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Abstract

with Alzheimer disease.

Background: Plasmalogens are ether phospholipids required for normal mammalian developmental, physiological,
and cognitive functions. They have been proposed to act as membrane antioxidants and reservoirs of
polyunsaturated fatty acids as well as influence intracellular signaling and membrane dynamics. Plasmalogens are
particularly enriched in cells and tissues of the human nervous, immune, and cardiovascular systems. Humans with
severely reduced plasmalogen levels have reduced life spans, abnormal neurological development, skeletal
dysplasia, impaired respiration, and cataracts. Plasmalogen deficiency is also found in the brain tissue of individuals

Results: In a human and great ape cohort, we measured the red blood cell (RBC) levels of the most abundant
types of plasmalogens. Total RBC plasmalogen levels were lower in humans than bonobos, chimpanzees, and
gorillas, but higher than orangutans. There were especially pronounced cross-species differences in the levels of
plasmalogens with a C16:0 moiety at the sn-1 position. Humans on Western or vegan diets had comparable total
RBC plasmalogen levels, but the latter group showed moderately higher levels of plasmalogens with a C18:1
moiety at the sn-1 position. We did not find robust sex-specific differences in human or chimpanzee RBC
plasmalogen levels or composition. Furthermore, human and great ape skin fibroblasts showed only modest
differences in peroxisomal plasmalogen biosynthetic activity. Human and chimpanzee microarray data indicated
that genes involved in plasmalogen biosynthesis show cross-species differential expression in multiple tissues.

Conclusion: We propose that the observed differences in human and great ape RBC plasmalogens are primarily
caused by their rates of biosynthesis and/or turnover. Gene expression data raise the possibility that other human
and great ape cells and tissues differ in plasmalogen levels. Based on the phenotypes of humans and rodents with
plasmalogen disorders, we propose that cross-species differences in tissue plasmalogen levels could influence
organ functions and processes ranging from cognition to reproduction to aging.

Background

Several decades after an early report that humans and
Japanese macaques (Macaca fuscata) have different sus-
ceptibilities to atheromatosis [1], it was established that
lipid metabolism and cardiovascular disease risks vary
among human and nonhuman primates [2-5]. In agree-
ment with phylogenetic relationships [6-9], human
blood lipid profiles most closely resemble those of their
closest living relatives, the great apes (chimpanzees,
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bonobos, gorillas, and orangutans) [10-17] (Figure 1).
Nevertheless, technological limitations restricted the
types of lipids that could be quantified in these early
studies. More comprehensive measurements are impor-
tant for testing hypotheses that changes in lipid metabo-
lism influenced the evolution of numerous traits in the
human lineage, including those relevant to cognition
and cardiovascular health [18-27].

Plasmalogens are ether-phospholipids present in mam-
malian plasma and intracellular membranes [28-31].
They comprise about 20% of the phospholipid mass in
humans and chemically differ from more abundant gly-
cerophospholipids as well as other ether phospholipids
by the presence of a vinyl ether bond at the sn-1
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Figure 1 Phylogenetic relationships of our cohort. We provide a simplified overview of the phylogenies of the species examined in this
study along with the inferred age of the last common ancestors at different branch points [8,9]. The present day is indicated by the light blue
dotted line and the human lineage is highlighted in red. Ppy = Pongo pygmaeus (orangutan), Ppa = Pan panisicus (bonobo), Ptr = Pan
troglodytes, Hsa = Homo sapiens (human), and Ggo = Gorilla gorilla (gorilla). Although we recognize the close relationships among all five species,
we use the term ‘great apes’ in reference to chimpanzees, bonobos, gorillas, and orangutans.

position [30-35]. Plasmalogens can differ based on the
chemical group at the sn-1 position (primarily derived
from C16:0, C18:0, and C18:1 fatty alcohols) and the sn-
2 position (commonly arachidonic acid or docosahexae-
noic acid) as well as their head group [36-39] (Figure 2).
The majority of plasmalogens in mammalian tissues
bear ethanolamine (1-O-alk-1’-enyl-2-acyl-sn-glycero-
phosphoethanolamine, plasmenylethanolamine) or cho-
line-linked head groups (1-O-alk-1’-enyl-2-acyl-sn-
glycerophosphocholine, plasmenylcholine) [30]. Plasma-
logens are especially enriched in nervous and cardiac
tissues as well as the spleen and cells of the immune
system [30]. Genetic deficiency or cellular mislocaliza-
tion of one of the two peroxisomal enzymes that initiate
plasmalogen biosynthesis, GNPAT and AGPS, results in
the severe disorder rhizomelic chondrodysplasia punc-
tata (RCDP) [40-42] (Figure 3). The clinical phenotypes
of human RCDP patients [40-47] and genetically engi-
neered mouse models [32] indicate that plasmalogens
are necessary for normal neurological, skeletal, visual,
respiratory, and reproductive functions. Decreased brain
tissue plasmalogen levels also have been associated with
Alzheimer Disease [48-55], X-linked adrenoleukodystro-
phy [56,57], and Down syndrome [58].

Here, we address the possibility that plasmalogens
influence species-specific traits among humans and
great apes. We compared red blood cell (RBC) plasma-
logen levels and cellular rates of plasmalogen biosynth-
esis in cohorts of humans and great apes. Human vegan
RBC data were used to assess the effects of meat and
dairy consumption, which are relevant to comparisons
with the mostly plant-eating great apes [24]. Overall, we
observed that human RBC plasmalogen profiles differed
from those of the great apes and provide indirect evi-
dence that this extends to other tissues, which could
affect functions relevant to the evolution of these
species.

Materials and methods

Cohort for RBC lipid profiling

Blood samples from adult humans with Western diets
were collected from healthy individuals attending an
international conference. Blood samples from adult
humans on vegan diets for over one year were col-
lected in conjunction with a blood donor center.
Appropriate Institutional Review Board (IRB) approval
from the University of Southern California and Johns
Hopkins Medicine was obtained for all human subjects
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Figure 2 Basic plasmalogen structure. (A) Plasmalogens are glycerophospholipids characterized by the presence of a vinyl-ether linkage at the
sn-1 position and an ester-linkage at the sn-2 position. R1 and R2 represent straight-chain carbon groups. At the sn-1 position, the chemical

polyunsaturated fatty acids. X represents the head group, typically ethanolamine or choline for plasmalogens. In contrast, (B)
diacylglycerophospholipids have ester-linkages at their sn-1 and sn-2 positions. As above, R1 and R2 represent straight-chain carbon groups and
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research. Chimpanzee blood samples were collected at
the Alamogordo Primate Facility. All chimpanzees took
part in daily enrichment activities to maintain psycho-
logical well-being. The chimpanzees were maintained
in accordance with the Guide for the Care and Use of
Animals (U.S. Dept. of Health and Human Services,
Public Health Service, Bethesda, MD., 1996). The APF
and its program were fully accredited by the Associa-
tion for Assessment and Accreditation of Laboratory
Animal Care, International (AAALAC). Other great
ape bloods were collected at the Zoological Society of
San Diego (ZSSD). The gender and ages of all blood
donors are provided in Additional File 1. Great ape
diets contain fresh fruits, vegetables, and nutritional
biscuits.

RBC lipid profiling

Whole blood samples were collected from fasting sub-
jects and stored in EDTA blood collection tubes. RBCs
were collected by centrifugation, washed twice with phy-
siological saline, transferred to freezer vials, flushed with
nitrogen, and stored at -80°C until analysis. RBCs were
thawed briefly before 100 pl aliquots were taken for ana-
lysis of the total lipid fatty acid content as their DMAs
by capillary GC with flame ionization detection [59].
Processed data are provided in Additional File 2.

Primary fibroblast cultures

Great ape dermal fibroblasts were obtained from the
ZSSD while human dermal fibroblasts were obtained
from the Coriell Institute for Medical Research or the
Kennedy Krieger Institute. All individuals are thought to
be unrelated. The gender, age, and biopsy site of all
fibroblast donors and corresponding biochemical ana-
lyses are provided in Additional File 3. Fibroblasts were
cultured as previously described [60].

Plasmalogen biosynthesis in cultured fibroblasts

Assays were performed as previously described [61].
They are based on the incorporation of **C-hexadecanol
and *H-hexadecyl-glycerol into plasmalogens. All pro-
cessed data are provided in Additional File 4.

Statistical considerations

We analyzed all data on the log2 scale. We used analysis
of variance (ANOVA) to compare average blood lipid
data across humans and great apes. Heterogeneity P-
values are reported for the test that the mean level is
different in at least one of great apes groups, and Wald
P-values for tests comparing the average level in indivi-
dual non-human primate groups to humans. Under
ANOVA, statistical tests use an estimate of within-
group variation from all samples. Due to the unbalanced
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Figure 3 Initial steps of plasmalogen biosynthesis. Plasmalogen biosynthesis requires enzymes located in peroxisomes and the endoplasmic
reticulum. The initial step, catalyzed by the peroxisomal enzyme dihydroxyacetonephosphate acyltransferase (GNPAT), is the acylation of
dihydroxyacetone phosphate (DHAP) at the sn-1 position to form 1-acyl-DHAP [34]. Fatty acyl-CoA reductase (FART and/or FAR2), located on the
cytoplasmic aspect of the peroxisomal membrane, catalyzes the NADPH-dependent conversion of a fatty acyl-CoA to the corresponding fatty
alcohol [33]. The fatty alcohol enters the peroxisome and displaces the sn-7 fatty acid in a reaction catalyzed by alkyl-dihydroxyacetone
phosphate synthase (AGPS), resulting in formation of 1-akyl-DHAP, which has an ether linkage [35]. Subsequent enzymatic steps occur outside
the peroxisome, including the reduction of alkyl-dihydroxyacetone phosphate to alkyl-glycerophosphate, addition of an acyl group in the sn-2
position, desaturation of the alkyl group to an alkenyl group, and addition of choline or ethanolamine head groups [31]. PEX7 is required for the
import of AGPS into peroxisomes and PEX7 mutations, which are the primary cause of RCDP, lead to impaired plasmalogen biosynthesis.
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group sizes, this estimate is driven by the variation in
humans and in chimpanzees. Box plots showing the dis-
tribution of the data suggest that the equal-variance
assumption is appropriate. For gene expression studies,
we only considered data from oligonucleotide probes
predicted to be perfectly matched to both genomes and
only assigned gene expression scores to probe sets con-
taining at least four such probes [62]. We tested for dif-
ferential expression using moderated t-tests and F-tests,
as described [63]. All analyses were done using the R
programming language. All processed data are provided
in Additional File 5.

Results

RBC plasmalogen levels are used in diagnostic tests for
human disorders involving impaired plasmalogen bio-
synthesis [64,65]. To conduct a cross-species compari-
son of cellular plasmalogen profiles, we measured RBC
plasmalogen levels in a cohort of humans with Western
diets (N = 120), humans with vegan diets for over one
year (N = 16), chimpanzees (N = 46), bonobos (N = 4),
lowland gorillas (N = 7), and Sumatran orangutans (N =
3) (Additional File 1). We measured the levels of the
C16:0, C18:0, and C18:1 chemical moieties most com-
monly present in the sn-1 position of plasmalogens
based on their dimethyl acetal (DMA) derivatives pro-
duced during sample preparation (Methods) (Additional
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File 2). Total plasmalogen levels were estimated based
on the sum of C16:0 DMA, C18:0 DMA, and C18:1
DMA levels. Plasmalogen composition was analyzed
based on the levels of specific DMA derivatives.

Human and great ape RBC plasmalogen levels

Total RBC plasmalogen levels differed in the human
Western diet (WD) and vegan groups relative to the
great apes (ANOVA P < 1 x 10™ for both comparisons)
(Figure 4). Both human diet groups had lower total plas-
malogen levels relative to chimpanzees, bonobos, and
gorillas (1.3-fold, P < 1 x 107 for all six comparisons).
In contrast, total RBC plasmalogen levels in both
human diet groups were elevated relative to orangutans
(1.9-fold, P < 1 x 107° for both comparisons).

Human and great ape RBC plasmalogen composition

The C16:0 DMA, C18:0 DMA, and C18:1 DMA levels
from both human diet groups differed from those of the
great apes (ANOVA P < 1 x 107 for all six compari-
sons) (Figure 5A-C). Both human diet groups had sub-
stantially lower C16:0 DMA levels relative to
chimpanzees, bonobos, and gorillas (21.9-fold, P < 1 x
107'® for all six comparisons) (Figure 5A), but only
mildly lower C18:0 DMA levels relative to chimpanzees
(<1.2-fold, P < 0.05) (Figure 5B). Vegans also had lower
C18:0 DMA levels relative to bonobos and gorillas (1.2-
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Figure 4 Total plasmalogen levels in human and great ape RBCs. Modified box plots representing the percentage of total plasmalogens
relative to total fatty acids (Y-axis) from RBCs obtained from humans and great apes are shown. Median, quartile 1, quartile 3, minimum, and
maximum values are provided. Total plasmalogens are represented as the sum of the percentage of the C16:0 DMA, C18:0 DMA, and C18:1 DMA
derivatives of the chemical moieties present in the sn-1 position of plasmalogens relative to total fatty acids. The species (Hsa: human; Ptr:
chimpanzee (N = 46); Ppa: bonobo (N = 4); Ggo: gorilla (N = 7); Ppy: orangutan (N = 3), human diet (V: vegan diet (N = 16), WD: western diet (N
= 120) is provided on the X-axis. Animal cohort data showing a significant difference (P < 0.05) relative to both human diet groups (red), vegans
alone (green), or Western diet alone (blue) are color-coded as indicated.
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Figure 5 Human and great ape RBC plasmalogen composition. On the left most panels, we provide modified box plots representing the
percentage of the DMA derivatives of (A) C16:0, (B) C180, and (C) C18:1 chemical moieties present in the sn-1 position of plasmalogens relative
to total fatty acids (Y-axis) in RBCs. On the rightmost panels, we provide modified box plots representing the ratio of the abundance of (D)
C160, (F) C180, and (F) C18:1 chemical moieties present in the sn-1 position of plasmalogens with respect to their cognate fatty acids (Y-axis) in
RBCs. These are reported as DMA/FAME ratios since the vinyl either-linked groups and cognate fatty acids are converted to dimethyl acetyl
(DMA) and fatty acid methylester (FAME) derivatives, respectively, after RBC sample processing. In Panel F, C18:1 FAME levels represent the sum
of C18:1 (n-5), C18:1 (n-7), and C18:1 (n-9) FAMEs. C18:1 (n-5) FAME levels could not be measured in one orangutan, consistent with its trace
abundance in the other two orangutans. The numbers and identities of RBC donors (X-axis) is the same as in Figure 2. Animal cohort data are
color-coded as indicated in Figure 4. The star in Panels B, C, and F indicate that the DMA level or DMA/FAME ratio in the human vegan and
Western diet cohort differ (P < 0.05).
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fold, P < 0.05 for both comparisons). Both human diet
groups had markedly higher C18:0 DMA and C18:1
DMA levels relative to orangutans (>2.3-fold, P < 1 x
10* for both comparisons). The human WD group
also had lower C18:1 DMA levels relative to chimpan-
zees, bonobos, and gorillas (>1.3-fold, P < 1 x 107 for
all three comparisons) (Figure 5C).

To address the fact that the identity of the moiety at
the sn-1 position of plasmalogens is influenced by the
cellular levels of related fatty acid levels, we normalized
C16:0, C18:0, and C18:1 DMA levels with respect to
those of their cognate fatty acids. Since fatty acids are
converted to methyl ester (FAME) derivatives after sam-
ple processing, we report these as DMA/FAME ratios
(Figure 5D-F). C16:0, C18:0, and C18:1 DMA/FAME
ratios in both human diet groups differed from those of
the great apes (ANOVA P < 1 x 10°® for all six compar-
isons). Relative to both human diet groups, the chim-
panzees, bonobos, and gorillas had higher C16:0 and
C18:1 DMA/FAME ratios (=1.9-fold, P < 1 x 10 for all
six comparisons), but the orangutans had lower C18:0
and C18:1 DMA/FAME ratios (>2.5-fold, P < 1 x 107™*
for all four comparisons) (Figure 5E,F). Also relative to
both human diet groups, the C18:0 DMA/FAME ratio
was lower in chimpanzees (<1.1-fold, P < 0.05 for both
comparisons), but higher in bonobos and gorillas (1.2-
1.3-fold, P < 0.05 for all four comparisons).

RBC plasmalogen levels and composition relative to
human and chimpanzee gender

Our cohort provided adequate statistical power to
screen for possible sexual dimorphism in human (WD
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group) and chimpanzee plasmalogen levels and compo-
sition. No significant (>1.1-fold, P < 0.05) sex-specific
differences in total DMA levels, specific DMA levels, or
DMA/FAME ratios were found within this cohort of
chimpanzees or humans. Nevertheless, human males
had a slightly higher (1.1-fold, P < 0.05) C16:0 DMA/
FAME ratio relative to human females.

Human RBC plasmalogen levels in the vegan and Western
diet (WD) groups

The human vegan and WD groups showed no signifi-
cant differences in total plasmalogen or C16:0 DMA
levels or their C16:0 and C18:0 DMA/FAME ratios (P >
0.05) (Figures 4 and 5). Nevertheless, C18:0 DMA levels
were slightly higher (1.1-fold, P < 0.01) for the WD
group. Vegans had higher C18:1 DMA level and C18:1
DMA/FAME ratios relative to the WD group (1.3-1.4-
fold elevated, P < 1 x 10 for both comparisons).

Cellular rates of peroxisomal plasmalogen biosynthesis

Cultured skin fibroblasts are used in clinical settings to
measure cellular plasmalogen levels, rates of plasmalogen
synthesis, and other peroxisomal functions [61,66-68]
(Additional File 3). We used this system to show that the
rates of the peroxisomal component of plasmalogen bio-
synthesis, recently suggested to regulate the entire bio-
synthetic pathway [69], differed in human relative to
great ape cultured skin fibroblasts (ANOVA P = 2.2 x
10*) (Figure 6) (Additional File 4). These rates were
greater in human relative to bonobo (1.4-fold, P = 3.6 x
10°), gorilla (1.3-fold, P = 6.7 x 10%), and orangutan
(1.3-fold, P = 2.8 x 107) skin fibroblasts. No differences
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Figure 6 Rates of peroxisomal plasmalogen biosynthesis in human and great ape cultured fibroblasts. The relative rates of the
peroxisomal relative to endoplasmic reticulum (ER) mediated steps of plasmalogen biosynthesis in cultured skin fibroblasts are provided in
modified box plots. Larger ratios indicate increased activity of the peroxisomal relative to ER components of plasmalogen biosynthesis. The
number of cultures analyzed is provided on the X-axes. Animal cohort data are color-coded as indicated in Figure 4.

Ppa Ggo Ppy
9 8 6




Moser et al. Lipids in Health and Disease 2011, 10:101
http://www.lipidworld.com/content/10/1/101

in the rates of peroxisomal plasmalogen biosynthesis
were found between human and chimpanzee skin
fibroblasts.

Comparative transcriptomics of peroxisomal plasmalogen
biosynthetic pathways

We re-analyzed existing gene expression data [70] from
human and chimpanzee livers, brains, kidneys, heart,
and testes to begin to explore the possibility that cross-
species differences in plasmalogen composition occur in
these tissues (Methods). We focused on genes described
in Figure 3 that are specifically involved in the initial
steps of plasmalogen biosynthesis [30,69] and identified
differentially expressed genes (DEGs), as stated in the
Figure 7 legend. Cross-species DEGs varied according to
the tissue examined (Figure 7 and Additional File 5).
For example, all the DEGs in brain (AGPS, FARI, and
FAR2 transcripts) and heart (AGPS and PEX7 tran-
scripts) were more abundant in humans relative to
chimpanzees. In contrast, all the DEGs in kidney (AGPS,
GNPAT, and PEX7 transcripts) and liver (AGPS and
PEX?7 transcripts) were more abundant in chimpanzees
relative to humans. In testes, humans showed 3.2-fold
increases in AGPS, but 1.9-fold reductions in GNPAT
transcript levels, relative to chimpanzees. FARI and
PEX7 transcripts were also more abundant in human
relative to chimpanzee testes.

Discussion

Plasmalogens have had a complex evolutionary history
with differing biosynthetic pathways in aerobic and
anaerobic organisms [71]. Their levels are also known to
vary among mammals. For example, human, rat, and
guinea pig plasmalogen levels differ in multiple tissues
[72] Furthermore, the higher tissue plasmalogen levels
in long relative to short-lived rodents has been
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suggested confer a lower susceptibility to oxidative
membrane damage and contribute to an extended life-
span [29]. Considering how plasmalogen deficits impact
human and rodent health, they represent intriguing can-
didate molecules that could contribute to developmen-
tal, physiological, and cognitive differences among
humans and great apes.

We observed striking differences in human and great
ape RBC plasmalogens. For example, both human diets
groups had lower RBC total plasmalogen levels relative
to the African great apes (chimpanzees, bonobos, and
gorillas), but higher RBC total plasmalogen levels rela-
tive to orangutans (Figure 4). Most notably, RBC plas-
malogens with a C16:0 moiety at their su-1 position
were considerably more abundant in African great apes
relative to both human diet groups and orangutans,
which had similar levels (Figure 5 A, D). The diverse
plasmalogen profiles in our cohort highlight the impor-
tance of including all four great ape species in compara-
tive studies with humans in order to avoid spurious
inferences. Adaptations that occurred in each lineage,
especially those related to their historic diets, could
make it challenging to infer ancestral states.

We favor the hypothesis that cross-species differences
in plasmalogen metabolism are responsible for the dis-
tinctions between human and great ape RBC plasmalo-
gen profiles. Although open to discussion [30], recent
evidence suggests that plasmalogen biosynthesis in regu-
lated by the peroxisomal component of this pathway
[69]. In this regard, we observed small differences in the
rates of peroxisomal plasmalogen biosynthesis in human
relative to other great ape skin fibroblasts (Figure 6).
These studies should be replicated and expanded in
order to examine rigorously intraspecies variation, plas-
malogen composition, and the ER component of plas-
malogen biosynthesis. Likewise, cross-species differences

Probe set Gene Brain Heart Testes Kidney Liver
Hsa Ptr FC|Hsa Pir FC|Hsa Pir FC|Hsa Ptr FC|Hsa Ptr FC
205401_at |AGPS | 227 243 -1.1] 397 303 1.3 [REZEIRCIRNERAE 7L T LI
225114_at  |AGPS 1.5 182 409 -2.3
225113_at  |AGPS |EECIEIIEE] PRI 108 106 1.0 .
201956_s_at |GNPAT 1988 1822 1.1 [PARRIEVIKNGECIEEEIRE AR 966 876 1.1
220615_s_at |[FAR2 [RZVIBEECERN 251 294 -1.2]| 742 604 12| 189 156 166 145 1.1
224865_at  |FART AN 387 317 1.2 JEXBEEEIER 319 255 1.3 71 1.3
211033_s_at |PEX7 | 581 573 1.0|1080 990 1.1 803 1032 -1.3
205420 at |PEX7 | 63 55 1.1 ECEEEETERECHETYERETTARENN 110 142 -1.3 |E:PRRRKL

Figure 7 Differential expression of genes related to ether phospholipid metabolism. We provide data from the reanalysis of previously
published Affymetrix GeneChip U133v2.0 expression profiles of human and chimpanzee tissues [70]. We used moderated F-tests (false discovery
rate (FDR)) adjusted using the Benjamini and Hochberg approach) to test for differences in the distributions by species for the five tissues. Only
probe sets with a <5% FDR are shown. Geometric mean expression scores are provided for human (Hsa) and chimpanzee (Ptr) tissues. FC: fold
change of Hsa relative to Ptr expression. Transcript data are highlighted in red (up in human) or green (up in chimpanzee) if they show >1.2 FC
(absolute value) with a moderated t-test P-value <0.05 after Bonferroni correction. Affymetrix probe sets IDs are provided.
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in plasmalogen turnover rates could have influenced our
results. In this regard, plasmalogen-selective phospholi-
pase A2 (PLA,) can release the su-2 fatty acid to yield
lysoplasmalogens [30,31,73], which can be degraded by
lysoplasmalogenases or acylated to produce intact plas-
malogens [73-78]. Although lysoplasmalogen levels can
increase after stress [79,80], they are generally thought
to be of minor abundance relative to intact plasmalo-
gens. To the best of our knowledge, RBC plasmalogen
half-lives have not been reported, but the turnover rates
of RBC membrane phospholipids is relatively slow com-
pared to other organs, such as liver [64]. Nevertheless,
rat brain ethanolamine and choline plasmalogens have
short, but different, half-lives [31,49,81].

Another candidate explanation for our observations is
that humans and great apes differ in their ability to
derive plasmalogens from dietary sources. Plasmalogens
are present in substantial amounts in meat and fish pro-
ducts commonly found in Western diets [82]; however,
they are rarely found in plants [83,84]. Wild great apes
are mainly plant-eating and our captive population is
not exposed to significant amounts of meat products
based on their diets, which we previously showed have
very low levels of phytanic acid, a sensitive biomarker of
ruminant fats, dairy, and certain fish products [24]. We
found that the human WD and vegan groups had quite
similar RBC plasmalogen levels and composition (Fig-
ures 4 and 5). Even the moderately higher C18:1 DMA
levels in the vegan group did not alter the conclusions
from cross-species comparisons involving C18:1 DMA/
FAME ratios. This is in broad agreement with other stu-
dies wherein RBC plasmalogen levels did not change in
a limited number of humans on corn oil, triolein, or
butter fat-enriched diets [85,86]. Nevertheless, modest
increases in C18:1 ethanolamine plasmalogen RBC levels
occurred in subjects on a triolein-enriched diet [85].

Animal models have produced a complex picture of
how diet influences tissue plasmalogens [87-105]. Rats
consuming unnaturally high levels of plasmalogens
(>10% by weight) showed elevated blood plasma and
liver plasmalogen levels; however, their RBC, skeletal
muscle, brain, kidney, lung, or adipose tissue plasmalo-
gen levels were not significantly altered [89]. Alkylgly-
cerols (AGs) are natural products present in human
and other mammalian diets that can be incorporated
into plasmalogens and influence the identity of the
chemical group at the sn-1 position [88,106]. Neverthe-
less, AG consumption only has a minor influence on
total plasmalogen levels in tissues from whole animals
[107,108]. While the AG dietary levels are not well-
defined, one report [88] suggests that adults can daily
consume 10-100 mg of batyl alcohol, a type of AG
especially abundant in shark liver oil [109]. Dietary
fatty alcohols obtained from certain vegetables and fish
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could also affect the identity of the chemical group at
the sn-1 position [30]. Nevertheless, the strong simila-
rities between the vegan and WD group plasmalogen
profiles suggest that differences in AG and/or fatty
alcohol consumption did not significantly influence
our results.

Age is another factor reported to affect RBC plasmalo-
gens. In a cohort of younger (25-39 years old) and older
(average 79 years old) humans, RBC 16:0 DMA levels
did not correlate with age, but small age-related
decreases in RBC C18:0 DMA levels were observed
(0.04% per decade) [110]. Nevertheless, although our
human WD group is older on average than our vegan
group (51 vs 35 years), the former has slightly elevated
C18:0 DMA levels relative to the latter. Considering
cross-species differences in life expectancies [111-115],
the age composition of our human and great ape
cohorts is relatively uniform (Additional File 1).We also
note that the C16:0 and C18:0 DMA/FAME ratios in
both our human diet groups are in good agreement
with those reported for neonates and children [116].
While we cannot preclude that donor age influenced
our results, we suggest that these effects are minor com-
pared to those related to donor species.

In efforts to explore the possibility that differences in
plasmalogen levels and composition extend to other tis-
sues, we found that key genes specifically involved in
their biosynthesis were differentially expressed in human
and chimpanzee organs (Figure 7). The higher abun-
dance of FARI, FAR2, and AGPS transcripts in human
relative to chimpanzee brain is especially interesting
since plasmalogens comprise almost 30% of the glycero-
phospholipids in the adult human brain and up to 70%
of human myelin sheath ethanolamine glycerophospholi-
pids [49]. Our gene expression analyses suggest the pos-
sibility of cross-species differences in brain plasmalogen
levels and/or composition that could have a special
impact on the brain’s white matter, which is critical for
cognitive processes [117]. The potential significance of
white matter volumes in human and non-human pri-
mate brain evolution has been discussed [118-122]. The
proposed antioxidant properties of plasmalogens [30,31]
could be especially important in human brains, which
have higher metabolic demands than those of chimpan-
zees and other non-human primates (NHPs) [123]. The
DEGs in testes are intriguing given male infertility in
mice with plasmalogen defects [124], variation in mam-
malian spermatozoa phospholipid composition [125],
and differences in human and great ape male reproduc-
tive systems [126]. Since comparatively less is known
about the role of plasmalogens in kidney and liver func-
tion, we simply note multiple instances of higher plas-
malogen biosynthesis-related transcript levels in
chimpanzees relative to humans.
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Although we cannot make definitive conclusions about
the physiological ramifications of the cross-species dif-
ferences observed in our studies, specific clinical pheno-
types have been associated human RBC plasmalogen
levels and composition [127-133]. For example, it was
reported that hyperlipidemic individuals had 20%
reduced RBC ethanolamine plasmalogen levels relative
to healthy controls [127]. Furthermore, significant
inverse correlations have been found between human
RBC C16:0 DMA/FAME ratios and total cholesterol, tri-
glycerides, body fat mass, and glycosylated hemoglobin
[128]. Reduced RBC C16:0 and C18:0 DMA/FAME
ratios were also associated with human malnutrition
[128]. It is formally possible that the observed differ-
ences in plasmalogen levels and composition relate to
differences in cholesterol regulation in humans, captive
chimpanzees, and possibly other captive NHPs [21].
Furthermore, it is tempting to speculate that low RBC
total plasmalogen levels in orangutans relate to the basal
metabolic rate of this species, which is lower than those
of humans and chimpanzees [134,135]. Given their anti-
oxidant properties, an increased plasmalogen levels
could be beneficial for species with higher metabolic
rates.

Although caution must be taken when using human
medical data to interpret genetic and biochemical differ-
ences among human and NHPs, this approach is useful
for generating hypotheses, which can be tested in appro-
priate cell culture and/or laboratory animal models
[136-140]. It also will be necessary to measure the levels
of distinct plasmalogens in multiple human and NHP
cell types and tissues in order to refine and test these
hypotheses. Comparative analyses of the human and
NHP nervous, cardiovascular, and reproductive systems
are especially relevant given the phenotypes of humans
and mice with severely impaired plasmalogen biosynth-
esis. The application and further development of lipido-
mic tools and technologies will play a vital role in this
process [141].

Conclusions

We observed robust differences in RBC total plasmalo-
gen levels and composition among humans and great
apes. Our favored hypothesis is that cross-species dif-
ferences in plasmalogen metabolism are responsible for
the distinctions between human and great ape RBC
plasmalogen profiles. In contrast to these species-
related differences, the human diets studied had lesser
impacts on RBC plasmalogen composition and none
on total plasmalogen levels. Likewise, we did not
observe robust sex-specific differences in human or
chimpanzee RBC plasmalogen levels or composition.
Gene expression profiles raise the possibility that other
human and great ape cells and tissues differ in
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plasmalogen levels, which could influence developmen-
tal, physiological, and cognitive functions relevant to
the evolution of these species.

Additional material

<
Additional file 1: Composition of blood donor cohort. A summary of
the numbers, ages, and sex of blood donors is provided.

Additional file 2: Red blood cell plasmalogen composition from all
donors. Relative levels of plasmalogens for all RBC donors are provided.

Additional file 3: Skin fibroblast cultures used for plasmalogen
analysis. A summary of donor sex and age and anatomical source of the
skin fibroblasts is provided.

Additional file 4: Rates of peroxisomal plasmalogen biosynthesis in
cultured dermal fibroblasts. The rates of peroxisomal plasmalogen
biosynthesis from all individual fibroblast cultures are provided.

Additional file 5: Detailed summary of gene expression data for
cross-species comparisons. More complete gene expression data
summary statistics relevant to Figure 7 are provided.
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