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A reduction of CETP activity, not an increase, is
associated with modestly impaired postprandial
lipemia and increased HDL-Cholesterol in adult
asymptomatic women
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Abstract

Background: The relationship between CETP and postprandial hyperlipemia is still unclear. We verified the effects
of varying activities of plasma CETP on postprandial lipemia and precocious atherosclerosis in asymptomatic adult
women.

Methods: Twenty-eight women, selected from a healthy population sample (n = 148) were classified according to
three CETP levels, all statistically different: CETP deficiency (CETPd < 4.5%, n = 8), high activity (CETPi > 238, n = 6)
and controls (CTL, CETP > 4.6% and < 23.7%, n = 14). After a 12 h fast they underwent an oral fat tolerance test
(40 g of fat/m? of body surface area) for 8 hours. TG, TG-rich-lipoproteins (TRL), cholesterol and TRL-TG
measurements (AUC, AUIC, AR, RR and late peaks) and comparisons were performed on all time points. Lipases and
phospholipids transfer protein (PLTP) were determined. Correlation between carotid atherosclerosis (c-IMT) and
postprandial parameters was determined. CETP TaglB and 1405V and ApoE-g3/€2/e4 polymorphisms were
examined. To elucidate the regulation of increased lipemia in CETPd a multiple linear regression analysis was
performed.

Results: In the CETPi and CTL groups, CETP activity was respectively 9 and 5.3 higher compared to the CETPd
group. Concentrations of all HDL fractions and ApoA-l were higher in the CETPd group and clearance was delayed,
as demonstrated by modified lipemia parameters (AUC, AUIC, RR, AR and late peaks and meal response patterns).
LPL or HL deficiencies were not observed. No genetic determinants of CETP deficiency or of postprandial lipemia
were found. Correlations with c-IMT in the CETPd group indicated postprandial pro-atherogenic associations. In
CETPd the regression multivariate analysis (model A) showed that CETP was largely and negatively predicted by
VLDL-C lipemia (R? = 92%) and much less by TG, LDL-C, ApoAl, phospholipids and non-HDL-C. CETP (model B)
influenced mainly the increment in ApoB-100 containing lipoproteins (R* = 85% negatively) and phospholipids (R?
= 13%), at the 6h point.

Conclusion: The moderate CETP deficiency phenotype included a paradoxically high HDL-C and its sub fractions
(as earlier described), positive associations with c-IMT, a postprandial VLDL-C increment predicting negatively CETP
activity and CETP activity regulating inversely the increment in ApoB100-containing lipoproteins. We hypothesize
that the enrichment of TG content in triglyceride-rich ApoB-containing lipoproteins and in TG rich remnants
increases lipoproteins’ competition to active lipolysis sites,reducing their catabolism and resulting on postprandial
lipemia with atherogenic consequences.
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Background

The relationship between cholesteryl ester transfer pro-
tein (CETP) and lipoprotein metabolism is very complex
and, in different metabolic backgrounds, depends largely
on the concentration of high-density lipoprotein (HDL)
and/or triglyceride-rich lipoproteins (TRL) [1]. It is well
established that, during reverse cholesterol transport
(RCT) [2], CETP is essential in neutral lipid exchange
among lipoproteins [3], and can decrease circulating
oxidized low-density lipoprotein (LDL) [4,5]. One of the
major mechanisms by which HDL protects against
atherosclerosis is the RCT where increased selective
uptake of HDL-cholesteryl ester (CE) by scavenger
receptor class B type I (SRBI) [6] transfers cholesterol
from atherosclerotic lesions macrophages to the liver,
decreasing macrophage CE content [5] and excreting
cholesterol into the bile, with intravascular lipoprotein
remodeling [7].

This mechanism is anti-atherogenic in normolipidemic
individuals, but in cases of hypercholesterolemia and
mixed hyperlipidemia, CETP can have a pro-atherogenic
role, because of the generation of dense, small and
atherogenic LDL [8,9]; elevated levels of apolipoprotein
B (ApoB)-containing acceptor particles for CETP lead to
enhanced transfer of triglycerides (TG) from very-low-
density lipoprotein (VLDL) to HDL, with consequent
TG enrichment of HDL and abnormal intravascular
metabolism, involving reduction in particle size and
decrease of HDL-Cholesterol (-C) and ApoA-I levels
[10,11].

The importance of plasma CETP in lipoprotein meta-
bolism was demonstrated by the discovery of CETP-
deficient subjects with severe hyperalphalipoproteinemia
[12]. Genetic CETP deficiency is caused by mutations in
the CETP gene (OMIM 607322) that is located on chro-
mosome 16q21 [13], and is the most important and
common cause of hyperalphalipoproteinemia in the
Japanese [14]. It is considered a physiological state of
impaired RCT, which may possibly lead to the develop-
ment of atherosclerosis despite high HDL-C concentra-
tions [15].

Several polymorphisms have been reported in the
human CETP locus [16], some of them reducing synth-
esis of CETP [17-21] and one reducing activity [19].
Family members have in their plasma high levels of
HDL-C [17-19] known to be a negative risk factor for
coronary artery disease [22-24].

The most commonly studied polymorphism is in the
Taql site (TaqIB), which is a silent base change of

guanine to adenine nucleotide substitution at the 279™
nucleotide position in the first intron of the CETP gene
[16]. In the general population, the TaqIB polymorph-
ism is associated with variations of both CETP mass and
activity and HDL-C concentrations, and the less com-
mon B2B2 genotype (absence of the TaqlIB restriction
site) has been associated with increased HDL-C levels
and decreased CETP activity and levels [25-27].

The 1405V polymorphism is a transition of adenine to
guanine in position +20206 of exon 14 which leads to a
missense mutation with the substitution of valine for
isoleucine in position 405 of the protein [28]. In the
homozygous form for the rarest allele (V/V genotype)
the 1405V polymorphism is associated with a reduction
in CETP activity, and with increased levels of HDL-C
[27,28].

CETP deficiency and inhibition studies, in animals and
humans, have provided conflicting results. Pharmacolo-
gic CETP inhibition has increased HDL-C and reduced
atherosclerosis in rabbit models [29]. In humans, CETP
deficiency has been associated with both increased and
decreased coronary heart disease (CHD) risk [29,30].
The CETP inhibitors JTT-705 and torcetrapib have been
shown to effectively reduce CETP activity in humans
and raise HDL-C, although the effect of this class of
compounds on atherosclerosis and CHD risk remains
unclear [31,32]

CETP deficiency is overlooked on its actions on post-
prandial lipemia, a state that has been associated with
quantitative and qualitative alterations of the lipid pro-
file, positively related to the progression of cardiovascu-
lar risk [33]. The lipoproteins involved predominantly
small chylomicrons and VLDL remnants that may go
through the vessel wall [34].

TRL are converted into remnant lipoproteins after a
gradual hydrolysis process through the action of the
lipoprotein lipase (LPL) [35]. The postprandial lipemia
elicits diverse metabolic, oxidative and atherogenic
events including chylomicron remnant production, for-
mation of small LDL particles and reduction of the con-
centration of cardioprotective fractions of HDL. The
postprandial pro-atherogenic effects on the metabolism
of TRL can be direct on the vessel wall, due to accumu-
lation of these particles [9], or indirect, through chan-
ging status of inflammatory aspects such as the
activation of leukocytes and of endothelin, as well as the
activation of the complement system [36].

During lipolysis of postprandial TRL, an excess of sur-
face components (Apo, unesterified cholesterol and



Parra et al. Lipids in Health and Disease 2011, 10:87
http://www.lipidworld.com/content/10/1/87

phospholipids (PL)) is generated and sequesters to HDL
potentially via the action of hepatic lipase (HL) and PL
transfer protein (PLTP), thereby increasing the total cir-
culating HDL pool and enhancing the transformation of
small HDLj to large CE-rich HDL, particles. Equally,
such transfer is accelerated under postprandial condi-
tions with CE enrichment of TRL particles, and transi-
ent transformation of CE-enriched HDL into TG-
enriched particles which become a substrate for HL.
This results in modulation of the size of the HDL pool
[37].The effects of CETP on postprandial lipemia in
humans [8,33,37] and in experimental animals [38,39]
have been broadly explored, but controversies over the
results persist, and can be seen in the two studies by
Ritsch, 1997 [40] and Ai, 2009 [41], where CETP defi-
ciency coexisted with impaired lipemic status.

Other alterations that may occur during this period
can be related mainly to the activities of proteins and
enzymes like CETP, HL and LPL [42].

The ApoE is a polymorphic protein, and one of the
major protein constituents of TRL. It serves as a high
affinity ligand for several hepatic lipoprotein receptors,
including the LDL receptor and the LDL receptor-
related protein. By interacting with these receptors,
ApoE mediates the clearance of TRL and their remnants
from the circulation [43].

The ApoE gene is located on chromosome 19q13.2,
consisting of four exons and three introns, and the com-
mon variations at the ApoE gene locus that create the
ApoE-g2, €3 and &4 isoforms are major determinants of
plasma lipid and lipoprotein levels [16]. Compared with
the most common &3 isoform, carriers of the €2 isoform
have lower levels of LDL-C, total cholesterol and ApoB
and higher levels of plasma TG [44,45], whereas ApoE-
€4 is associated with higher plasma total cholesterol,
LDL-C and ApoB [16,44].

High-resolution ultrasonography is a non invasive
technique that allows changes in the arterial wall of car-
otid and femoral arteries to be seen and measures the
thickness of the arterial intima-media complex [46].
Cross-sectional and population studies indicating an
association between carotid intima-media thickness (c-
IMT) cardiovascular disease, predominantly coronary
artery disease [47], and risk [48] are widely described in
the literature. More importantly, in prospective studies
c-IMT was able to predict coronary artery disease [49].

The objective of this study was to determine the rela-
tionships between deficient, non altered and increased
CETP activity of asymptomatic adult women and post-
prandial lipemia. These variations could provide the
opportunity to elucidate the metabolic role of CETP on
the postprandial state in humans, considering that in
experimental animals this effect has been largely studied
[38,39]. Also, the mean common c¢-IMT, as a marker of
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precocious atherosclerosis, was tested for a relationship
with metabolic markers of the postprandial state.

Methods

Experimental protocol

Twenty-eight volunteer women, asymptomatic, normoli-
pidemic as defined by National Cholesterol Education
Program [50], aged from 20 to 63y were selected and
classified in 3 groups according to CETP activity values
obtained in a previously studied normolipidemic popula-
tion sample (n = 148, unpublished data). The CETP
deficiency (CETPd) group (n = 8), characterized by
CETP activity at the 10™ percentile values or below,
CETP activity < 4.5%; the control (CTL) group (n = 14),
with CETP activity above the respective 10™ and below
their 90 percentile values, CETP activity > 4.6 and <
23.7%; and the subjects with high levels of CETP activity
(CETPi group, n = 6), selected through activity above
their respective 90™ percentile, CETP activity > 23.8%
answered a detailed questionnaire aimed at determining:
cardiovascular diseases (presence of angina pectoris,
myocardial infarction, coronary insufficiency, the history
of coronary revascularization procedures, coronary
angioplasty and coronary grafting bypass), diabetes mel-
litus, cigarette smoking, family history of coronary heart
disease, hypertension, alcohol consumption, sedentari-
ness, menopause accompanied with use of hormone
replacement therapy, use of contraceptive pills and
other related drugs, body mass index (BMI)>30 kg/m?,
liver and kidney disease. The volunteers were excluded
if they fulfilled one of the characteristics above and
showed the presence of ApoE-¢€2 isoform, because it is
associated with high fasting levels of plasma
triglycerides.

All selected individuals underwent an oral fat toler-
ance test. The test began by venous puncture after a 12-
h fast followed by ingestion of a milkshake prepared
with lactose-free powdered milk (NAN®, Nestlé, Sao
Paulo, Brazil). The liquid meal contained fat (25%), dex-
tromaltose (55%), protein (14%), and vitamins and
minerals (6%), providing 40 g of fat per square meter of
body surface, and was given over a 10 min period. Serial
blood samples were collected at 2, 4, 6, and 8 h after
the ingestion.

Determination of carotid intima-media thickness

The common c¢-IMT was measured by ultrasonography
using the HDI 500 Ultrasound System equipment (ATL
Ultrasound, Bothell, WA, USA), with a 7- to 12-MHz
color Doppler probe. c-IMT was calculated as the mean
of five measurements in the far wall from the left and
right common carotid arteries according to a standar-
dized method [51,52]. Individual results were expressed
in millimeters as an average of the left and right ¢-IMT.
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Plasma Lipids, Lipoproteins, and Apolipoproteins
Measurements were performed on samples from all
time points. TRL, at a density lower than 1.006 g/L,
were isolated by sequential ultracentrifugation for 16
h at 4°C and 40.000 rpm in a Beckman centrifuge
(model L5-75B, Beckman, Palo Alto, CA, USA). Cho-
lesterol and TG in serum and in TRL particles were
measured by enzymatic-colorimetric methods (Hitachi
Modular, Roche, Mannheim, Germany); LDL-C and
HDL-C were analyzed by homogeneous direct meth-
ods (Roche Diagnostic Mannheim, Germany). Fasting
HDL sub fractions (HDL, and HDL3) were obtained
by sequential micro-ultracentrifugation of the super-
natants after precipitation of lipoprotein containing
ApoB-100 with 5% dextran sulfate with posterior
quantification of cholesterol and TG by enzymatic-
colorimetric methods. ApoA-I and ApoB-100 were
analyzed by nephelometry. Non-esterified fatty acids
(NEFA), PL, and free cholesterol (FC) were deter-
mined through enzymatic-colorimetric methods
(Wako, Osaka, Japan). CE were calculated by multiply-
ing the difference of total cholesterol and FC by 1.67
as recommended [53].

Lipases and Lipid Transfer Proteins

LPL and HL activities were measured in fasted post-
heparin plasma samples, collected 15 min after the
intravenous administration of heparin, at 100 U/kg
body weight, on the basis of fatty acid release, by using
a radiolabeled triolein emulsion as the substrate and
NaCl (1 M) as the LPL inhibitor; the results were
expressed as nanomoles of NEFA per milliliter per
hour [54].

CETP activity was determined by an exogenous assay
that measures the transfer of radiolabeled CE between a
“normal” donor pool of **CE-HDL and an unlabeled
acceptor mixture of VLDL plus LDL over 4 h by using
plasma as the CETP source, and results are expressed as
percentage of CE transferred [55]. The PLTP was mea-
sured by an exogenous radiometric method using PL
liposomes as the substrate [56].

Assays for CETP, PLTP and lipase activities were con-
ducted in triplicate. Interassay coefficients of variation
were 12%, 15%, 9%, and 8% respectively for CETP,
PLTP, LPL, and HL.

CETP and Apolipoprotein E genotyping
Some gene polymorphisms of interest, such as ApoE
and CETP were determined using RT-PCR.

ApoE genotype was performed according to Emi, 1988
[57] and CETP 1405V and TaqIB CETP polymorphisms
were detected as described by Gudnason, 1999 [58] and
Fumeron, 1995 [59].
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Statistical Analysis

All statistical evaluations were performed by a trained
statistician from the institution and using the SAS
software.

TG, FC, NEFA, CETP, TRL-C and TRL-TG were log
transformed variables.

Wilcoxon, Mann-Whitney and Chi-Square tests were
performed for comparisons between groups or within
each group and, when necessary, ANCOVA was used to
adjust the variables.

Spearman’s correlation with Bonferroni’s correction
related the variables.

Observational analysis was used for the postprandial
curves. The trapezoidal method estimated the area under
the curve (AUC) and the area under the incremental
curve (AUIC). Slopes of the individual curves were deter-
mined by linear regression analysis and expressed as the
acquisition rate (AR), from 0 h to TG peak, and as the
removal rate (RR), from peak to the time with the lowest
TG concentration as the summary measurements of
curves. Late peaks were defined as significant increased
point values when compared to the previous time point
and their frequencies were calculated.

A multiple linear regression analysis was performed to
establish the predictors of CETP (model A) using as
independent variables age, waist circumference (WC),
BM], TG, VLDL-C, TRL-TG, TRL-C, ApoA-I, ApoB100,
NEFA, PL, LPL, PLTP, CETP, HL, and AUCs, AUICs,
AR and RR.

Secondly, a hierarchical multiple linear regression ana-
lysis with stepwise criteria for selection of variables was
used to assess the influence of CETP on postprandial
lipemia (model B); the dependent variables were: TG,
TRL-TG, TRL-C with the corresponding AUC, AUIC,
AR and RR. Results are expressed as partial coefficients
of determination (R?) that represent percentages of var-
iation in the dependent variables.

The significance level used was <5% and borderline
levels were >5% p value p < 10%.

Ethical aspects

All subjects gave written informed consent. The
research protocol was approved by the research ethics
committee of the School of Medicine of the State Uni-
versity of Campinas, Sdo Paulo.

Results

Subjects’characteristics

Fasting parameters

Clinical data are shown in Table 1. The CETPd women
were older and because of this all the comparisons or
correlations in this study were statistically corrected for
age. c-IMT was higher in CETPd women, but all the
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Table 1 Clinical and genetic characteristics and common
carotid IMT of women in the studied groups

CETPd (n = 8) CETPi(n=6) CTL (n=14)

Variables/Groups

Age (y) 52,5 +9.5° 33.8+6.5° 286 + 84°
BMI (Kg/m?) 254 + 44 230 +22 218+ 19
WC (cm) 782 + 145 747 + 45 726 + 69
SBP (mmHg) 1162+ 119  1158+49 1108 + 8.1
DBP (mmHg) 725+ 89 767 + 52 730+ 73
Mean c-IMT (mm) 0.7 £ 0.1 06+ 0.1 05+ 0.1
CETP TaqlB - B1 allele % 50.0 (7) 62.5 (5) 500 (12)*
CETP TaqlB - B2 allele % 50.0 (7) 375 (3) 50.0 (12)*
CETP 1405V - | allele % 643 (9) 375 (3) 41.7 (10)*
CETP 1405V - V allele % 35.7 (5) 62.5 (5) 583 (14)*
ApoE-£(3/3+3/4) % 100.0 1000 930 *

Data as mean * SD; defined by levels of CETP activity (diminished (d),
increased (i) and controls (CTL); BMI, body mass index; WC, waist
circumference, SBP, systolic blood pressure; DBP, diastolic blood pressure; c-
IMT, mean common carotid intima-media thickness. Mann-Whitney and X2-
square tests *(NS); a vs b, p < 0.0001; a vs ¢ p < 0.004; p values corrected for
age by ANCOVA Significant differences are shown in bold CETP TaqIB and
1405V polymorphisms: frequency of B1 or B2 alleles and of V or | alleles.

other anthropometric variables were similar in all
groups. The subjects in this study are asymptomatic
adult women presenting the recommended ranges of
blood pressure, BMI, and WC. No differences were
found in CETPi women as compared to controls.
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Regarding the biochemical characteristics (Table 2),
CETP activity of CETPi and CTL were 9 and 5.3 higher
as compared to the CETPd. Concentrations of choles-
terol and TG in HDL and sub-fractions were higher in
the CETPd group and statistically different from CTL,
which is expected and secondary to CETP deficiency. As
compared to the CETPd group, HDL-C was 1.6 and 1.5
higher, HDL,-C, 1.6 and 1.4 higher, HDL3-C, 1.6 and 1.5
higher and ApoAl, 1.4 and 1.3 higher in CETPi and CTL
respectively. TG enrichment of HDL subfractions was
observed: HDL,-TG, 1.3 and in HDL3-TG, 1.3 higher as
compared to CETPi (HDL,-TG) and to CTL (HDL3-TG).
HDL from the CETPd group may be dysfunctional due
to the increased triglycerides content. NEFA were higher
in CETPi as compared to CETPd, maybe due to a faster
TRL catabolism in the first, but NEFA increment was
higher in CETPd as compared to CETPi (table 3). No dif-
ferences were found in CETPi women as compared to
controls, indicating their similarities.

As compared to CTL or CETPi, LPL and HL were 30%
higher and lower respectively in the CETPd, but it did not
reach significancy. PLTP was similar among the groups.
Genotyping and CETP activities
We excluded the effect of the allele 2 of £3/e2/e4 poly-
morphisms of ApoE. The prevalent ApoE-&(3/3+3/4)
genotype, equally distributed among the 3 groups, also

Table 2 Fasting biochemical parameters of women in the studied groups

Variables/groups CETPd (n = 8) CETPi (n = 6) CTL (n = 14)
CETP (%) 3.1 + 1.3% 26.8 + 1.5* 15.3 + 5.1%
HL (nmol NEFA/mL/h) 1584.1 + 723.1 20668 + 5335 20900 + 10331
LPL (nmol NEFA/mL/h) 31892 + 2364.1 24948 + 3726 23872 + 989.1
PLTP (%) 83 +52 86+ 29 88 + 42
FC (mg/dL) 540 + 26 404 + 120 492 +16.1
CE (mg/dL) 1460 + 164 1103 + 260 1059 + 242
C (mg/dL) 195.1 + 183 1507 + 3422 1588 + 315
TG (mg/dL) 780 + 246 558 + 15.1 656 + 299
HDL-C (mg/dL) 79.1 + 16.0° 49.7 + 7.0° 52.1 + 8.7°
HDL,-C (mg/dL) 17.1 = 5.1¢ 108 + 3.1 13.3 + 2.0°
HDL,-TG (mg/dL) 7.9 3.6 5.7 + 4.39 63 +52
HDL5-C (mg/dL) 57.1 + 9.0" 35.8 + 5.5' 39.1 + 7.0
HDL3-TG (mg/dL) 20.8 + 6.2 146 + 4.1 15.6 + 12.6'
LDL-C (mg/dL) 1102 + 198 930 + 226 95.1 + 232
LDL-C/ApoB-100 1.3 +01™ 14 01" 13401
VLDL-C (mg/dL) 155 + 49 110 + 30 132+ 60
NHDL-C (mg/dL) 1180 + 187 1010 + 281 106.7 + 26.7
NEFA (mmol/L) 0.4 +0.2° 0.7 + 0.2° 06 + 04
PL (mg/dL) 270.3 + 56.89 197.0 + 31.9" 2121 + 411
ApoA- (mg/dL) 191.9 + 20.6° 134.3 + 16.7" 147.6 + 28.8"
ApoB-100 (mg/dL) 844 + 123 66.5 + 138 720 + 189

Data as mean + SD; *groups defined by CETP activity: CETPd vs CTL, (p < 0.00003), CETPi vs CTL, (p < 0.00001) and CETPd vs CETPi, (p < 0.00001); CETP,
cholesteryl ester transfer protein activity; HL, hepatic lipase activity; LPL, lipoprotein lipase activity; PLTP, phospholipid transfer protein activity; FC, free
cholesterol; CE, cholesteryl ester; C, total cholesterol; TG, triglycerides; HDL, and HDL3;, high-density lipoprotein sub fractions; LDL-C, low-density lipoproteins
cholesterol; VLDL-C, very-low-density lipoprotein cholesterol, NHDL-C non-high-density lipoprotein cholesterol; NEFA, non-esterified fatty acids; PL, phospholipids;
Apo, apolipoprotein; p values by Mann-Whitney with ANCOVA corrections for age: CETPd vs CTL; a vs ¢, p < 0.010; d vs e, p < 0.010; h vs j, p < 0.01; k vs |, p <
0.002; s vs u, p < 0.030; CETPd vs CETPi - a vs b, p < 0.010; f vs g, p < 0.010; h vs i, p < 0.010; m vs n, p < 0.030; o vs p, p < 0.030; q vs r, p < 0.030; svs t, p <

0.010. Significant and borderline differences are shown in bold.
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Table 3 Significant differences of AUC, AUIC and RR in
the studied groups

Variables/groups  CETPd (n = 8) CETPiln=6) CTL (n=14)
RR TG 5.1 + 240 59.6 + 33.3°  15.1 + 13.0°
AUC TRL-TG 1632.0 + 711.2° 373.2 + 112.3¢ 11022 + 462.1
AUIC TRL-TG 4543 + 262.1°  196.6 + 114.3" 2179+ 1152
RR TRL-TG -14.4 + 17.89 11.2£6.6" -19.2 + 253
AUC TRL-C 1432 +6797 53.7+177" 63.2+29.0™
AUIC NEFA -02+1.7" -1.6 £ 0.2" -2.5 + 1.6°

Data as mean * SD. AUC (mg/dL h), areas under curves; AUIC(mg/dL h), area
under the incremental curve; AR (mg/dL), acquisition rate, RR (mg/dL),
removal rate; AR (mg/dL), acquisition rate: not shown, NS; TG, triglycerides;
TRL-C or TRL-TG, cholesterol or triglyceride in triglyceride-rich lipoproteins;
NEFA, non-esterified fatty acids. Mann-Whitney and ANCOVA for corrections
for age; CETPi vs CTL: a vs b, p < 0.001; CETPd vs CETPi: c vs d, p < 0.040; e vs
f,p <0.048;, g vs h, p<0.004;jvs | p < 0.021 and CETPd vs CTL: g vs i, p <
0.045; j vs m, p < 0.040; n vs o, p < 0.043. Significant differences are shown in
bold

was not the cause of fat intolerance. Table 1 shows the
similar frequency of TaqIB and 1405V CETP allelic dis-
tribution among the groups, indicating that these CETP
mutations were not the cause of CETP deficiency.

The CETP activity (Table 4) of V and B2 alleles from
CETP 1405V and TaqIB polymorphisms respectively
indicate the lowest activities in the CETPd that are inde-
pendent of the polymorphism. CETPi had the highest
values and CTL intermediate ones.

Postprandial lipemia
As shown in Figure (1A, B and 1C) and in Table 3 mod-
erate deficiency of CETP delayed plasma TRL clearance.

Figure 1-A shows that the curve displayed a higher
frequency of late TG peaks in CETPd (p < 0.030) as
compared to CTL (late TG peak at 8 h after the meal
intake). TG removal rate was increased in CETPi as
compared to CTL.

An increased AUC-TRL-C (Figure 1B) was observed
in CETPd as compared to CETPi and to CTL. Signifi-
cant differences were observed point-to-point for TRL-C
between CETPd and CTL (except at 6 h, borderline
difference).

In Figure 1C, TRL-TG was marginally increased at 0 h
and at 2 h in CETPd as compared to CETPi. TRL-TG
AUC and AUIC were increased in CETPd as compared
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to the CETPi; TG removal rate was reduced in CETPd
as compared to the other two groups.

Fat meal intolerance is furthermore characterized in
Figure 1 and in Table 3 where the significantly different
lipemia parameter values are shown.

In CETPd, AUC-TRL-C was 2.3 and 2.6 times higher
than in CTL and CETPi respectively. RR-TG in CETPd
was reduced by 3 to 12 times less as compared to CTL
and CETPi respectively and RR-TRL-TG was 1.3 lower
than in CETPi. AUIC-NEFA was 12 times higher in
CETPd as compared to CTL and 8 times higher in
CETPd vs CETPi.

Observing in Figure 1 the Wilcoxon’ test responses to
the high fat meal and by comparing the baseline values
to each point along the period we did not identify
higher lipemia responses in the CETPd group, and all
groups were apparently similar.

Carotid atherosclerosis and correlations

The cardiovascular repercussion of the phenotypes was
measured by c-IMT. Carotid measurements after correc-
tion for age were similar among the groups, indicating
the well known age effect on ¢-IMT. The CETPd
women showed stronger correlations of ¢c-IMT with the
lipemia parameters: TG and TRL at 0, 4, and 6 h. There
was a positive correlation with NEFA at 2 h in CETP;j,
suggesting the presence of an association of the vari-
ables during postprandial lipemia. The CTL group pre-
sented one weaker, positive, and more physiological
association of AR-TRL-TG with ¢-IMT (Table 5)
Multivariate analysis

In view of the pattern of fat intolerance observed in the
CETPd group, we performed the analysis of the influ-
ence of CETP on metabolic and clinical variables and
next the influence of lipemia markers on CETP in this
group (Table 6).

We observed that CETP is mainly and negatively
regulated by VLDL-C (92%), by TG (1.50%), and by
ApoA-I (0.50%); the regulation by LDL-C was positive
(5.66%).

Investigating CETP as an independent variable, ApoB-
100 containing lipoproteins were explained inversely by
85% and PL 6 h positively by 13%.

Table 4 Plasma CETP activities of CETP TaqIB and 1405V polymorphisms in the studied groups

Genotypes CETPd (n = 8) CETPi (n = 6) CTL (n = 14)

(% transfer) (% transfer) (% transfer)

CETP TaqlB B1B1 24+ 1.1 (3) 266 + 09 (2) 154 £ 00 (1)
(B1B2+B2B2) 33+13@4)? 26.4 + 3.2 (2)b 16.0 £ 5.2 (11)¢

CETP 1405V Il 35+ 07 (3) - 118+ 51 (2
(VW) 2.4 + 1.5 (4)° 265+ 1.8 (4)° 16.7 = 4.7(10)°

Data as mean + SD (n). -

= no Il in CETPi. CETP activity; p values by Mann-Whitney with ANCOVA corrections for age: Absence of B2 allele: a vs b p < 0.087;

Presence of B2 allele: a vs b p < 0.050, b vs ¢ p < 0.027, a vs ¢ p < 0.005. Presence of V allele: d vs e p < 0.025; d vs f p < 0.002; e vs f p < 0.008. Significant

differences are shown in bold.
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Figure 1 Postprandial lipemia of women with diminished or
increased CETP activity and in controls. Data as mean + SEM;
correction for age difference was done using the ANCOVA test; the
groups were defined by levels of CETP activity: diminished (d),
increased (i) and controls (CTL); CETPd, solid circles, CETPi, open
circles and triangles, CTL. p values represent: point-to-point
differences, AUC, AUIC, AR and RR by Mann-Whitney; p values
adjusted for age; postprandial responses in each group by Wilcoxon
test and frequency of late peaks by Chi-Square test.
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Table 5 Significant correlation coefficients between
common carotid IMT and biochemical parameters in the
studied groups

Groups c-IMT versus p values r
CETPd (n = 8) TRL-TG4 h 0.050 0.750
TRL-CO h 0.052 0.707
TRL-C6 h 0.006 0.862
CETPi (n = 6) NEFA 2 h 0.038 0.836
CTL (n =14) AR-TRL-TG 0.036 0.608

Spearman’s correlation with Bonferroni’s correction: r and p values are
corrected for age; c-IMT, carotid intima-media thickness; TG, triglycerides; TRL-
C or TRL-TG, cholesterol or TG in triglyceride-rich lipoproteins; NEFA, non-
esterified fatty acids; AR-TRL-TG, acquisition rate of TRL-TG.

Discussion

We determined the relationship between CETP activity
and postprandial lipoprotein metabolism, measuring
TRL after a high fat meal in healthy women with mod-
erate reduction of activities of CETP, with increased
CETP activities, and in controls.

The morphology of the TG curve displayed a higher
frequency of late peaks in CETPd as compared to CTL.
In CETPd after the oral fat-load, as compared to CTL,
cholesterol and TG in TRL measured as AUC and

Table 6 Influences of postprandial lipemia on CETP
activity and of CETP activity on postprandial variables in
CETPd women

Independent variables Dependent variables p values Partial R?

Model A (n = 8)

CETP
-ApoA-I 4 h 0.0081 0.0051
-AUC-VLDL-C <0.0001 09217
LDL-C 8 h 0.0037 0.0566
NHDL-C 0 h 0.0189 0.0011
PL2h 0.0073 0.0003
-TG4h 0.0094 0.0153
Model B (n = 8)
CETP

PL6 N 0.0020 0.1284

-AlUC-ApoB-100 0.0158 0.8463

A Linear regression fitting controlled for age and using the stepwise method;
dependent variable, CETP in CETPd

group and the independent variables were age, WC, BMI, TG, VLDL-C, TRL-TG,
TRL-C, ApoA-I, ApoB100, NEFA, PL and corresponding AUC, AUIC, AR and RR
and LPL, PLTP, CETP, HL.

B Linear regression fitting controlled for age and using the stepwise method;
independent variable, CETP in CETPd

group; dependent variables were TG, TRL-TG, TRL-C, AUC, AUIC, AR and RR.
CETP, cholesteryl ester transfer protein; Apo, apolipoprotein; AUC, area under
curve; AUIC, area under the incremental curve; VLDL-C, very-low-density
lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; NHDL-C
non-high-density lipoprotein cholesterol; PL, phospholipids, TG, triglycerides.
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AUIC were remarkably increased showing that these
individuals had slower clearance of TRL as compared to
the other groups. These differences observed in TRL
patterns suggest that CETP deficiency worsens lipemia
and higher activity restores the clearance capacity to
control levels.

The cardiovascular repercussion of the phenotypes
were observed by positive correlations of c-IMT with
TRL-C (0 h), TRL-TG (4 h) and TRL-C (6 h) in CETPd
group, indicating delayed clearance of TRL in this group
and a higher pro-atherogenic response.

In order to investigate TG intolerance caused by a
variety of factors including heterozygous LPL-defi-
ciency [60], insulin resistance, noninsulin-dependent
diabetes mellitus (NIDDM) [61], and ApoE isoforms
[62] we determined ApoE genotypes, and HL and LPL
activities.

These factors did not explain the CETPd phenotype
because the results showed similar distributions of the
allele €2 of ApoE and ApoE-&(3/3+3/4) genotype and
similar lipases activities (Tables 1 and 2).

Ritsch (1997) [40] and Ai (2009) [41] reported 2 cases
of CETP deficiency, a woman (65y) and a man (40y)
with increased postprandial lipemia, but in these cases,
the genotype ApoE-£3/2 and 4/2 phenotypes, respec-
tively, could explain, at least in part, the cause of TG
intolerance. It is noteworthy that these studies are case
reports of individuals with genetic CETP deficiency and
with ApoE-€3/2 and 4/2 phenotypes, respectively, and in
Al et al [41] the patient was hyperlipidemic.

In the present study, however, the ApoE phenotypes
are similar among all groups, and our volunteers are
adults (37y + 13y), normolipidemic, non hypertensive,
with no genetic CETP primary deficiencies and with
anthropometric and biochemical parameters within the
reference ranges. The impaired postprandial lipemia
state of CETPd women (TG peak = 150 (ours) or 410
[40] or 174 [41] mg/dL), as compared to CETPi or CTL
is not as alarming as in those studies. High HDL-C con-
centrations characterized a paradoxal phenotype, along
with fat intolerance and this was seen in the other two
studies as well: (HDL-C: 80 (ours) or 172 [40] or 184
[41] mg/dL). Positive history of diabetes and the pre-
sence of insulin resistance were excluding criteria in our
group.

Although these papers do not give us support to
explain the mechanisms involved in our study, they are,
up to now, the only studies that showed similar results
to ours. The increased postprandial lipemia found in the
CETPd, despite being moderate, goes against most stu-
dies [8,33,37-39] that show improved postprandial lipe-
mia related to CETP deficiency, due to either genetic
[9,38,39,63,64] or drug [37] action.
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The multivariate analysis (Table 6) to determine CETP
regulation indicated that CETP predicted mainly inverse
increments of ApoB-100 postprandial lipemia, acting as
an anti-atherogenic protein (Model B). To our knowl-
edge, no other studies described CETP modulation in
human CETPd individuals. CETP was also determined
largely by increments of VLDL-C (negative) and by
LDL-C (positively) as described earlier (Model A).

High HDL-C levels usually signal a metabolic situa-
tion with functioning TG clearing capacity. However,
in this study, high HDL-C coexisted with increased
postprandial lipemia. CETP deficiency results in a low
LDL and high HDL phenotype including ApoE-rich,
and large HDL that could provide ApoE to chylomi-
cron/VLDL particles during lipolysis in the postpran-
dial state, accelerating remnant lipoprotein uptake by
the liver. However, low CETP activity leading to
ApoB-containing lipoproteins TG enrichment increases
lipoprotein competition to lipolysis sites with conse-
quent lipemia augmentation, even though a reduction
in receptor mediated remnant uptake could also be
present.

In opposition to this study, a delayed TRL clearance
was seen in several studies using mice [38,39] and
humans [8,33,37], where CETP activity delayed TRL
clearance, but CETP deficiency improved this state.

Since no secondary causes for CETP deficiency
[17-21] were found, genetic CETP TaqlIB and 1405V
polymorphisms were examined, but the allelic frequen-
cies as compared to controls were similar (Table 1).

There is debate on whether CETP inhibition will
reduce cardiovascular disease risk [65]. In this study the
cardiovascular repercussion of the two phenotypes was
measured by c-IMT. Although no differences of c-IMT
were detected, different correlations were observed: in
CETPd the association was positive with TRL. A sub-
functional CETP leads to an increased HDL pool. It is
described that these particles are dysfunctional in cho-
lesteryl ester exchanging capacity with TG. Then CETP
deficiency could contribute to TG intolerance, even
without a disadvantage such as an ApoE-¢2 allele.

The moderate CETPi group, as shown in this study,
did not modify postprandial lipemia, probably due to
the CETP dependence on the TRL pool size shown.

One point that should be corrected in future studies is
the small number of participants in this study. This lim-
itation was caused by the many difficulties encountered
in selecting healthy individuals with low and high CETP
phenotypes for postprandial measurements. Neverthe-
less, our results help to understand the postprandial
state. It highlighted new aspects of the effects of CETP
in vivo on human TRL metabolism that were up to now
rarely studied.
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Further postprandial experiments in a larger group of
individuals with CETP variations is a goal in our labora-
tory and will help to shed light on a better understand-
ing of CETP action and its atherosclerotic postprandial
consequences.

Conclusion

In this study a reasonable HDL-C increase caused by
moderate CETP deficiency coexisted with increased
postprandial lipemia. A subfunctional CETP can lead to
an increased HDL pool, but these particles are dysfunc-
tional, with less CE being exchanged for TG. We
hypothesize that the enrichment of TG content in
ApoB-containing lipoproteins and in remnants increases
lipoprotein competition to active lipolysis sites, reducing
their catabolism and bringing on postprandial lipemia.
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