In contrast, E2
binding was independent of LDL receptor expression and
was inhibited by human soluble CD81 but not mouse sol-
uble CD81 or LDL [30].
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The complete complementary DNA of an isolate of the
hepatitis C virus was cloned into a tetracycline-inducible
expression vector and stably transfected into the human
hepatoma cell lines Huh7 and HepG2. Viral RNA levels
peaked at two separate ranges, one with a buoyant density
of 1.08 g/ml and another from 1.17 to 1.39 g/ml. Anti-E2
antibodies strongly labelled cytoplasmic vesicular struc-
tures and some viral-like particles. Complete viral parti-
cles of about 50 nm which reacted with anti-E2 antibodies
were observed in the culture media of tet-induced clonal
HuH-7 cells following negative staining [44].

A general scheme for the adsorption and penetration of
HCYV onto cells is emerging

It is tempting to speculate that HCV bound to, or con-
tained within, low density lipoproteins [33,34], viro-lipo-
particles [45], or exosomes [38] would be constituted as
one similar structure that would allow the virus to adsorb
and penetrate into the target cells. This structure would in
general migrate in sucrose gradients at a density similar to
low density lipoproteins. A common feature of these three
different structures is that they all contain lipids such as
sphingomyelin, cholesterol, glycolipids and lipids that are
critical for the maintenance of lipid rafts [37,40]. Consist-
ent with the initial buoyant density measures [33,34], the
lipoproteins bound to HCV might therefore be similar to
those present in exosomes [38]. Since hepatocytes are
from hematopoietic origin [46], they are producing exo-
somes [47]. Moreover, since CD81 is enriched in exo-
somes [48], it may not be a receptor mediating the HCV
entry into hepatocytes, but rather an exit receptor.
Although SR-BI is highly expressed in hepatocytes [22,25]
and is a receptor for HDL and LDL [22,49], hepatocyte cell
lines such as HepG2 do not express CD81 [7]. Therefore,
the afforementioned compilation of observations might
argue against the role played by CD81 as the cellular
receptor for HCV. Therefore, since low density lipopro-
teins and exosomes do bind the LDL receptor [50], HCV
might enter the cells via the LDL receptor solely. Work is
currently under progress in order to analyze the uptake of
the hepatitis C virus-lipoprotein in HepG2 and HuH-7
cells in absence or presence of N4-octadecyl-1-B-D-arab-
inofuranosylcytosine, as described elsewhere [51].

Conclusion

In vitro and in vivo implications

It might be envisioned that one of the crucial parameter
for viral entry would therefore be the LDL receptor at the
cell surface of the hepatocytes. If this is true, the CD81 tet-
raspanin and/or SR-B1 would rather regulate virus adhe-
sion and/or fusion with target cells than playing the role
of a cellular receptor (Fig. 1). Indeed, it has been proposed
that in order to infect hepatocyte cell lines with HCV in
vitro, the cell-bound lipoproteins have to be removed
with dextran sulfate prior to the addition of the viral
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A model for HCV infection. A. HCV is present as a virus-lipoprotein complex in the human blood. HCV can be surrounded by
several low density lipoproteins, so that the viral envelope proteins El and E2 might be masked. B. HCV is present within exo-
somes. It was recently shown that these exosomes are containing, apart from the genomic ribonucleic acid of HCV, the tet-
raspanin CD8I associated with El and E2. It is likely that the binding of the HCV-lipoprotein and/or the exosome-HCV
complexes to the low density lipoprotein receptor (LDLr) might therefore be hampered in vitro by the cell-bound lipopro-
teins, or by the vast excess of free lipoproteins in the human blood. Therefore, it may be beneficial to remove the cell-bound
lipoproteins with dextran sulfate (thus generating free LDL receptors) prior to the addition of the viral inoculum onto the tar-
get hepatocytes for the generation of an in vitro infection. The same may be true for the scavenger receptor SR-BI, since it
does also bind LDL. In vivo, the use of statins may enhance the rate of HCV infection in HCV-infected patients, because of the
increase of the LDL receptors at the surface of the hepatocytes.

inoculum onto the cells [32]. According to this model, the
binding of the HCV-lipoprotein complex to the LDL
receptor might be hampered in vitro by the cell-bound
lipoproteins, or by the vast excess of free lipoproteins over
virus-bound lipoproteins in the human blood. The simi-
lar procedure of infection would therefore also apply for
viro-lipo-particles and exosomes.

The lipidemic status in HCV-infected individuals might
also play a critical role for the onset and the maintainance
of a robust immune response directed against HCV, espe-
cially in patients suffering from hypercholesterolemia,
coronary artery disease, diabetes mellitus or obesity. Cho-
lesterol lowering drugs with statins are abundantly
employed for the lipid management in hyperlipidemic
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patients [52,53]. The primary effect of statins is the induc-
tion of the expression of LDL receptors on the surface of
the hepatocytes [54,55]. Safety and tolerability profiles are
available and statins have become the drugs of choice
when diet alone has failed [56]. However, there are no
controlled trials published that might reveal the link
between the cholesterol management with statins and the
efficiency of the hepatitis C virus replication, yet. It
remains obviously to be shown, whether the recovery
from hyperlipidemia to normo- or hypolipidemia is
indeed not dramatically allowing the infection or the re-
infection of hepatocytes with HCV in the human liver.
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