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Abstract

Background: Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) of marine origin exert multiple beneficial
effects on health. Our previous study in mice showed that reduction of adiposity by LC n-3 PUFA was associated
with both, a shift in adipose tissue metabolism and a decrease in tissue cellularity. The aim of this study was to
further characterize the effects of LC n-3 PUFA on fat cell proliferation and differentiation in obese mice.

Methods: A model of inducible and reversible lipoatrophy (aP2-Cre-ERT2 PPARgL2/L2 mice) was used, in which the
death of mature adipocytes could be achieved by a selective ablation of peroxisome proliferator-activated receptor
g in response to i.p. injection of tamoxifen. Before the injection, obesity was induced in male mice by 8-week-
feeding a corn oil-based high-fat diet (cHF) and, subsequently, mice were randomly assigned (day 0) to one of the
following groups: (i) mice injected by corn-oil-vehicle only, i.e."control” mice, and fed cHF; (ii) mice injected by
tamoxifen in corn oil, i.e. “mutant” mice, fed cHF; (iii) control mice fed cHF diet with15% of dietary lipids replaced
by LC n-3 PUFA concentrate (cHF+F); and (iv) mutant mice fed cHF+F. Blood and tissue samples were collected at
days 14 and 42.

Results: Mutant mice achieved a maximum weight loss within 10 days post-injection, followed by a compensatory
body weight gain, which was significantly faster in the cHF as compared with the cHF+F mutant mice. Also in
control mice, body weight gain was depressed in response to dietary LC n-3 PUFA. At day 42, body weights in all
groups stabilized, with no significant differences in adipocyte size between the groups, although body weight and
adiposity was lower in the cHF+F as compared with the cHF mice, with a stronger effect in the mutant than in
control mice. Gene expression analysis documented depression of adipocyte maturation during the reconstitution
of adipose tissue in the cHF+F mutant mice.

Conclusion: Dietary LC n-3 PUFA could reduce both hypertrophy and hyperplasia of fat cells in vivo. Results are in
agreement with the involvement of fat cell turnover in control of adiposity.
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Background
Adipose tissue and its secreted products, adipokines,
have a major role in the development of obesity-asso-
ciated metabolic disarrangement including dyslipidaemia
and insulin resistance (i.e. the components of metabolic
syndrome). Long-chain n-3 polyunsaturated fatty acids
(LC n-3 PUFA), namely eicosapentaenoic acid (EPA;
20:5 n-3) and docosahexaenoic acid (DHA; 22:6 n-3) act

as natural hypolipidemics, reduce risk of cardiovascular
disease and could prevent development of obesity and
insulin resistance in humans [1]. Also our experiments
on mice have demonstrated that substitution of 15%
lipids in a corn oil-based high fat diet (cHF) by LC n-3
PUFA concentrate (i.e. feeding cHF+F diet, see Meth-
ods) prevented dietary induced obesity and associated
metabolic disorders [2-4]. The preferential decrease in
abdominal adipose tissue growth resulted not only from
modulation of metabolism in response to LC n-3 PUFA
[5], but probably also in part from the inhibition of fat
cell proliferation. Quantification of adipose tissue DNA
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revealed that the reduction of epididymal fat was asso-
ciated with 34-50% depression of tissue cellularity [2]. In
vitro, both EPA and DHA inhibited adipocyte differen-
tiation and lipid droplet formation [6-8] and DHA
induced apoptosis in postconfluent preadipocytes [7].
To further characterize inhibitory effect of LC n-3
PUFA on adipose cell proliferation and differentiation in
vivo, and to learn more about the role of fat cell turn-
over in the control of adiposity [9], we used mouse
transgenic model of inducible and reversible lipoatrophy
(aP2-Cre-ERT2 PPARgL2/L2). In this model, death of
mature brown and white adipocytes is achieved by selec-
tive ablation of peroxisome proliferator-activated recep-
tor g (PPARg) using the tamoxifen-dependent Cre-ERT2

recombination system [10]. PPARg is essential for survi-
val of mature adipocyte and deletion of PPARg causes
adipocyte death, triggers an inflammatory reaction and
promotes proliferation and differentiation of preadipo-
cytes into new adipocyte expressing PPARg [10]. Our
results document that LC n-3 PUFA slow down com-
pensatory adipose tissue growth and adipocyte prolifera-
tion after the transgenically-induced transient
lipoatrophy and they also support the notion [9] that fat
cell turnover is involved in the control of adipose tissue
mass.

Methods
Animals and experimental design
Adipose tissue specific PPARg conditional knock out
mice (aP2-Cre-ERT2 PPARgL2/L2) were used [10]. In this
transgenic model, PPARg can be selectively ablated in
mature adipocytes by the conditional Cre-ERT2 Cre
recombinase whose activity depends on tamoxifen
administration [10]. At 4 weeks of age, male mice were
weaned onto a standard laboratory chow (Chow; lipid
content ~3.4% wt/wt; extruded R/M-H diet; Ssniff
Spezialdiäten, Soest, Germany) and maintained at 22°C
on a 12 h light-dark cycle with free access to food and
water. Starting at 3 months of age, mice were fed a corn
oil based high-fat diet (cHF; lipid content ~35% wt/wt),
and at 5 months of age (day 0; see Figure 1) the animals
were randomly assigned to one of the following groups:
(i) premutant aP2-Cre-ERT2 PPARgL2/L2 mice, intraperi-
toneally twice injected by 100 μl of corn oil at day 0 and
day 1, hereafter named control PPARg ad+/+ mice,
which were fed cHF diet; (ii) aP2-Cre-ERT2 PPARgL-/L-

mice intraperitoneally twice injected by 1 mg tamoxifen
in 100 μl of corn oil at day 0 and day 1, and hereafter
named mutant PPARg ad-/- mice, which were fed cHF
diet; (iii) control PPARgad+/+ mice fed cHF diet supple-
mented with LC n-3 PUFA concentrate (product EPAX
1050 TG (46% DHA, 14% EPA), EPAX, a.s., Aalesund,
Norway) replacing 15% of dietary lipids (cHF+F diet);
and (iv) mutant PPARg ad-/- mice fed cHF+F diet.

Samples were collected for various analyses at day 14
and at day 42. Fresh rations of food were distributed
every second day, food consumption and body weights
were recorded. Mice were sacrificed by cervical disloca-
tion in random fed state (between 8 a.m. and 10 a.m.),
and EDTA-plasma and selected tissues were collected
for various analyses. Several independent experiments
were performed, in accordance with the guidelines of
the Institute of Physiology for the use and care of
laboratory animals.

Histological analysis of adipose tissue
Epididymal white fat samples were fixed in 4% formalde-
hyde embedded in paraffin and stained with hematoxy-
lin/eosin. Morphometry of adipocytes was performed as
before [11], using NIS-Elements 3.0 AR morphometric
software (Laboratory Imaging, Prague, Czech Republic).
The morphometry data are based on more than 800
cells taken randomly from six different areas per animal.

Quantitative real time PCR
Total RNA isolated using TRI Reagent (Molecular
Research Center, Inc, Cincinnati, OH, USA). Levels of
various transcripts were evaluated using LightCycler 480
II instrument (Roche Diagnostic Ltd., Rotkreuz, Switzer-
land) and LightCycler 480 SYBR Green I Master kit
(Roche Diagnostic Ltd., Mannheim, Germany). PCR
condition were 95°C for 5 min and 45 cycles of 95°C for
10 s, 55-60°C for 10 s and 72°C for 20 s. Specificity of
the amplified PCR product was assessed by performing
a melting curve analysis. Lasergene 7 software (DNAS-
TAR, Inc. Madison, WI, USA) was used to design pri-
mers. The PCR primer pairs were used as in Table 1.
To correct for intersample variation, levels of the tran-
script were normalized using geometrical mean of two
reference genes.

Plasma adiponectin
Adiponectin levels were determined using Western blot-
ting as before [11]. Tris-acetate gradient gel (NuPAGE
3-8%, Invitrogen, Life Technologies, Carlsbad, CA, USA)
was used for division of multimeric forms of adiponectin
in plasma. Primary rabbit anti-mouse polyclonal antibo-
dies (BioVendor, Brno, Czech Republic), followed by
secondary donkey anti-rabbit IgG infrared dye conju-
gated antibodies (IR Dye 800, Rockland, Gilbertsville,
PA, USA) were using. Membranes were scanned using
Odyssey IR imager (Li-Cor Biosciences, Lincoln, NE,
USA).

Statistical analysis
All values are presented as mean ± SE. Logarithmic
transformation was used to stabilize variance in cells
when necessary. Data were analyzed by one-way
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Figure 1 Growth characteristics. After 8 weeks of high-fat (cHF) feeding, mice were randomly assigned to one of the following groups: (i)
control mice, fed cHF (cHF PPARgad+/+); (ii) mutant mice, fed cHF (cHF PPARgad-/-); (iii) control mice, fed cHF enriched by LC n-3 PUFA (cHF+F
PPARgad+/+); and (iv) mutant mice, fed cHF+F (cHF+F PPARgad-/-). Part of mice were killed at day 14, while the remaining mice were killed at
day 42. A Body weights; B Frequency distribution of adipocyte cell surface area in epididymal fat at day 42. Data are means ± SE; n = 10.
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ANOVA with Holm-Sidak posthoc test using SigmaStat
3.5 statistical software. Comparisons were judged to be
significant at p ≤ 0.05.

Results
After 8 weeks of cHF feeding, obese mice (body weight
36.9 ± 0.4 g) were randomly assigned to one of the
four experimental groups (day 0; see Methods and
Figure 1). In accordance with the previous study on
this transgenic model [10], temporary controlled
PPARg ablation caused a transient body weight loss
reflecting changes in body fat content. Mutant PPAR-
gad-/- mice (i.e., mice injected by tamoxifen in corn oil)
achieved a maximum weight loss within 10 days post-
injection, independent of diet. Also control PPARg ad

+/+ mice showed a small reduction of body weight,
reflecting the stress associated with the corn oil (with-
out tamoxifen) injection. Afterward, all mice started to
gain body weight with a different dynamics in various
groups. Thus, (i) the cHF mice gained body weight
much faster than the cHF+F mice, (ii) at 6 weeks after
the injection, when body weights stabilized in a group-
specific manner, body weights of the cHF mice were
bigger as compared with the cHF+F mice; and (iii) the
dissociation in final body weights in response to the
presence/absence of LC n-3 PUFA in the diet was
more apparent in the mutant as compared with the
control mice. Therefore, the mutant mice showed the
highest final body weights when fed cHF diet, and the
highest reduction in body weight gain when fed cHF+F
diet (Figure 1A and Table 2). In any period post-injec-
tion, food consumption was not affected by either diet-
ary LC n-3 PUFA or genotype (not shown). The
weights of interscapular brown fat, dorsolumbar subcu-
taneous and epididymal white fat were significantly
reduced in mutant mice killed at day 14 (Table 2). At
day 42, there were no differences between control and
mutant mice within same diets, while cHF+F diet
became the main force of reduction of adiposity. In
accordance with its effect on body weight gain, the
cHF+F diet prevented white fat depot growths between

day 14 and day 42 more effectively in the mutant as
compared with control mice (Table 2).
Histological and morphometric analysis of epididymal

fat was performed to characterize effect of PPARg abla-
tion on tissue morphology in the model of dietary obese
mice. At day 14, mean size of adipocytes was smaller in
mutant as compared with control mice, and it was
decreased further in response to dietary LC n-3 PUFA,
resulting in the smallest adipocytes in the cHF+F
mutant mice (Table 2). Importantly, at day 42, mean
size of adipocytes was similar in all the groups (Table 2),
and also distribution of fat cell sizes was not significantly
affected by either diet, or the transient genetic ablation of
PPARg (Figure 1B).
Expression of selected genes was quantified in epididy-

mal fat (Figure 2). At day 14, compared to cHF control
mice, a marked down-regulation of Scd-1 was found in
remaining groups. At day 42, only dietary LC n-3 PUFA
diminished Scd-1 expression independently on genotype.
Genes connected to lipid metabolism, Ppara, Cox3 and
Cidec (Fsp27), were transiently down-regulated in the
mutant as compared with control mice at day 14 only.
Dietary LC n-3 PUFA induced expression of these genes
at both time points, with the strongest effects elicited in
the mutant mice in response to the longer treatment.
Plasma levels of total adiponectin and of its biological

active high molecular weight (HMW) form, which is
implicated in enhancement of insulin sensitivity [12],
were lower in mutant as compared with control mice at
day 14. Latter on, total and HMW adiponectin level
were similar in both control and mutant mice, with a
tendency to be higher in the mutant mice (Table 2). In
accordance with our previous findings showing induc-
tion of adiponectin by LC n-3 PUFA [3,13], adiponectin
levels were higher in the cHF+F as compared with the
cHF mice, in both control and mutant mice, even at
day 14 (Table 2).

Discussion
Adipose tissue belongs to the most flexible tissues in the
body, because it is rapidly remodeled by hyperplasia and

Table 1 Gene specific forward and reverse primer sequences used for qRT-PCR

Gene Forward primer Reverse primer NCBI accession number

Cidec/Fsp27 GACAAGCCCTTCTCCCTGGTG CCATCAGAACAGCGCAAGAAGAGA NM_178373.3

Cox3 TCATCGTCTCGGAAGTATTTTT CCACATAAATCAAGCCCTACTAAT NC_005089.1

Cyph b* ACTACGGGCCTGGCTGGGTGAG TCATCATTGTCGACTCCGGCA NM_011149.2

Eef2* GAAACGCGCAGATGTCCAAAAGTC CCTTAGACTTGCAGCCCGGC NM_007907.2

Pgc-1a CCCAAAGGATGCGCTCTCGTT AATCAAGCCACTACAGACACCGCA NM_008904.2

Ppara TGCGCAGCTCGTACAGGTCATCAA TAAGACTACCTGCTACCGAAATGGGGG NM 011144.6

Scd-1 ACTGGGGCTGCTAATCTCTGGGTGTA TAACAAACCCACCCCAGAGATAAAGCC NM_009127.4

Cidec/Fsp27 - cell death-inducing DFFA-like effector c; Cox3 - cytochrome c oxidase subunit III; Cyph b - cyclophilin-b; Eef2 - eukaryotic translation elongation
factor 2; Pgc-1a - PPARg coactivator 1a; Ppara - peroxisome proliferator-activated receptor a; Scd-1 - stearoyl- Coenzyme A desaturase 1; *- reference gene.
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hypertrophy of adipocytes, depending on energy fluxes.
Fat cell turnover might contribute to determination of
adiposity [9]. However, the mechanisms, which are
involved in setting the turnover and their links to energy
balance, remain to be established. Enormous plasticity of
adipose tissue was also documented by our results. In
agreement with the first study on this transgenic model
[10], as well as other model of reversible lipoatrophy
[14], 6 weeks after tamoxifen injection, adipose tissue
from mutant mice appeared histologically identical to
untreated mice, indicating complete tissue regeneration.
The global, robust return of fat mass was confirmed by
progressive body weight gain, especially in mutant mice
fed cHF. The death fat cells are replaced by newly dif-
ferentiated adipocytes originated from endogenous prea-
dipocytes. The histological changes of epididymal fat

depot from mice fed cHF were mirrored by changes of
transcript levels for genes encoding Scd-1, Cidec
(FSP27), and Cox3. As already described, the above
genes are activated during adipocyte differentiation and
maturation [15-17]. Similarly, plasma level of adiponec-
tin was associated with the reduction of fat mass in the
mutant mice compared to controls at day 14. Thus,
similarly as in the transgenic mice fed chow diet [10],
also in the dietary obese mice studied here, the transge-
nically-induced lipoatrophy was fully reversible within
approximately 6 weeks after the PPARg ablation.
Based on our previous results suggesting that the anti-

obesity effect LC n-3 PUFA could be, at least in part,
explained by the prevention of fat cell proliferation dur-
ing high-fat diet-feeding, we have challenged both con-
trol and the transgenic mice by dietary LC n-3 PUFA.

Table 2 Body weight, fat depots weight, adipocyte size and plasma adiponectin

PPARgad+/+ PPARgad-/-

cHF cHF+F cHF cHF+F

Final body weight (g)

Day 42 44.1 ± 2.1 42.2 ± 1.8 44.9 ± 1.9 41.5 ± 2c

Epididymal fat (mg)

Day 14 1607 ± 210 1369 ± 165 1169 ± 184a 1180 ± 28a

Day 42 2934 ± 292 2391 ± 191a 2892 ± 354 2378 ± 261a,c

Size of adipocytes (μm2)

Day 14 4397 ± 518 3381 ± 285a 3471 ± 422a 3126 ± 323a,b

Day 42 3232 ± 267 2653 ± 139 3182 ± 323 2964 ± 273

Subcutaneous fat (mg)

Day 14 479 ± 59 395 ± 39 319 ± 37a 332 ± 37a

Day 42 686 ± 64 542 ± 59 656 ± 73 463 ± 74a,c

Interscapular brown fat (mg)

Day 14 147 ± 17 124 ± 11 123 ± 13a 121 ± 8a

Day 42 190 ± 23 159 ± 13 179 ± 15 150 ± 3

Adiponectin (A.U.)

Day 14

HMW 0.70 ± 0.06 0.79 ± 0.06 0.52 ± 0.03a 0.50 ± 0.04a,b

MMW 0.79 ± 0.04 0.82 ± 0.03 0.51 ± 0.04a 0.57 ± 0.02b

LMW 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

Total 1.49 ± 0.10 1.62 ± 0.08 1.04 ± 0.06a.b 1.12 ± 0.06a,b

Day 42

HMW 0.54 ± 0.04 0.96 ± 0.10a 0.66 ± 0.07 1.06 ± 0.11a,c

MMW 0.53 ± 0.02 0.66 ± 0.05 0.58 ± 0.04 0.75 ± 0.05a,c

LMW 0.01 ± 0..0 0.02 ± 0.0 0.02 ± 0.0 0.02 ± 0.0

Total 1.09 ± 0.06 1.64 ± 0.15a 1.25 ± 0.10 1.82 ± 0.14a,c

A.U., arbitrary units; HMW, high molecular weight adiponectin; MMW, medium molecular weight adiponectin; LMW, low molecular weight adiponectin; data are
means ± SE; n = 10; a, b, c - significant differences compared to cHF PPARgad+/+, cHF+F PPARgad+/+ and cHF PPARgad-/-, respectively.
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Indeed, the cHF+F diet treatment decreased body weight
gain in both control and mutant mice. At both time
points analyzed (day 14 and day 42), total body weight,
as well as weights of adipose depots were the lowest in
the mutant mice fed cHF+F diet. Nevertheless, when
body weights stabilized in a group-specific manner, by
the end of the treatment at 6 weeks, body weights were
affected more by the diet than by the transient genetic
ablation. Equal size of adipocytes in all the groups at the
end of the treatment, suggest (i) similar number of adi-
pocytes in epididymal fat within the same type of diet;
(ii) existence of mechanisms, which tend to stabilize fat
cell number via controlling fat cell turnover; and (iii)
tuning of these hypothetical mechanisms by LC n-3
PUFA or their metabolites (see below).
In accordance with our already published data show-

ing stimulation of mitochondrial biogenesis and

b-oxidation [5] in white adipose tissue in response to
dietary LC n-3 PUFA, feeding cHF+F diet induced
Ppara and Cox3 expression in control mice. At day 14,
tamoxifen-induced-lipoatrophy in mutant mice was
associated with lower expression of the above genes
and interfered also with the LC n-3 PUFA effects. At
day 42, expression of Ppara and Cox3 was strongly
induced by dietary LC n-3 PUFA while no effect of
tamoxifen injection was found. Furthermore, qRT-PCR
analysis shown identical pattern of Cidec expression, i.
e. significant reduction by tamoxifen treatment in con-
trol mice at day 14 and marked induction by LC n-3
PUFA at day 42 with the highest level in the mutant
cHF+F mice.
Our results document that dietary LC n-3 PUFA could

decrease adiposity in obese mice by a mechanism, which
depends on counteraction of both, differentiation and
proliferation of adipose cells. One possible mechanism
involves the changes in fatty acid composition of cellular
membranes, and hence, altered formation of PUFA-
derived active metabolites like as eicosanoids [1,6,18,19].
The anti-proliferative effect may be involved in the
decreased adiposity of pups born to rat dams that fed
diets supplemented by n-3 fatty acids during gestation
and sucking (reviewed in ref. [20]). It has been hypothe-
sized that LC n-3 PUFA are involved in the anti-obesity
effect of breast-feeding [21]. Importantly, our results
support the notion [9] that adiposity is closely linked to
the control of fat cell turnover and that mechanisms
could exist, which control fat cell proliferation indepen-
dent of energy balance.
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