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MicroRNA roles in beta-catenin pathway
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Abstract

targeted therapeutics for cancer treatment.

B-catenin, a key factor in the Wnt signaling pathway, has essential functions in the regulation of cell growth and
differentiation. Aberrant B-catenin signaling has been linked to various disease pathologies, including an important
role in tumorigenesis. Here, we review the regulation of the Wnt signaling pathway as it relates to B-catenin signal-
ing in tumorigenesis, with particular focus on the role of microRNAs. Finally, we discuss the potential of B-catenin

Introduction

Altered function of components of the canonical Wnt/
B-catenin signaling pathway is associated with cancer, as
multiple Wnt/B-catenin target genes are regulators of
cell proliferation, metastatic potential and tumorigenesis
[1,2]. In the absence of Wnt, cytoplasmic B-catenin dis-
sociated from the E-cadherin/B-catenin/o-catenin com-
plex [3] is rapidly phosphorylated by activated glycogen
synthase kinase 33 (GSK3p) at Ser33, Ser37, and Thr41
[4] and phosphorylated by casein kinase Ia. (CK Ia) at
Ser45 [5]. These phophorylations prevent the nuclear
accumulation of B-catenin, leading to its ubiquitination
and subsequent degradation by the ubiquitin/protea-
some system [6,7]. Upon binding of Wnt to the
transmembrane receptor Frizzled (FZD), in complex
with co-receptors Low-density-lipoprotein receptor-
related proteins 5 and 6 (LRP5/6) [8], the Wnt-FZD-
LRP-5/6 complex phosphorylates and activates Dishev-
eled (Dsh) [9]. Dsh activation inhibits GSK3f, subse-
quently decreases P-catenin degradation by the
ubiquitination and proteasomal pathways. In turn, -
catenin accumulates in the cytoplasm and nucleus,
where it interacts with coregulators of transcription
including T cell factor/lymphocyte enhancer factor (Tcf/
Lef) to form a B-catenin/Lef/Tcf complex [10]. This
complex regulates transcription of multiple genes
involved in cellular proliferation, differentiation, survival
and apoptosis, including c-myc and cyclin D [11,12].
Recent reports suggest that nuclear GSK3B can
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additionally inhibit B-catenin transcription indirectly, via
binding and phosphorylation of Axin and then reducing
the transcriptional activity of the B-catenin/Tcf/Lef com-
plex [13]. Hyperactivation of B-catenin caused by the
overexpression of Wnt or mutation of CTNNB1 (the
gene which encodes B-catenin), GSK3B, Axin or APC is
a common cause of carcinoma [14,15]. Specifically, the
mutation of APC is a leading cause of colorectal carci-
nomas [16], and the relative mRNA and protein expres-
sion of B-catenin positively correlates with histological
malignancy in astrocytoma [17,18].

Up to now, there have been more than ten thousands
of B-catenin related publications in MEDLINE (Pubmed
with: beta catenin). Over the last 10 years, the number
of new entries about B-catenin in MEDLINE has grown
at a 9.3% compounded annual growth rate, and the
number of new entries in MEDLINE each year has
grown at a compounded annual growth rate of 3.1%
[19]. Furthermore, we queried Pubmed with: (catenin or
CTNNB or CTNNBI1) and (“1980/01/01”[PDAT]: “2009/
05/24”[PDAT]), and identified 10018 articles describing
putative interactions between B-catenin and other genes
(543 genes) by text mining. 213 genes (including Tcf4
and Lef, ect.) interact with B-catenin (interaction rela-
tions is associate, bind, etc.) and a B-catenin interaction
network was constructed (Fig 1). Therefore, great pro-
gress in biological function and molecular mechanism of
-catenin has been made, and new highlights for B-cate-
nin pathway are deserved to summary. In this review,
we focus on modulators of the Wnt/B-catenin signaling
pathway, describing new findings of upstream regulators
(Fig. 2), coregulators (Fig. 3) and downstream targets,
with special focus on the function of microRNAs (Table
1). Finally, we aim to emphasize the importance of the
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network was constructed by Cytoscape.

Figure 1 Visualization of B-catenin interaction network. 10018 articles describing putative interactions between B-catenin and other genes
were identified through querying Pubmed with: (catenin or CTNNB or CTNNB1) and (“1980/01/01"[PDAT]: “2009/05/24"[PDAT]) and text mining.
213 genes (including Tcf4 and Lef, ect.) formed a complex with B-catenin (interaction relations is associate, bind, etc.) and B-catenin interaction

Wnt/B-catenin signaling pathway in cancer, describing
B-catenin-targeted reagents that hold promise as
chemotherapeutics.

Upstream Regulators of B-catenin transcriptional activity
EGFR activation phosphorylates B-catenin at Tyr654
Activation of EGFR induces phosphorylation and activa-
tion of CK2a via ERK. CK2a activation signals phos-
phorylation of a-catenin at S641, and triggers loss of
o-catenin binding to B-catenin and subsequent activates

B-catenin/Lef/Tcf transcriptional activity [20]. Addition-
ally, EGFR activation leads to phosphorylation of 3-cate-
nin on Tyr654 residue. EGFR binds to f-catenin and
induces its tyrosine phosphorylation [21], definitive evi-
dence that EGFR directly phosphorylates B-catenin at
Tyr654 remains elusive. However, Tyr654 phosphoryla-
tion results in dissociation of the E-cadherin/o-catenin/
B-catenin complex [22]. Further, EGFR regulates B-cate-
nin localization and stability, transcriptional activity, and
tumor progression in oral cancer [23]. In addition,
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Figure 2 Upstream regulators of B-catenin transcriptional activity. For details see the text. EGFR, AKT1, miR-315 and miR-135a/b upregulate
B-catenin transcriptional activity, whereas miR-200a, miR-21 and miR-8 downregulate B-catenin transcriptional activity.
A

phosphorylation of B-catenin at Tyr654 and 670
mediated by interaction of the hepatocyte growth factor
(HGF) with its cognate receptor (Met), regulates its
nuclear translocation and activation [24]. Whether the
Tyr654 residue of B-catenin is a direct target of EGFR
requires further determination.

B-catenin is directly phosphorylated at Ser552 by AKT1
AKT1, a serine/threonin kinase also known as PKB,
functions as a key mediator of the PI3K/AKT pathway.
Activated AKT1 is phosphorylated at Thr308 and
Ser473, thereby regulating -catenin by inducing phos-
phorylation of effector molecules GSK3B, mTOR and

BAD ([25-27]. Specifically, GSK3p phosphorylation at
Ser9 by AKT1 inhibits the N-terminal phosphorylation
of B-catenin [26]. A resent study, however, suggests
that AKT1 can regulate B-catenin directly by inducing
phosphorylation at Ser552 in vitro and in vivo [28].
This Ser552 residue was confirmed as a phosphoryla-
tion site by liquid chromatography-coupled ion trap
mass spectrometry (LC-MS/MS), and validated by site
directed mutagenesis. Ser552 phosphorylation results
in B-catenin translocation from the cytosol into the
nucleus, increasing Tcf4/Lefl transcriptional activity
and promoting tumor cell invasion. B-catenin
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transcriptional activity (down).

\

Figure 3 Coregulators of B-catenin transcriptional ativity. Via interacting with the B-catenin/Tcf/Lef complex, HDAC3/6, c-Jun, TNIK and Snail
upregulate B-catenin transcriptional activity (up), whereas HDAC1/2, CtBP, Groucho, KLF4, MAD2B and VentX downregulate B-catenin

phosphorylation of Ser552 was additionally identified
in intestinal crypts [29]. Cells exhibiting nuclear -
catenin phosphorylation at Ser552 were frequently
clustered together and found at sites of crypt fission
and invagination during crypt budding, revealing an

interesting role for AKT1 in stem cell biology. In sum,
the phosphorylation of B-catenin at Ser552 by AKT1
increases nuclear translocation and retention, enhan-
cing Tcf4/Lefl complex transcriptional activity to
promote tumor cell invasion and stem cell migration.

Table 1 Novel modulators of Wnt/B-catenin signaling pathway

upstream regulators function coregulators function downstream targets transcription
EGFR [20,21] T CtBP [53] l AKT1 [77] -
AKT1 [26,28] 1 Groucho [52] ! STAT3 [86,87] -
miR-135a/b [50] T HDAC1/2 [61,62] l Gbx2 [82] -
miR-315 [51] 1 KLF4 [72] ! MMP1 [20] -
INK [34,35] tor] MAD28B [73] l Foxc1 [84] -
miR-200a [36,42] | VentX [74] | StarD7 [85] -
miR-21 [43] ! HDAC3/6 [64,65] 1 E2F1 [87] “—
miR-203 [48] l c-Jun [66] T p16INK4a [83] <«
miR-8 [49] l TNIK [70] 1 miR-15/16 [93] “—
Snail [71] 1 miR-122a [94] <«
miR-375 [95] <«

1: Regulator upregulates B-catenin transcriptional activity

1: Regulator downregulates B-catenin transcriptional activity

—: Target transcription is upregulated by activated B-catenin signaling
«: Target transcription is downregulated by activated B-catenin signaling
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The exact mechanism how the phosphorylation of
B-catenin at Ser552 positively regulates the expression
of its target genes remains unclear. One possibility
exists that phosphorylation of Ser552 may modulate
the translocation of f-catenin through nuclear pores,
while a second possibility remains that phosphorylation
by AKT1 occurs within the nucleus and affects func-
tion rather than localization [29]. Further investigation
is needed to determine whether the phosphorylation of
B-catenin at Ser552 exerts the same effect as stabilized
B-catenin on binding to the Tcf4/Lefl complex and
activating overexpression of Wnt target genes.
B-catenin is phosphorylated by JNK

The c-Jun N-terminal kinase (JNK) is a stress-activated
protein kinase that is a member of an evolutionarily con-
served sub-family of the mitogen-activated protein kinase
(MAPK) family of serine/threonine protein kinases. In
early Xenopus embryos, high level of nuclear JNK nega-
tively regulates the canonical Wnt/B-catenin signaling
pathway by expelling B-catenin from the nucleus [30]. A
recent study demonstrates that JNK directly binds to and
phosphorylates B-catenin at Ser37 and Thr41, regulating
the formation of adherens junctions in human epithelial
cell lines [31]. Pharmacologic inhibition of JNK with
SP600125 or by expression of dominant negative JNK
(INKDN) decreased the phosphorylation of -catenin and
induced translocation of both -catenin and E-cadherin
to the cell surface. This event disrupts cell-cell adhesion
stimulated by okadaic acid (OA) treatment, suggesting
that cell adhesion is dynamically regulated by JNK.
Further, data suggests that JNK regulation of cell adhe-
sion may contribute to processes including wound heal-
ing, tumor proliferation and metastasis.

Loss of JNK 1/2 results in increased expression of -
catenin, and B-catenin/Tcf complex target genes, includ-
ing c-myc [31,32]. Phosphorylation and degradation of
B-catenin by JNK 1/2 in these studies was blocked by
pharmacologic inhibition or RNAi knockdown of
GSK3B. Similarly, immunoblotting revealed that JNK1/2
activated GSK3p activation, promoting -catenin degra-
dation. The interaction between JNK1/2, 3-catenin and
GSK3B, confirmed by coimmunoprecipitation and con-
focal microscopy, suggests that B-catenin is phophory-
lated and degraded by JNK/B-catenin/GSK3B complex.
Studies by Ximei Wu and colleagues demonstrated that
JNK2 is more potent than JNK1 in phosphorylating f3-
catenin at Ser191 and Ser605 in ST2 cells [33]. In con-
trast to the phosphorylations at Ser33, Ser37 and Thr41
by GSK3B in canonical Wnt signaling pathway, the
phosphorylations at Ser191 and Ser605 of B-catenin
results in stabilization of the protein, translocation to
the nucleus, and increased bind of and transcription by
the Tcf/Lef complex. Further, JNK enhances the tran-
scriptional activity of f-catenin by phophorylating and
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activating c-Jun/AP-1, a well characterized coactivator
of the B-catenin/Tcf/Lef complex [34]. However, a
recent report has revealed that phosphorylation of JNK1
induced by selenium suppresses B-catenin in vivo,
resulting in cell growth inhibition [35]. Thus, the discre-
pancy in the regulation of B-catenin/Tcf complex tran-
scriptional activity by JNK may vary depending on cell
type and microenvironment.

Targeting B-catenin-mediated transcription by miR-200a
MicroRNAs are single-stranded noncoding RNAs of 21
to 23 nucleotides in length that repress translation or
induce cleavage of target mRNAs that they are partially
complementary to at the 3’or 5 untranslated region
(UTR). MiR-200a was recently reported to downregulate
B-catenin-mediated transcription via two different
mechanisms. MiR-200a targets the mRNA of the E-cad-
herin repressor proteins ZEB1(also known as Tcf8) and
ZEB2 (also known as SIP1), subsequently increases the
total E-cadherin available for binding to B-catenin and
induces formation of the cell-cell adhesion complex
[36]. B-catenin is subsequently phosphorylated at Ser33,
Ser 37, Thr 41 and Ser45 by the tumor destruction
complex and degraded by the ubiquitin/proteasome sys-
tem. Reduction of miRNA-200a upregulates free cyto-
plasmic and nuclear -catenin levels and then induces
epithelial to mesenchymal transition (EMT), revealing a
role for f-catenin in this process [37-41]. A second,
novel mechanism for downregulation of -catenin activ-
ity by miR-200a was recently proposed in meningiomas
[42]. MiR-200a, down-regulated in most meningiomas,
regulates expression of B-catenin and activation of Wnt/
B-catenin signaling via directly targeting the 3’UTR of
B-catenin mRNA. While miR-200b and miR-200c, two
additional members of miR-200 family, show no impact
on P-catenin expression.

MiR-21 targets WNT1 gene expression

Protein and mRNA analyses identified that WNT1 is
translationally repressed by miR-21. Antagonism of the
effects of miR-21, either by transfection with miRNA
inhibitors or by exogenous addition of Wnt-1, inhibits
human monocyte-derived dendritic cell (MDDC) differ-
entiation, suggesting that miR-21 has a key regulatory
role in MDDC differentiation [43]. Interestingly, miR-21
was previously shown to additionally target the tumor
suppressor PTEN, RECK and PDCD4 and induce
tumorgenesis [44-47], suggesting a general role for miR-
21 in tumor progression.

MiR-203 directly targets Lef1

MiR-203 directly targets the Wnt signaling transcription
factor Lefl in zebrafish [48]. The 3'UTR of Lefl contains
two potential miRNA recognition elements (MREs) for
miR-203. Expression of Lefl from mRNAs lacking 3'UTR
recognition elements can rescue the effects of excess
miR-203, demonstrating that these effects are due to
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specific regulation of Lefl by miR-203. MiR-203 was
found to be significantly downregulated during fin regen-
eration. Further, repression of Lefl by miR-203 blocks fin
regeneration, whereas loss of miR-203 results in excess
Lef1 levels and fin overgrowth.

MiR-8 impacts Wnt/B-catenin signaling via the Wg pathway
While it is known that mammalian miR-8 family mem-
bers promote adipogenesis, possibly by inhibiting Wg
signaling, the mechanism of this event remains elusive.
Three potential mechanisms have been reported.
Expression of miR-8 may potently antagonize Wg sig-
naling by directly binding the 3’'UTR of wntless (wls)
and inhibiting Wg signaling in part by preventing Wg
secretion [49]. MiR-8 additionally may impact down-
stream of the Wg signal, by repressing Tcf protein
levels. While miR-8 does not directly target the two
putative 3’ UTRs of Tcf mRNA, it may directly target
the Tcf mRNA independently of its 3’'UTR or through
an indirect mechanism. Finally, miR-8 may exert its
impact by directly targeting CG32767, a positive regula-
tor of the Wg pathway.

MiRNAs target APC/Axin

MiR-135a and miR-135b target the 3’'UTR of APC and
suppress its expression, subsequently increasing Wnt
signaling by stabilizing -catenin [50]. Similar to the
correlation of loss-of-function APC to colorectal tumori-
genesis, increasing expression of miR-135a and miR-
135b promoted progression of colorectal adenomas to
adenocarcinomas. This association is independent of the
status of APC mutation or promoter hypermethylation
in the tumors. Further, MiR-315 directly targets Axin
and Notum, two negative regulators of Wg signaling,
in Drosophila cells mice, resulting in Wnt pathway acti-
vation [51].

Coregulators of B-catenin transcriptional ativity

Coregulation of the B-catenin/Tcf4/Lef1 complex

The Tcf family consists of four members in vertebrates,
including Tcfl, Tcf3, Tcf4 and Lefl. Each member con-
tains a DNA-binding high mobility group (HMG) box,
and a highly conserved B-catenin interacting region. In
the absence of B-catenin, Tcf4 recruits co-repressors
HDACI1, CtBP, and Groucho/transducin-like enhancer
of Split (TLE) to silence expression of target genes
[52-54]. Groucho/TLE proteins repress the basal tran-
scriptional machinery [55] as well as recruit HDACs,
which contribute to corepression by direct action on
chromatin [56]. A direct interaction between Groucho
and Lefl occurs via a small region in the context regula-
tory domain (aa237-256) and a region in the highly con-
served HMG DNA binding domain (aa296-396) [52].
However, as f-catenin accumulates in the nucleus,
Groucho/TLE is displaced from Tcf/Lef by B-catenin
binding to C-terminal of Lefl (residure252-397). This
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C-terminal DNA-binding domain overlaps with the
Groucho/TLE binding site [57]. B-catenin then recruits
co-activators through its N-terminal and C-terminal
transactivation domains, including BCL9/Legless [58,59]
and p300/CBP [60].

B-catenin transcriptional activity is regulated by Histone
deacetylases

Histone deacetylases (HDACs) are a class of enzymes
that remove acetyl groups from e-N-acetyl lysine amino
acids on a histone. HDACs attenuate -catenin tran-
scriptional activity by binding to Lef, forming a HDAC-
Lef complex that hypoacetylates the promoter region of
B-catenin/Tcf/Lef complex target genes [52,61]. Upon f3-
catenin recruitment and accumulation in the nucleus,
however, HDACs dissociate from Lef and form a
HDAC/B-catenin complex, attenuating the enzymatic
activity of HDAC and allowing residual B-catenin to
bind to Lef and recover the transcriptional activity of
the B-catenin/Tcf/Lef complex [61]. Recently, HDAC1/2
were demonstrated to regulate oligodendrocyte differen-
tiation, at least in part, via disruption of 3-catenin/Tcf
interactions [62]. HDAC1/2 competes with [3-catenin for
Tcf4 interaction, thus regulating B-catenin/Tcf4 complex
transcriptional activity. Specifically, HDAC1/2 regulate
expression of differentiation inhibitors2/4 (ID2/4), target
genes of the B-catenin/Tcf4 complex that negatively reg-
ulate oligodendrocyte differentiate. The displacement of
Tcf4 from B-catenin by HDAC1/2 or the formation of
ternary complex HDAC/B-catenin/Tcf4 switches off
transcription of ID2/4. Thus, transcriptional co-repres-
sors HDAC1 and HDAC2 compete with B-catenin for
Tcf4 interaction to promote oligodendrocyte differentia-
tion in a manner, at least in part, dependent on the
expression of B-catenin/Tcf4 complex target genes ID2/
4. Similarly, in the zebrafish retina, HDACI1 antagonizes
Wnt signaling to suppress both cell-cycle progression
and subsequent inhibition of neurogenesis [63].

Recent evidence identifies that HDAC3 expression may
enhance transcription activity of the Wnt/B-catenin path-
way [64]. Stable HDAC3 knockdown attenuated activa-
tion of the Wnt pathway by increasing plasma membrane
localization and reducing nuclear accumulation of B-
catenin. Further, knockdown of HDAC3 induced
increased expression of TLE1/4, which provided compe-
tition with B-catenin for interaction with Tcf4/Lefl,
thereby antagonizing transcription. Moreover, HDAC6
may similarly enhance transcription activity of the Wnt/
B-catenin pathway. HDAC6 deacetylates -catenin at
lysine 49 and inhibits its phosphorylation at Ser45, result-
ing in its nuclear translocation and accumulation [65].
¢-Jun functions as a coactivator of the B-catenin/Tcf
complex
c-Jun is well known as a downstream effector of the -
catenin/Tcf complex [66]. c-Jun heterodimerizes and
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forms a functional transcription factor complex termed
AP-1 in combination with c-Fos. Recently, c-Jun and
AP-1 have been demonstrated by genome wide ChIP-
on-chip analysis to interact with B-catenin and form a
c-Jun/AP-1/B-catenin/Tcf complex, which prevents f3-
catenin phosphorylation and degradation and increases
its activity [67]. A recent study additionally proved that
c-Jun directly binds to the B-catenin/Tcf complex [68],
suggesting that c-Jun functions as an adaptor protein to
mediate the association of Dsh with the -catenin/Tcf
complex on the promoter of Wnt target genes. The
Dsh/c-Jun/B-catenin/Tcf complex similarly increases 3-
catenin stabilization and positively regulates the activity
of Wnt signaling pathway. Each of these functions of c-
Jun is dependent on its phosphorylation by JNK. In con-
trast, Wnt3a-induced Tcf reporter activity is not affected
by knockdown of endogenous c-Fos, indicating that c-
Fos does not impact canonical Wnt signaling as c-Jun
[69]. Whether c-Fos binds to f-catenin or the c-Fos/B/
catenin/Tcf complex is an avenue for further
investigation.

Additional coregulators of the B-catenin/Tcf/Lef complex
Multiple novel upstream regulators of B-catenin/Tcf/
Lef complex transcriptional activity have been identi-
fied. Positive modulators of B-catenin activity include
Nck-interacting kinase (TNIK) and Snail. TNIK
expression is enriched in the nuclei of Wnt-activated
intestinal crypts, but not cells of the villus, where it is
specifically recruited to the promoters of Wnt target
genes Axin2 and c-Myc [70]. In vitro immunoprecipi-
tation and kinase assays reveal that TNIK directly
binds to both Tcf4 and B-catenin in these cells, phos-
phorylating and activating the transcription activity of
Tcf4. Snail interacts with B-catenin at its N-terminus
and increases its transcriptional activity independent of
Tcf4. Snail, which is transcriptionally repressed by
GSK3B, up-regulates TGF-3B gene expression through
B-catenin/Tcf4 and promotes EMT [71]. In contrast,
multiple negative regulators of B-catenin signaling
exist as well. Kriippel-like factor 4 (KLF4), a transcrip-
tion factor highly expressed in normal human intestine
and critical for intestinal differentiation, inhibits Wnt
signaling by direct interaction with the C-terminal
transactivation domain of fB-catenin, blocking recruit-
ment of p300/CBP to this domain. KLF4 inhibition of
p300/CBP recruitment results in inhibition of both -
catenin acetylation as well as histone acetylation of
Whnt target genes. KLF4 additionally directly interacts
with Tcf4 independent of B-catenin [72]. MAD2B, a
novel Tcf4 coregulator identified by coimmunoprecipi-
tation, downregulates -catenin/Tcf/Lef complex activ-
ity by interrupting the DNA binding ability of Tcf4
[73]. Finally, VentX, a human Xom homologue, is a
Lef/Tcf-associated inhibitor of canonical Wnt/-
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catenin signaling and a negative regulator of cell prolif-
eration[74].

Downstream targets of B-catenin

Upon translocation to the nucleus, B-catenin interacts
with Tcf4 and Lefl to regulate a wide range of gene
expression at the transcriptional level [75]. The complex
binds to A-C/G-A/T-T-C-A-A-A-G motifs, an evolutiona-
rily conserved consensus motif on the promoter of target
genes [76]. While c-myc, cyclin D and c-Jun expression
are well-characterized as regulated by this complex
[11,12,66], multiple new targets have recently been identi-
fied http://www.stanford.edu/~rnusse/pathways/targets.
html. Here, we summarize the novel downstream targets
of B-catenin and the positive feedback loops between [3-
catenin and the downstream targets (Fig 4).

AKT1 is regulated by B-catenin at the transcriptional level
Several non-steroidal anti-inflammatory drugs (NSAIDs)
suppress -catenin expression in human cancer cell
lines, including aspirin, indomethacin, sulindac and eto-
dolac [77-79]. Nitric oxide-donating aspirin (NO-ASA)
inhibits the transcriptional activity of B-catenin/Tcf far
more potently than aspirin, and inhibits the growth of
colorectal cancer cells (CRC) more efficiently [80].
Aspirin and indomethacin downregulate -catenin activ-
ity through increasing the stabilization of phosphory-
lated B-catenin in time- and concentration-dependent
manners. These studies identified that aspirin induces a
decrease in expression of AKT1, which is regulated by
the B-catenin/Tcf complex as revealed by reporter assay
[77]. Functionally, active AKT1 induced by B-catenin
decreases Bax activation, oligomerization, and transloca-
tion to mitochondria, thus antagonizing mitochondrial
injury and apoptosis [81]. As AKT2 and AKT3 are clo-
sely related and highly conserved homologs of AKT1,
whether AKT2 and AKT3 are targets of Wnt/B-catenin
signaling will be subject to additional studies.
Determination of novel B-catenin-regulated genes by ChIP
assay

ChIP and transgenic analysis identified that the Gbx2
regulatory elements that drive expression in the neural
crest (NC) respond directly to Wnt/B-catenin signaling.
Loss-of-function experiments using antisense morpholi-
nos against Gbx2 inhibit NC protein expression and
expand the preplacodal domain, whereas Gbx2 overex-
pression leads to transformation of the preplacodal
domain into NC cells. Previous studies identified a
region of 500 bp upstream of Gbx2 that contains three
(1-3) Lef/Tcf consensus sequences, termed the Gbx2
enhancer [82]. Similarly, the B-catenin/Tcf4 complex
binds to a specific site on matrix metalloproteinase 1
(MMP1) promoter and governs MMP1 gene and protein
expression, regulating cell migration in collagen and
gelatin [20]. Further, B-catenin directly represses
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B-catenin transcription directly or via upregulation of Siah1.

Figure 4 Positive feedback loops between B-catenin and downstream targets. The f-catenin/Tcf complex directly binds to binding
element site (TBE) of the AKT1 and STAT3 gene promoter. In turn AKT1 activation induces B-catenin phosphorylation at Ser552 directly or by

GSK-3B phosphorylation and STAT3 activation increases the nuclear accumulation of B-catenin, thereby increasing B-catenin nuclear translocation
and enhancing transcriptional activity. In addition, the E2F1 promoter activity is repressed by overexpression of 3-catenin/Tcf, and E2F1 inhibites

p1l6INK4a expression by binding to its promoter. Acti-
vated P-catenin directly represses the expression of
p16INK4a through an evolutionarily conserved Lef/Tcf
site in its promoter [83]. ChIP analysis additioanlly
determined that B-catenin bound to conserved regions
of mouse genomic DNA proximal to the Foxcl tran-
scriptional start site, revealing that Foxcl is a direct tar-
get of B-catenin [84]. Despite f-catenin regulation of
Foxc2 expression, no transcriptional start site has yet
been identified. Finally, ChIP analysis revealed that f3-
catenin and Tcf4 activated the human StarD7 gene
interacting with its promoter region [85].

Previously, WNT/B-catenin was suggested to regulate
STATS3 at the mRNA and protein level, suggesting that
STAT3 maybe a direct target of B-catenin [86]. Further
investigation was performed by using EMSA and ChIP
assay, confirming that the B-catenin/Tcf4 complex
directly bound to the Tcf4 binding element site (TBE)
of the STAT3 gene promoter [87]. These data confirm
that STAT3 is regulated by P-catenin in the

transcriptional level. Of note, STAT3 activation
increases the nuclear accumulation of B-catenin, leading
to a positive feedback loop between B-catenin and
STATS3 [88]. Similarly, the E2F1 promoter was found to
contain two putative Tcf-binding elements, and promo-
ter activity is inhibited by overexpression of J-catenin/
Tcf [89]. This event represents a positive feedback loop
for B-catenin transcriptional activity, as E2F1 represses
B-catenin transcription directly [90] or via upregulation
of Siahl [91]. Additionally, Lefl activates E2F1 by
attenuating the interaction between E2F1 and HDAC1
in a B-catenin-independent manner [92].

B-catenin downregulates miR-15, miR-16, miR-122a and
miR-375 expression

Wnt/B-catenin signaling regulates miR-15/16 maturation
rather than its transcription, as overexpression of f3-
catenin inhibits the expression of mature miR-15 and
miR-16 isoforms. The mechanism of Wnt control of
miR-15 and miR-16 maturation is unknown, but per-
haps works through a protein complex controlled by or
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containing B-catenin. B-catenin control of the intensity
and spatial pattern of Nodal responsiveness is thought
to be regulated by miR-15 and miR-16 expression [93].
Upregulation of miR-122a expression in mutant APC
cells induces a gain of wild type APC function, indicat-
ing that miR-122a works downstream of APC and sug-
gests that miR-122a expression is lost or downregulated
in APC-driven gastrointestinal cancers. Further, restora-
tion of miR-122a expression significantly suppressed
migration, invasion, anchorage-independent growth, and
in vivo tumorigenicity of hepatocellular carcinoma cells.
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The mechanism by which miR-122a expression bypasses
loss-of-function APC is unknown. Data suggests that
miR-122a may be a novel target of APC/B-catenin sig-
naling pathway, and that down-regulation of miR-122a
mediated by aberrant APC/B-catenin signaling is impor-
tant to the pathogenesis of gastrointestinal cancers [94].
Additionally, miR-375 has been demonstrated to be
downregulated by B-catenin [95]. The function of miR-
375 and the transcriptional mechanism that miR-375
regulated by B-catenin are not clear and for further
investigation.
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Anti-B-catenin agents

The B-catenin complex plays a critical role in tumor-
genesis, angiogenesis, and progression of metastasis,
making it an attractive therapeutic target for che-
motherapy. Current drugs that target B-catenin include
Quercetin, which inhibits the transcriptional activity of
B-catenin by disrupting the binding of B-catenin and
Tcf4 and suppressing their translocation to the nucleus
[96,97]. Similarly, Aspirin was demonstrated to increase
phosphorylation of B-catenin but not decrease its
nuclear translocation [77]. Neither quercetin nor
aspirin, however, attenuate the protein level of total -
catenin. PKF118-310, PKF115-584, and CGP049090
reduce the binding of $-catenin and Tcf4, resulting in
induction of G1/S phase arrest, inhibition of cell growth
and activation of apoptosis [98]. 2,4-diaminoquinazo-
lines and their analogues, a novel series of B-catenin
antagonist, as well as multiple antagonists not presented
here, have been demonstrated to inhibit the growth of
colorectal cancer [99,100], proving the value of -cate-
nin antagonists as potential therapeutics. Taken
together, we believe that the potential for f-catenin
antagonists as potent chemotherapeutics for Wnt-driven
malignancies is great, and further study of these and
related agents will yield effective therapies for human
cancer.

Conclusion and Perspectives

Although Wnt/B-catenin transcriptional activity has
been studied over the past several years, molecular reg-
ulation of Wnt/p-catenin pathway is complex and
summarized in Fig. 5. Regulation of the expression of
components of the Wnt/B-catenin pathway by micro-
RNAs, newly discovered RNA sequences that modify
gene expression profiles, has not only revealed
increased complexity of B-catenin but enabled identifi-
cation of increased crosstalk between Wnt/B-catenin
signaling and other pathways. Accumulating data of
microRNAs will likely identify even greater complex-
ities. In conclusion, we believe that an improved
understanding of the basic genetics and biology of
B-catenin signaling will provide insights into the devel-
opment of novel chemopreventive and therapeutic
strategies for human cancers.
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