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Abstract

Wnt and EGFR signaling play key roles in embryonic development and cell proliferation. It is well documented that
dysregulation of these two pathways often leads to tumorigenesis with poor prognosis. However, the possible
crosstalk between the two pathways in cancer development is largely unknown. Although some reports show that
EGFR might antagonize Wnt signaling during development in Drosophila, an increasing body of evidence indicates
that Wnt and EGFR signaling crosstalk and transactivate one another in development and cancer. This review sum-
marizes recent studies on the crosstalk between Wnt and EGFR signaling in cancers and points out several possible
convergence points. Wnt ligands can activate EGFR signaling through their 7-transmembrane domain receptor
Frizzled while EGFR can activate B-catenin via receptor tyrosine kinase-PI3K/Akt pathway; EGFR has been shown to
form a complex with B-catenin and increase the invasion and metastasis of cancer cells. NKD2, a Wnt antagonist

by interacting with Dishevelled, also escorts TGFa-containing exocytic vesicles to the basolateral membrane of
polarized epithelial cells. Down-regulation of NKD2 causes Wnt activation and TGFo misdelivery, suggesting its
functions in cell homeostasis and prevention of tumorigenesis.

1. Introduction

Tumorigenesis is a complex process requiring the accu-
mulated alteration of multiple genes and pathways. In
particular, human colorectal cancers represent a para-
digm for the molecular and genetic mechanisms under-
lying tumor formation and progression [1]. More than
80% of colonic adenomas and carcinomas have muta-
tions in Adenomatous polyposis coli (APC) gene, and
loss of APC function results in constitutive activation of
Wnt signaling [2]. EGER signaling plays critical roles in
the genesis of adenomas and maintenance of carcinomas
during intestinal tumorigenesis [3]. Overexpression of
EGER is found in more than 1/3 of the epithelial carci-
nomas and may be linked to an advanced stage [4] or
may predict a potential metastatic risk in the colon [5],
indicating the importance of EGFR signaling in colorec-
tal cancer development. It has been well documented
that Wnt and EGFR signaling pathways are closely
linked with cancers, but the possible convergence
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between them is largely unknown. Here we summarize
the current studies on the correlation between Wnt and
EGER signaling pathways.

2. Wnt Signaling Pathway in Cancers

Wnt signaling plays central role in embryogenesis and
human diseases including cancers. Wnt signals can be
either transduced to the canonical Wnt pathway for cell
fate determination or to the non-canonical Wnt path-
way for the control of tissue polarity and cell move-
ment. Canonical and non-canonical Wnt pathways can
be differentially activated by different Wnt ligands
(Wntl, 2, 3, 3A, 8A, 8B, 10A and 10B for canonical
Wnt pathway and Wnt4, 5A, 5B, 6, 7A, and 7B for
non-canonical Wnt pathway) [6]. Wntl1 has recently
been shown to be the activator of both canonical and
non-canonical Wnt pathways [7]. Dishevelled, the hub
of Wnt signaling, can mediate canonical and non-cano-
nical Wnt signaling by binding to different proteins via
its different functional domains [8]. Numerous studies
have shown that dysregulation of the canonical Wnt
pathway leads to cancer development and progression.
The non-canonical Wnt pathway has been thought to
play key roles in embryonic development and cell polar-
ity. However, in recent years, emerging data indicate
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that non-canonical Wnt signaling also promotes the
invasiveness and metastasis of different cancers [9].

2.1 Canonical Wnt signaling pathway in cancers
Canonical Wnt signals are transduced through Frizzled/
LRP5/6 complex to stabilize B-catenin by preventing its
phosphorylation-dependent degradation and to activate
downstream targets. Canonical Wnt signaling is closely
related with many cancers [10]. Mutations in APC gene
have been identified as one of the basis for colorectal
cancer development. In ovarian tumors, APC was found
to be absent in all tumors with nuclear 3-catenin stain-
ing [11]. Mutations in B-catenin, which abrogate its reg-
ulation by APC, represent an alternative route to Wnt
activation and a basis for cancer development. Axin, one
of the important regulators of the Wnt pathway, is also
mutated in a variety of human cancers [12]. T-cell-spe-
cific transcription factor 4, a B-catenin binding protein,
is mutated in nearly half of the micro satellite instable
colon cancers [13]. Other Wnt factors are also involved
in cancer development. NKD1, a negative regulator, has
been shown mutated in colorectal cancers [14]. PP2A,
another component of the Wnt pathway, is found to
have mutations in its regulatory subunit in some cancers
[15]. In summary, oncogenic deregulation of the Wnt
signaling pathway is a causal factor in the initiation of
cancer in a diverse range of tissues. Due to the close
relationship between the canonical Wnt pathway and
cancers, inhibition of Wnt activity has become a goal
for therapeutic prevention.

2.2 Non-canonical Wnt signaling pathway in cancers

The non-canonical Wnt signaling pathway is often
referred to as the Planar Cell Polarity (PCP) pathway and
the Wnt/Ca®* pathway. Human Wnt5A, Wnt5B and
Wntll are non-canonical Wnt ligands transducing PCP
signals through FZD3 or FZD6 receptors. Upon ligand
binding, non-canonical Wnt signaling controls tissue
polarity and cell movement through the activation of
RhoA, c-Jun N-terminal kinase (JNK), and nemo-like
kinase (NLK) signaling cascades. The well-known role of
these pathways is the regulation of morphogenetic pro-
cesses. However, recently more and more data indicate
that components of these pathways might also promote
the invasiveness and malignant progression of cancers.
There is strong evidence that Wnt5A, the non-canonical
Wnt ligand, is involved in cancer progression [16].
Although there are still arguments whether it is a tumor
suppressor or promoter, Wnt5A overexpression has been
found to be associated with aggressive tumor biology and
poor prognosis [17,18]. In vitro studies also confirm that
Wnt5A activity increases melanoma invasiveness and
that the activity is independent of B-catenin [19]. In col-
orectal cancers, studies show that non-canonical Wnt
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signaling antagonizes -catenin dependent transcription
[20], suggesting an anti-oncogenic effect of non-canoni-
cal Wnt signaling. However, VANGLI, a PCP pathway
protein, has been shown to promote the metastasis of
colon cancer. In summary, although in part still contro-
versial, the fact that non-canonical Wnt signaling func-
tions either as a tumor suppressor or promoter is
obviously dependent on the individual intra- and inter-
cellular context.

Although canonical and non-canonical Wnt pathways
act differently in tumorigenesis, they might also cross-
talk in some cancers. In hepatocellular carcinomas,
canonical and non-canonical Wnt pathways might have
complementary roles, where the canonical signaling con-
tributes to tumor initiation, and non-canonical signaling
to tumor progression [21].

3. EGFR Signaling Pathway in Cancers

EGEFR is a transmembrane receptor of the four ErbB
family members, and seven different ligands can selec-
tively bind to each receptor [22]. The majority of
human epithelial cancers are marked by the activation
of EGFR, and it was the first growth factor receptor to
be proposed as a target for cancer therapy. Dysregula-
tion of EGFR is often observed in association with carci-
nogenesis, which can be caused by receptor
overexpression, mutations or deletions [23]. Overexpres-
sion of EGFR or ErbB2 leads to the in vitro transforma-
tion of NIH-3T3 cells [24,25]. Overexpression of the
EGEFR ligand TGFa also results in transformation of
Rat-1 and NRK cells [26,27]. Blockade of EGFR results
in inhibition of growth in several human carcinoma cell
lines [28]. Overexpression of EGFR and its family mem-
bers have been found in the majority of human cancers.
On average, 50% to 70% of lung, colon and breast can-
cers have EGFR and ErbB3 overexpression [28]. Cancer
patients with EGFR overexpression often have a worse
prognosis. For example, among non-small cell lung can-
cer (NSCLC) patients, 60% have been reported with
EGEFR overexpression and a poor prognosis (the median
survival time is around 4-5 months) [29]. Additional
study shows that co-expression of different ErbB recep-
tors is usually associated with a worse prognosis com-
pared to single receptor overexpression in cancers [30].
In addition to being overexpressed, EGFR is also found
to be mutated in different cancers. An in-frame deletion
of exon 2-7 of EGER is frequently detected in glioblas-
toma, which encodes a constitutively active EGFR pro-
tein [31]. Mutations in EGFR are often correlated with
EGER activation and resistance to anti-EGFR treatment.
An acquired T790M mutation was found in a NSLCL
patient resistant to the drug Gefitnib by increasing the
affinity to ATP [32,33]. Tumors with both T790M and
L858R are more aggressive [34]. A V665M mutation in
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the juxtamembrane region of EGFR promotes cellular
transformation and tumorigenesis, suggesting this region
might be an activation domain [35].

In summary, ErbB receptors and their ligands form a
network and are closely involved in cancer development
and progression. Overexpression and constitutive activa-
tion of EGFR in cancers are often related with a poor
prognosis.

4, The convergence between Wnt and EGFR
signaling in cancers

Cancer development is a complex progress in which
many signaling pathways are involved. Cross-communi-
cation between different pathways allows the integration
of the great diversity of stimuli. Wnt and EGFR path-
ways have been reported to closely interact in tumori-
genesis, but how they cross-talk and co-activate tumor
progression remains an unanswered, interesting topic.

4.1. Wnt and EGFR signaling in cell proliferation and
embryonic development

Signaling by EGFR plays a critical role in the segmental
patterning of the ventral larval cuticle in Drosophila.
Bienz and coworkers showed that EGFR signaling antag-
onizes Wnt signaling in the larval cuticle [36]. A follow-
ing study showed that EGFR/rolled MAP kinase
signaling antagonizes Wnt signaling in the Drosophila
eye [37]. Phyllopod, a transcriptional target of the EGFR
pathway, blocks Wingless and Notch signaling in Droso-
phila [38]. However, there are also other reports show-
ing that Wnt and EGF pathways act together to
establish planar cell polarity in the Drosophila eye or
induce C. elegans male hook development [39,40]. In
NIH3TS3 cells, Wnt3a stimulates cell proliferation and
motility via EGFR-mediated ERK pathway activation
[41]. These results may suggest that during cell prolif-
eration or development in different animal models or
organs, Wnt and EGFR signaling might crosstalk
differently.

4.2. Wnt and EGFR signaling pathways synergistically
induce tumorigenesis

David Lee and coworkers found that in WAP-TGFa
mice the latency of mammary tumorigenesis was greatly
reduced. When they co-transfected MMTV to induce
the expression of Wntl and Wnt3, the latency was
further reduced. These results indicate a collaboration
between Wnt and EGFR signaling pathways in mam-
mary gland tumorigenesis and suggest a convergence
between their ligands (Wnt3 and TGFa ) [42]. Prosta-
glandin E2 is often implicated in promoting colon can-
cer development. Studies indicate that prostaglandin E2
(PGE2), a product of cyclooxygenase-2 (Cox-2) activity,
promotes tumor growth by activating EGFR [43] or
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B-catenin [44]. In Min/+ tumors, in which Wnt activity
is high, PGE2 is up-regulated and transactivates EGFR
[45]. Since both Wnt and EGFR signaling can act on
B-catenin, it is possible that Wnt and EGFR pathways
converge on B-catenin. Subsequent work indicated a
direct interaction between B-catenin and EGFR/ErbB2
heterodimers in mammary gland tumors [46].

It is likely that TGFo and Wnts activate different tar-
get genes and may interact cooperatively to promote
tumorigenesis. In non-small cell lung cancers, EGFR
mutations were significantly associated with a good
prognosis in patients that had tumors with unmethy-
lated Wnt antagonist genes, suggesting synchronous
alterations of Wnt and EGFR signaling pathways are
involved [47]. In intestinal tumor cells, APC and KRAS,
a downstream target of EGFR signaling, act synergisti-
cally in enhancing Wnt signaling, tumor formation and
progression [48]. In breast cancers, Wnt pathway is
rarely mutated. However, an extracellular inhibitor of
Wnt signaling, secreted Frizzled-related protein 1
(sFRP1), which competes with Frizzled receptors for
ligand binding, is often down-regulated, resulting in
Wnt deregulation, and those patients usually have a
poor prognosis [49,50]. In sFRP1 knockdown breast can-
cer cell lines, EGFR is transactivated [51], indicating a
synergistic effect of Wnt and EGER signaling in breast
cancer development. It should be noticed that tumors
arising from activation of ErbB and Wnt pathways in
transgenic mice display distinct pathologies [52], sug-
gesting some independency between Wnt and EGFR
mediated tumorigenesis.

4.3. Crosstalk between Wnt and EGFR pathways in
cancers

Crosstalk between Wnt and EGFR has been identified in
some tumors. In breast cancers, Wnt overexpression
activates signaling via EGFR [53,54]. In HC11 mammary
epithelial cells, constitutive expression of Wntl and
Wnt5a accompanies activation of EGFR and MAPK.
Inhibition of EGFR kinase activity and addition of
sFRP1 both prevent this effect. TGFa and other EGFR
ligands are not induced by Wnt-1 or Wnt-5a, but addi-
tion of metalloproteinase inhibitors blocks the stimula-
tion of EGFR and ERK phosphorylation. Thus, Wnt
activation of EGFR is apparently mediated by an
increase in the availability of EGFR ligands [55]. Further
studies showed that in breast cancers, Wntl transacti-
vates EGFR, implying that constitutive Wnt signaling
might impact not only the canonical pathway but also
EGER activity by augmenting ligand availability [51]. In
liver-specific non-mutated p-catenin-overexpressing
transgenic mice, EGFR seems to be a direct target of the
activated Wnt signaling pathway, and EGFR activation
might contribute to some mitogenic effect of increased
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B-catenin in the liver [56]. In NSCLC, there is a positive
correlation between activated EGFR mutation and
nuclear accumulation of B-catenin [47]. All of these
results suggest a close correlation between Wnt and
EGER signal pathways in cancers.

Many studies indicate that Wnt and EGFR signaling
crosstalk via receptor tyrosine kinase pathways. EGFR
mediated PI3K/Akt activation promotes B-catenin trans-
activation and tumor cell invasion, suggesting that
EGER activation transactivate B-catenin activity via
receptor tyrosine kinase pathways in tumor cells
[57-60]. In breast cancers, upregulation of Wnt-1
induces EGFR and Erk 1/2 MAPK activation [53]. In
APC deficient mice, Wnt activity causes EGFR/PI3K/
Akt activation [45].

4.4, Possible convergent points between Wnt and EGFR
pathways

Frizzled

EGER can be transactivated upon G protein coupled
receptor (GPCR) stimulation. This transactivation
involves proHB-EGF and a metalloproteinase activity
that is rapidly induced upon GPCR-ligand interaction
[61,62]. The Frizzled receptors through which Wnts act
are 7-transmembrane domain receptors that are structu-
rally related to other families of G-protein-coupled
receptors. When Wntl and Wnt5a bind to Frizzled, it
transactivates EGFR signaling by matrix metalloprotei-
nase-mediated release of soluble EGFR ligands [55]. All
these data suggest that Frizzled is a convergence point
of Wnt and EGFR pathways.

B-catenin

Studies show that EGF treatment of human breast can-
cer cell lines MDA-MB-468 can induce a strong tyrosine
phosphorylation of $-catenin [63], that blocks the inter-
action between P-catenin and E-cadherin and increases
the invasiveness and metastatic potential of cancer cells
[64,65]. Chronic activation of EGFR induces transcrip-
tional down-regulation of caveolin-1, which in turn
enhances f-catenin-TCF/LEF-1 transcriptional activity
in a GSK-3B-independent manner [57]. Using the mur-
ine mammary tumor virus (MMTV)-Wnt-1 transgenic
model of mammary carcinoma, Schroeder and his col-
leagues have identified an unvarying association between
B-catenin and epidermal growth factor receptor/c-Neu
(ErbB1/ErbB2) heterodimers in mammary gland tumors,
indicating a requirement for ErbB signaling in Wnt-
mediated tumorigenesis [46]. Studies also show that
EGER activation could induce nuclear accumulation of
B-catenin via PI3K/Akt pathway in prostate cells [59,60].
In liver-specific non-mutated (3-catenin-overexpressing
transgenic mice, EGFR seems to be a direct target of the
pathway, and EGFR activation might contribute toward
some mitogenic effects of increased B-catenin in the
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liver [56]. All of these studies indicate that EGFR and -
catenin may be cooperating in tumorigenesis and that
B-catenin might be a convergent point between EGFR
and Wnt signaling in cancer development.

NKD2

NKD1 and NKD2 are two mammalian orthologs of Dro-
sophila Naked cuticle and have been shown to nega-
tively regulate canonical Wnt signaling through an
interaction with Dishevelled (Dvl) [66-68]. In zebrafish,
NKD1 and NKD2 antagonize both canonical and non-
canonical Wnt signaling [69]. Katoh investigated the
expression of NKD1 and NKD2 in human cancer cell
lines and primary gastric cancer. He found that NKD1
was up-regulated in the colorectal cancer cell line
SW480, gastric cancer cell line TMKI1, and pancreatic
cancer cell line Hs700T, while NKD2 was up-regulated
in the gastric cancer cell line MKN45, pancreatic cancer
cell line BxPC-3, and esophageal cancer cell lines TE6,
and TE13, indicating NKD1 and NKD2 might be candi-
date tumor suppressors [70]. NKD2, but not NKD1, also
interacts with the cytoplasmic C-terminal fragment of a
Golgi-processed form of TGFa, coats TGFa-containing
exocytic vesicles, and escorts those vesicles to the baso-
lateral membrane of polarized epithelial cells in a myris-
toylation-dependent manner [71]. NKD2 is an
intrinsically unstructured protein and acts as a cargo
recognition and targeting protein to ensure proper deliv-
ery and fusion of TGFa-containing exocytic vesicles
[72-74]. NKD2 can be stabilized by TGFa[75] but
down-regulated by Dishevelled in HEK293T cells [76].
The above results indicate that NKD2 might be a regu-
lator of both Wnt and EGFR signal pathways by regula-
tion of TGFa delivery and Dishevelled stabilization.
Although we have never observed a tertiary complex
between NKD2, TGFa and Dishevelled, our results
show that NKD2 forms a mutual degradation complex
with Dvl-1 [76], and that TGFa stabilizes NKD2 by sup-
pressing the binding between NKD2 and its ubiquitin
ligase AO7 [75]. Based on our observations, we propose
a model for the regulatory role of NKD2 in Wnt and
EGER signaling pathways: NKD2 binds to TGFa and
escorts it to the plasma membrane, where TGFa gets
released, and then NKD2 binds to Dvl-1 and targets
each other for mutual degradation. NKD2 might be an
important convergent point between Wnt and EGFR
pathways to maintain the epithelial cell homeostasis.

5. Conclusion
The crosstalks between Wnt and EGFR are summarized
in Fig. 1.

Both Wnt and EGEFR signaling are closely related with
tumorigenesis. In recent years a considerable body of
evidence shows that Wnt and EGFR crosstalk with each
other in cancer development. Addition of Wnt ligands
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Figure 1 Convergence between Wnt and EGFR pathways. Wnt binds to Frizzled. Frizzled transactivates EGFR signaling by matrix
metalloproteinase-mediated release of soluble EGFR ligands. Upon activation, EGFR could transactivate 3-catenin, possibly through receptor
tyrosine kinase-PI3K/Akt pathway, and B-catenin might also form heterodimer with EGFR and activate EGFR pathway. NKD2 binds to TGFa and
escorts it to the plasma membrane, where TGFa gets released, and then NKD2 binds to DvI-1 and targets it for mutual degradation, thus

transactivates EGFR signaling, possibly through Frizzled
and its downstream partners. EGFR can form a complex
with B-catenin and further activate Wnt pathway. In
cancers, mutations or dysregulation in the Wnt pathway
often induce EGFR activation. This review also points
out several possible convergence points between Wnt
and EGEFR signaling, such as Frizzled, B-catenin and
NKD2. Tight regulation of those proteins maintains the
homeostasis and prevents from tumorigenesis. Further
studies will surely disclose more convergence points
between Wnt and EGFR signaling.

Mutations in key proteins of Wnt and EGFR pathways
have been found in most of the cancers. 80% of colon

cancers have APC mutations [2] and 50-70% of breast,
colon and lung cancers have EGFR and ErB3 mutations
[28]. However, what percentage of conincidence of
mutations in both EGFR and Wnt pathways in those
patients, remain a very important and interesting topic.
To elucidate this question will surely help further to
understand the roles of Wnt and EGFR convergence in
cancer development.
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