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Abstract

tumor cell growth and dissemination.

Background: Heme Oxygenase-1 (HO-1) is expressed in many cancers and promotes growth and survival of
neoplastic cells. Recently, HO-1 has been implicated in tumor cell invasion and metastasis. However, the molecular
mechanisms underlying these biologic effects of HO-1 remain largely unknown. To identify a common mechanism
of action of HO-1 in cancer, we determined the global effect of HO-1 on the transcriptome of multiple tumor
entities and identified a universal HO-1-associated gene expression signature.

Results: Genome-wide expression profiling of Heme Oxygenase-1 expressing versus HO-1 silenced BeWo
choriocarcinoma cells as well as a comparative meta-profiling of the preexisting expression database of 190 human
tumors of 14 independent cancer types led to the identification of 14 genes, the expression of which correlated
strongly and universally with that of HO-1 (P = 0.00002). These genes included regulators of cell plasticity and
extracellular matrix (ECM) remodeling (MMP2, ADAMS, TGFB1, BGN, COL21AT, PXDN), signaling (CRIP2, MICB),
amino acid transport and glycosylation (SLC7A1 and ST3GAL2), estrogen and phospholipid biosynthesis (AGPAT2
and HSD17B1), protein stabilization (IFI30), and phosphorylation (ALPPL2). We selected PXDN, an adhesion molecule
involved in ECM formation, for further analysis and functional characterization. Immunofluorescence and Western
blotting confirmed the positive correlation of expression of PXDN and HO-1 in BeWo cancer cells as well as co-
localization of these two proteins in invasive extravillous trophoblast cells. Modulation of HO-1 expression in both
loss-of and gain-of function cell models (BeWo and 607B melanoma cells, respectively) demonstrated a direct
relationship of HO-1 expression with cell adhesion to Fibronectin and Laminin coated wells. The adhesion-
promoting effects of HO-1 were dependent on PXDN expression, as loss of PXDN in HO-1 expressing BeWo and
607B cells led to reduced cell attachment to Laminin and Fibronectin coated wells.

Conclusions: Collectively, our results show that HO-1 expression determines a distinct ‘molecular signature’ in
cancer cells, which is enriched in genes associated with tumorigenesis. The protein network downstream of HO-1
modulates adhesion, signaling, transport, and other critical cellular functions of neoplastic cells and thus promotes

Background

Heme oxygenases are the rate-limiting enzymes in heme
degradation that catalyze the conversion of heme into
carbon monoxide, iron, and biliverdin. Heme oxygenase
1 (HO-1) has (cyto)protective properties and antiinflam-
matory, antiapoptotic, and antiproliferative capacities of
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HO-1 have been described in several cell types [1,2].
Under normal physiologic conditions HO-1 expression
is low but can be upregulated in response to a wide
range of stimuli and activated signaling molecules,
including the HO-1 substrate heme, reactive oxygen
species (ROS), nitric oxide species, prostaglandins, cyto-
kines, growth factors such as insulin, and lipopolysac-
charide [2]. Since heat shock (and other cellular
stressors) lead to upregulation of HO-1, this molecule
has also been termed heat-shock protein 32 (Hsp32).
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A relation between malignant behavior and alterations
in expression of HO-1 may exist. Elevated HO-1 has
been detected in several cancer cell lines [3-6] and
tumors (including lymphosarcoma, adenocarcinoma,
hepatoma, glioblastoma, melanoma, prostate cancers,
Kaposi sarcoma, squamous carcinoma, pancreatic can-
cer, brain tumors and myeloid leukemias; reviewed in
[7]), thereby affecting tumor cell apotosis, proliferation,
invasion and metastasis [7]. Furthermore, HO-1 gene
polymorphisms have been associated with increased
cancer susceptibility [8,9].

Cell adhesion is an important determinant of orga-
nised growth and the maintenance of architectural
integrity. Changes in cell-cell and cell-extracellular
matrix (ECM) adhesion accompany the transition from
benign tumours to invasive, malignant cancers and the
subsequent metastatic dissemination of tumour cells
[6,10,11]. Specifically, alterations in ECM remodeling
have been shown to affect adhesion properties of neo-
plastic cells. Although several studies have linked
expression of HO-1 with various stages of tumor pro-
gression [12-15], the molecular mechanisms underlying
HO-1-mediated changes in adhesion of neoplastic cells
remain elusive.

We used gene expression profiling as a global assay to
identify a common gene set directly linked to HO-1 in
14 cancer types. One of the genes that emerged was
PXDN, the human homologue of the Drosophila gene
peroxidasin. PXDN is a cell surface peroxidase asso-
ciated with the extracellular matrix [12] and was found
to play a key role in HO-1-dependent cell adhesion of
neoplastic cells in our investigations. Our results reflect,
for the first time, that HO-1 mediates genome-wide
effects on transcriptional regulation of genes potentially
involved in tumorigenesis. Moreover, our findings pro-
vide insights into the mechanisms underlying HO-1-
dependent tumor invasion and support the notion that
HO-1 represents a molecular target in cancer.

Materials and metods

Construction of transgenic cell lines

Constitutive stable HO-1 knock-down in BeWo chorio-
carcinoma cells (European Collection of Cell Cultures
(Salisbury, UK) was generated by transduction with a
microRNA (miRNA) adapted retroviral vector. Briefly,
an shRNAmir (microRNA-adapted short hairpin RNA)
against human HO-1 in pSM2 vector (oligo ID:
V2HS_133107; Open Biosystems, Huntsville, AL, USA)
was subcloned into the LMP vector Open Biosystems).
Constitutive HO-1 overexpression in 607B melanoma
cells [16] (kindly provided by Dr. Volker Wachek, was
kindly provided by V. Wacheck; Department of Clinical
Pharmacology, Medical University of Vienna, Austria)
was generated by transduction with the retroviral vector
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MSCVpuro (Clontech, Mountain View, CA, USA) con-
taining the human HO-1 ¢cDNA [17]. For production of
recombinant retroviruses, HEK293FT cells (Invitrogen,
Carlsbad, CA, USA) were co-transfected with a vector
containing the viral packaging proteins gag and pol, a
vector containing env, and either LMP (ctrl), LMP-
miHO1 (LMP containg miRNA against human HO-1),
MSCV (ctrl) or MSCV-HO1 (MSCV containing the
HO-1 cDNA). Vectors containing gag, env, and pol
were kind gifts from Dr. Ewan Rosen (Beth Israel
Deaconess Medical Center, Harvard Medical School,
Boston , MA, USA). Forty-eight hours after transfection,
viral supernatants were collected, BeWo and 607B cells
were transduced in the presence of polybrene (8 pg/ml).
Stable integrants were selected with puromycin (5 pg/
ml). Knock-down or overexpression of HO-1 was veri-
fied by Western blotting (Fig 1A and Fig Seven A).

Transient Transfections

Small interfering (si) RNA targeting human PXDN,
negative control siRNA (oligo ID: HSS187890 or cat.
no. 12935-200, respectively; Invitrogen), pCDNA 3.1
(Invitrogen), or a plasmid containing the full PXDN
c¢DNA under control of the CMV promoter (clone ID:
OCABo05050A058, ImaGenes, Berlin, Germany) )were
delivered into BeWo cells by nucleofection (Amaxa,
Lonza Bioscinece) according to a previously optimized
protocol [18].Briefly, 1 x 10° BeWo cells were nucleo-
fected with siRNA (100 nmol/L) or 1 pg of control
(pcDNA) or pPXDN plasmids following the manufac-
turers’ instructions (solution V, program X-005) (Amaxa
Biosystems, Germany). Following transfection, cells were
kept in culture for 48-72 hrs, followed by cell adhesion
assays.

Isolation of total RNA and DNA-Microarry expression
profiling

BeWo choriocarcinoma cells were purchased from the
European Collection of Cell Cultures (ECACC, Salis-
bury, UK) and were cultured in Ham F12 medium
(Gibco Life Technologies, Paisley, UK) supplemented
with 5% fetal bovine serum (FBS; Biochrom, AG, Ber-
lin, Germany) and streptomycin/penicillin (Gibco)
using standard culture conditions. Total RNA was
extracted from subconfluent culture using an RNeasy
kit (Qiagen). Total RNA (200 ng) was then used for
GeneChip analysis. Preparation of terminal-labeled
c¢DNA, hybridization to genome-wide human Gene
Level 1.0 ST GeneChips (Affymetrix, Santa Clara, CA,
USA) and scanning of the arrays were carried out
according to manufacturer’s protocols https://www.
affymetrix.com. RMA Signal extraction, normalization
and filtering was performed as described (http://www.
bioconductor.org/; [19]). A variation filter was applied
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Downregulated genes are shown in blue and upregulated genes in red.

Figure 1 The HO-1 gene signature in BeWo cancer cells. (A) Western blot analysis of ctrl (LMP) or HO-1 shRNAmir-transduced BeWo cells
(miHO-1) demonstrates efficient HO-1 knock-down. B-actin indicates equal loading. A representative example is shown. (B) A heat map of top
30 genes that discriminate HO-1 expressing (LMP) from HO-1 knockdown (miHO-1) cells as judged by LIMMA analysis (p < 0.05). Downregulated
genes are shown in green and upregulated genes in red. Note that some genes are represented by multiple probe sets on the GeneChip. (C)
Pathways enriched in HO-1 expressing BeWo cells. The number of genes contained within one pathway/gene set is given by ‘Size’. Normalized
enrichment score (NES') is calculated by the GSEA software. Statistical significance is indicated by the nominal P-value (NOMp-val’) and the error
is controlled by the false discover rate (FDR g-val). (D) Distribution of 20 pathway molecules for the top-ranking gene set amid the total ranked
list of all transcripts analyzed by GSEA. Genes were rank ordered based on differential expression between LMP and miHO1 BeWo cells. (E)
Corresponding heatmap showing relative expression of the ‘Extracellular Region” pathway gene members in LMP and miHO-1 BeWo cells.

for selecting informative (i.e., significantly varying)
genes. The filtering criteria for the exemplary data sets
required an interquantile range > 0.5 and at least one
sample with expression intensity > 100. The full gene
lists are now available at Gene Expression Omnibus
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE20404.

Gene set enrichment analysis (GSEA)

GSEA [20], is a computational method that determines
whether a given set of genes (e.g. known pathways, spe-
cific areas of the genome or clusters from a cluster ana-
lysis) shows statistically significant differences between
two phenotypic states (i.e. LMP vs. miHO-1). Briefly,
the GSEA calculation involves 3 steps: calculation of an
Enrichment Score (ES) followed by estimation of the
significance level of ES and adjustment for Multiple

Hypothesis Testing. We used a publicly available data-
base of gene sets contained within the Molecular Signa-
ture Database (MSigDB; [20]) to test for enrichment
upon HO-1 knockdown.

Statistical Microarray Group Comparisons

To calculate differential gene expression between indi-
vidual sample groups, we performed a statistical com-
parison using the LIMMA package as described
previously [19]. Briefly, LIMMA estimates the fold
change between predefined sample groups by fitting a
linear model and using an empirical Bayes method to
moderate the standard errors of the estimated log-fold
changes for each probe set [21]. A multiple testing cor-
rection based on the false discovery rate (FDR) was
performed to produce adjusted p-values. All calcula-
tions were performed in “R.”
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Human tumor gene expression databases

Human tumor gene expression data was used from the
Global Cancer Map comprising 190 specimens of 14 dif-
ferent tumor types (breast, pancreas, lung, bladder,
ovary, melanoma, uterus, renal, prostate, central nervous
system, lymphoma, colorectal, mesothelioma, and leuke-
mia)[22]. Gene expression data from the normal tissues
were discarded. Only the data related to cancerous tis-
sues were further analyzed. The GeneNeighbors module
of the GenePattern software was used to identify genes,
the expression of which was closely correlated with that
of HO-1 [23]. Heatmap construction: We used the Pear-
son distance as a measure of similarity in the expression
pattern. This algorithm produced a numerical score that
represented the calculated Pearson distance for each
gene relative to the HO-1 gene. The genes were then
ranked so that the low score indicates the close similar-
ity of the expression pattern of the particular gene with
that of the HO-1 gene.

Kolmogorov-Smirnov statistics

To evaluate the significance of the coexpression pat-
tern of genes, we used the Kolmogorov-Smirnov (KS)
statistics. For our analysis, we selected the genes that
are differentially expressed in LMP vs miHO1 cells
with at least a 2-fold difference (i.e. out of 214 differ-
entially expressed genes, 67 genes were coexpressed
with HO1, leaving 45 input genes after mapping onto
the respective arrays). We discarded the genes with
either overly low or overly high expression levels (<50
and >15,000 relative units in more than half of the
arrays, respectively). We also did not include genes
that had either less than a 2-fold difference or less
than a 50 relative unit difference across all tumor tis-
sues. Finally, out of 16063 genes, 7978 remained. We
then determined the positional distribution of the 45
genes within the list of 7978 genes ordered by the
Pearson distance relative to HO-1 in the 190 tumor
tissues and reported the 14 genes (out of the 45 input
genes) being closest to HO-1. In other words, we
selected the 14 genes displaying the smallest Pearson
distance relative to HO-1. These genes are coexpressed
with HO-1 in the tumor specimens and also induced
by HO-1 in BeWo cells expressing HO-1 endogen-
ously. We next calculated the KS score for these 14
genes using R. The higher the KS score, the more the
expression pattern of the particular gene set is analo-
gous across all tumors. We also performed the same
KS analysis for 14 randomly selected genes using
100,000 permutations. The frequency of events when
the KS score of the randomly chosen gene set was
equal to or exceeded that of the target gene set was
taken as a P value (P = 0.00002).
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Real-time PCR

Total RNA (1 pg) was reverse transcribed into cDNA by
MMLV enzyme (Promega, Mannheim, Germany) with
random hexamers (1 pg/pg total RNA). All PCRs were
performed using the SYBR Geen kit (BioRad, Hercules,
CA, USA). Primers for selected genes were designed
using Primer3 software http://frodo.wi.mit.edu/cgi-bin/
primer3/primer3_www.cgi with the following sequences,:
HO-1 (CAGGATTTGTCAGAGGCCCTGAAGG, fwd;
TGTGGTACAGGGAGGCCATCACC, rev) ADAMS
(CCGCTACGTGGAGCTGTATG, fwd; CCAGCATCT
GGAACTCTGCAT, rev), COL21A1 (GAACCCTGGC
TACCCTGGAC, fwd; GTGTCCCTGCAATTCCCTG,
rev), CRIP2 (CGCTGCAGCAAGAAGGTG, fwd; 5’
-GCCAATCCTTGCCCAGAG, rev), IFI30 (CCTACG
GAAACGCACAGGA, fwd; GAACTCCCACCTGC
CACTG, rev), MICB (ACCTCAGGAGGACCCTGAC-
TC, fwd; GGAGGGAATGCAAGCCTC, rev), MMP2
(GACCTTGGGAGAAGGCCAAG, fwd; CCATCGG-
CGTTCCCATACT, rev), PXDN (GTCGTGGCCCA-
CCTGACTG, fwd; GTGTCGCTGGGAATGCTG, rev),
TGFB1 (TGGAGCCTGGACACGCAGTA , fwd; GCCC
GGGTTATGCTGGTTG, rev) and ARP (GCCAA
TAAGGTGCCAGCTGCTG, fwd; TCTTGCCCATCA-
GCACCACAG, rev). Using the ABI Prism 7700
sequence detection system (PE Applied Biosystems,
Warrington, UK), PCR cycling conditions were as fol-
lows: initial denaturation at 95°C for 10 min, followed
by 40 cycles at 94°C for 30 seconds, 60°C for 15 seconds
and 72°C for 30 seconds and a 10 minutes terminal
incubation at 72°C. Sequence Detector Software (SDS
version 1.6.3, PE Applied Biosystems) was used to
extract the PCR data, which were then exported to
Excel (Microsoft, Redmond, WA) for further analyses.
The RNA-amount of the human Arp gene was used as
an internal control. Data were analyzed according to the
2728€T method [24].

Western blot analyses

Western blot analyses were performed using standard
protocols as recently done [25]. Equal amounts of pro-
tein lysates (35 pg) were separated on 10% SDS/polya-
crylamide (PAA) gels and transferred onto
Polyvinylidene fluoride (PVDF)-membranes (GE
Healthcare, Amersham, Buckinghamshire, UK). After
blocking filters were incubated overnight (4°C) with
monoclonal mouse antibodies against human HO-1
(clone OSA110; 1:1000; Stressgen, Ann Arbor, MI,
USA), PXDN (clone clone A01; 1:1000; Abnova, Taipei
City, Taiwan), B-actin (1:5000; Abcam, Cambridge,
MA, USA). After 1 h of treatment (room temperature)
with secondary antibodies (anti-mouse Ig horseradish
peroxidase linked, Amersham; 1:20.000) signals were


http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi

Tauber et al. Molecular Cancer 2010, 9:200
http://www.molecular-cancer.com/content/9/1/200

developed by using ECL Plus Western Blotting Detec-
tion System (Amersham Pharmacia Biotech, Piscat-
away, NJ, USA).

Immunofluorescene

Cells grown on coverslips were washed, fixed with 4%
paraformaldehyde, permeabilized with 0.5% Triton-X
100 and blocked with goat serum. Expression of HO-1
and PXDN were detected with the antibodies described
above. Cells were incubated with secondary antibodies
conjugated to Alexa594 or Alexa488 (1:500; Molecular
Probes, Eugene, OR, USA) and visualized using a Zeiss
Axioskop 2 microscope, Zeiss Axiocam and Photoshop.
As negative control coverslips were incubated with the
respective isotype control IgG and secondary antibodies
(data not shown). First trimester placental tissue were
dehydrated and embedded in paraffin (Merck) as
described elsewhere [26]. Serial sections (2-3 pm) were
prepared, deparaffinized and finally heated in a micro-
wave oven (x2 5 min, 850 W). After incubation in
blocking solution (NEN, Boston,MA, USA), slides were
incubated overnight with primary antibodies, washed 3
times in PBS (each 5 min) and followed by incubation
with secondary antibodies conjugated to Alexa594 or
Alexa488 (1 hour, Molecular Probes, Eugene, OR). The
following primary antibodies/dilutions were utilized:
PXDN (Sigma, 1:50) cytokeratin 7 (clone OV-TL, 8,3
pg/ml, DAKO, Glostrup, Denmark), HO-1 (clone OSA-
110, 1:1000, Stressgen, Ann Arbor, MI), Ki67 (clone Ki-
S5, 10 pg/ml, Chemicon), Kip2/p57 (C-20, rabbit, 2 pg/
ml, Santa Cruz Biotechnolgy, Santa Cruz, CA) and
Vimentin (clone Vim 3B4, Dako). As a negative control,
the primary antibody was replaced by buffer or isotype
IgG. Finally, all sections were counterstained with 1 pg/
ml DAPI (Roche) and covered with Fluoromount-G
(Soutech, Birmingham, AL).

Cell Adhesion Assay

Adhesion assays were performed as described by [27],
with minor modifications. 96 well plates were coated
overnight at 4°C with Fibronectin (10 pg/ml; SIGMA),
rat tail Collagen , or with Laminin (10 pg/ml; SIGMA)
in PBS. Wells were rinsed and blocked for 1 h with 1%
BSA in PBS. Logarithmic phase cells were harvested
with trypsin and plated at 40 000 cells per well. After 30
min of incubation at 37°C, wells were rinsed to remove
non-adherent cells. Adhered cells were fixed in 10% for-
malin for 5 min and stained with 0.1% crystal violet (in
20% MeOH) for 5 min. Excess dye was washed off with
water and absorbance was measured at 595 nm. Bars
represent mean absorbance +/- SEM of each condition
tested in triplicates. All values have had background
substracted that represents cell adhesion to wells
blocked with 1% BSA in PBS.

Page 5 of 16

Cell Invasion assay

The invasion of BeWo cells was measured by using the
Transwell chambers (Chemicon, Millipore, CA) accord-
ing to the manufacturer’s protocol. Briefly, the BeWo
cells were electroporated with 20 uM of a control
siRNA or siRNA targeting human PXDN with the
Amaxa method as described elsewhere [18]. 24 hours
later, the cells were seeded onto the membrane of the
upper chamber of the transwell at a concentration of
2x10°/ml in 500 pl of DMEM/F12 medium. The med-
ium in the upper chamber was serum-free. The medium
at the lower chamber contained 10% Foetal Calf serum
as a source of chemoattractants. Cells that passed
through the Matrigel coated membrane were stained
with Cell Stain Solution containing crystal violet
supplied in the Transwell Invasion assay (Chemicon,
Millipore, CA) and photographed after 20 hours of
incubation.

Cell Proliferation Assay

The effect of CO on proliferation of RAECs was deter-
mined with a nonradioactive bromodeoxyuridine
(BrdU)-based cell-proliferation assay [28](per the manu-
facturer’s guidelines; Roche, Basel, Switzerland). Follow-
ing electroporation of 1 x 10° BeWo cells with 20 uM
control or PXDN siRNA according to a previously opti-
mized protocol [18], 2500 cells were seeded into 96 well
plates and left for 24 hrs to recover. The cells were
stimulated to proliferate with 10% FBS and BrdU incor-
poration was measured at indicated time points.

Statistical analysis
Student’s t test was used for comparison between the
groups. P value < 0.05 was considered significant.

Results

Gene expression profiling

We used gene expression profiling to determine the
genome-wide effect of HO-1 on the transcriptome of
BeWo choriocarcinoma cells. BeWo cells were used in
these experiments because these cells show relatively
high levels of endogenous HO-1 expression. Expression
of HO-1 was silenced in BeWo cells by a micro-RNA
adapted retroviral vector targeting human HO-1. Wes-
tern blotting demonstrated an efficient knockdown of
HO-1 expression in BeWo cells stably expressing
miHO-1 (henceforth referred to as ‘miHO-1’) as com-
pared to BeWo cells stably expressing the LMP control
sequence (referred to as ‘LMP’) (Fig. 1). RNA isolated
from control (LMP) or miHO1 infected (miHO-1) cells
was labeled and hybridized to human genome-wide gene
level 1.0 ST arrays. Among 214 differentially expressed
genes with statistical significance (adjusted p-value <
0.05), 67 genes were expressed at higher levels in HO-1
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Table 1 Top 30 genes up- or downregulated statistically significant more than 2-fold in BeWo control (LMP) cells
compared with cells deficient in HO-1 (miHO-1)

Probe Set ID Mean Fold Change (LMP vs Adj. P-  Gene Symbol Gene Name
miHO-1) Value

Upregulated in HO-1 expressing control (LMP)

cells:

NM_005330_at 782 0,0073 HBE1 hemoglobin, epsilon 1

NM_024913_at 7,74 0,0067 C7orf58 chromosome 7 open reading frame 58

NM_001105533_at 5,56 0,0073 C7orf58 chromosome 7 open reading frame 58

NM_206828_at 510 0,0077 NLRP7 NLR family, pyrin domain containing 7

NM_002133_at 5,09 0,0262 HMOX1 heme oxygenase (decycling) 1

NM_139176_at 490 0,0081 NLRP7 NLR family, pyrin domain containing 7

NM_004530_at 4,83 0,0098 MMP2 matrix metallopeptidase 2 (gelatinase A)

XM_001720850_at 4,48 0,0092 LOC100134134 similar to peroxidasin homolog

NM_030820_at 4,34 0,0223 COL21A1 collagen, type XXI, alpha 1

NM_012293_at 4,27 0,0092 PXDN peroxidasin homolog (Drosophila)

XM_001715515_at 3,86 0,0106 LOC100131375 similar to peroxidasin homolog

NM_000660_at 3,60 0,0306 TGFB1 transforming growth factor, beta 1

NM_001312_at 3,39 0,0146 CRIP2 cysteine-rich protein 2

NM_004425_at 2,99 0,0262 ECM1 extracellular matrix protein 1

NM_006227_at 291 0,0306 PLTP phospholipid transfer protein

NM_182676_at 291 0,0306 PLTP phospholipid transfer protein

XM_001718318_at 291 0,0318 LOC100131307 hypothetical protein LOC100131307

NM_000413_at 2,88 0,0262 HSD178B1 hydroxysteroid (17-beta) dehydrogenase 1

NM_178422_at 2,87 0,0301 PAQR7 progestin and adipoQ receptor family member VII

NM_022664_at 2,86 0,0262 ECM1 extracellular matrix protein 1

NM_001109_at 2,76 0,0284 ADAMS ADAM metallopeptidase domain 8

NM_000391_at 2,64 0,0306 TPP1 tripeptidyl peptidase |

XM_001726123_at 2,64 0,0262 LOC100133842 similar to lectin, galactoside-binding, soluble, 3 binding
protein

NM_003045_at 263 0,0262 SLC7A1 solute carrier family 7, member 1

NM_005931_at 263 0,0231 MICB MHC class | polypeptide-related sequence B

NM_000041_at 2,61 0,0262 APOE apolipoprotein E

NM_006927_at 2,60 0,0262 ST3GAL2 ST3 beta-galactoside alpha-2,3-sialyltransferase 2

NM_001042423_at 2,60 0,0334 SLC16A3 solute carrier family 16, member 3 (monocarboxylic acid
transporter 4)

NM_004207_at 2,59 0,0332 SLC16A3 solute carrier family 16, member 3 (monocarboxylic acid

transporter 4)
downregulated in HO-1 expressing control (LMP)

cells:

NM_013230_at -22,27 0,0067 CD24 CD24 molecule

XM_001725629_at -19,19 0,0067 CD24 CD24 molecule

NM_003810_at -14,22 0,0067 TNFSF10 tumor necrosis factor (ligand) superfamily, member 10
NM_032812_at -6,27 0,0072 PLXDC2 plexin domain containing 2

XM_001726122_at -3,66 0,0206 FLJ32810 hypothetical protein FLJ32810

NM_006982_at -3,37 0,0155 ALX1 ALX homeobox 1

NM_015888_at -3,34 0,0262 HOOK1 hook homolog 1 (Drosophila)

NM_178834_at -3,34 0,0315 LAYN layilin

NM_003063_at -3,27 0,0262 SLN sarcolipin

NM_030972_at -3,25 0,0178 /NF611 zinc finger protein 611

NM_032021_at -3,15 0,0178 TMEM133 transmembrane protein 133

NM_005028_at -3,14 0,0206 PIP4K2A phosphatidylinositol-5-phosphate 4-kinase, type I, alpha
XM_001715384_at -3,09 0,0256 LOC100134369 similar to golgi phosphoprotein 2

NM_017423_at -3,06 0,0262 GALNT7 N-acetylgalactosaminyltransferase 7

NM_001008401_at -3,00 0,0306 /NF761 zinc finger protein 761
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Table 1: Top 30 genes up- or downregulated statistically significant more than 2-fold in BeWo control (LMP) cells

compared with cells deficient in HO-1 (miHO-1) (Continued)

XM_001127597_at -2,98 0,0178 FLJ32810 hypothetical protein FLJ32810

NM_030925_at -2,95 0,0178 CAB39L calcium binding protein 39-like
NM_001079670_at -2,92 00178 CAB39L calcium binding protein 39-like

NM_001726_at -2,88 0,0297 BRDT bromodomain, testis-specific

NM_177937_at -2,87 0,0178 GOLM1 golgi membrane protein 1

NM_014827_at -2,81 0,0321 ZC3H11A zinc finger CCCH-type containing 11A
NM_001042482_at -2,78 0,0306 TPK1 thiamin pyrophosphokinase 1

NM_004052_at -2,77 0,0306 BNIP3 BCL2/adenovirus E1B 19 kDa interacting protein 3
NM_006424_at -2,75 0,0262 SLC34A2 solute carrier family 34 (sodium phosphate), member 2
NM_005900_at -2,73 0,0262 SMAD!1 SMAD family member 1

NM_001008397_at -2,72 0,0262 GPX8 glutathione peroxidase 8

NM_018169_at -2,71 0,0284 C120rf35 chromosome 12 open reading frame 35
NR_003942_at -2,68 0,0318 SNORD76 small nucleolar RNA, C/D box 76
XM_001726844_at -2,66 0,0375 LOC100130123 PRO2870

NM_207189_at -2,65 0,0276 BRDT bromodomain, testis-specific

Mean fold change values of n = 2 experiments.

expressing control (LMP) cells and 147 genes in cells
deficient in HO-1 (miHO-1, see Additional file 1). Top
30 differentially expressed genes are shown in Table 1.
An obvious feature of HO-1 was its effect on the
expression of genes which are either directly or indir-
ectly linked to cell adhesion and the integrity or remo-
delling of extracellular matrix (CD24, HOOK1, LAYN,
HEY1, MME, RRAS2, FZD3, KIF14, KIF18A, DAAM1,
BCL6, PLS1, ERBB2IP, BGN, FSD1, IFI30, LGALS3BP,
FMNL1, TMSL3, CORO1A, TFF1, CLEC11A, ADAMS,
ECM1, PLTP, TGFB1, PXDN, COL21A1 and MMP2;
Table 1, and Additional Files 1 &2).

Pathway prediction analyses

To further explore the dataset, GSEA [20] was used to
identify groups of functionally related genes with expres-
sion patterns that correlate with HO-1 expression.
GSEA is a method for interpreting gene expression data
that focus on groups of genes sharing common biologi-
cal function, chromosomal location or regulation. This
approach can show important effects on pathways,
which might be missed in single-gene analyses [20]. Fig.
1C displays the top 10 pathways regulated by HO-1
expression in BeWo cells. Amongst others, HO-1
expressing BeWo cells were significantly enriched in
pathways regulating extracellular matrix orchestration
and signal transduction. Plotting of the enrichment
score vs the rank-ordered gene list for the top-scoring
gene set Extracellular region’ illustrates increased
expression of ECM molecules and their remodeling
enzymes in HO-1 expressing BeWo LMP cells (Fig. 1D).
A more detailed analysis of this pathway revealed
enhanced expression of several ECM molecules includ-
ing extracellular matrix-1 (ECM1), collagen type IX, a3

(COL9A3, sarcoglycans B and -& (SGCB and SBCg), and
the matrix remodeling factors MMP2 and TGFB1 (Fig.
1E). The significant gene sets ‘receptor binding’, integral
to plasma membrane’ and ‘system development’ con-
tained further genes related to cell plasticity and ECM
organization, including IGF2, placental growth factor
(PGF), collagen type I a1 (COL1A1), fibroblast growth
factor receptors 3 and 4 (FGFR-3,-4), ADAMS, (see
Additional File 3). These observations suggest that HO-
1 expressing cells produce factors relevant to cell-matrix
adhesion as well as their degrading enzymes.

HO-1 gene signature in 190 human tumors

We next determined whether expression of the putative
HO-1 target genes identified in BeWo cells (Additional
File 1) correlates with HO-1 expression levels in human
tumors. For these purpose, we performed data mining
using the GCM database. This database includes the
expression profiling data of 16,063 genes of 190 indivi-
dual tumors of the 14 human cancer types. Using R/Bio-
conductor, we ranked 7978 genes (filtering described in
methods) according to their level of coexpression with
HO-1. The Pearson distance was used as an unbiased
measure of the expression pattern similarity of the tar-
get gene with the expression pattern of HO-1. Using the
data of Additional File 1, we then selected the top 14
individual genes, expression of which most uniformly
correlated with that of HO-1 both in BeWo LMP cells
and in 190 human tumors (Fig. 2A and Table 2). To
confirm that the coexpression of these 14 genes with
HO-1 is statistically significant we applied KS statistics.
One hundred thousand trials with a randomly selected
set of 14 genes undermined the high statistical signifi-
cance of the 14 identified genes (P = 0.00002). Fig. 2B
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Figure 2 HO-1 target gene expression in 190 human tumors. (A) The heatmap shows the expression pattern of 14 HO-1 target genes
including HO-1 itself in the 190 human tumors of the 14 most common cancer types included in the GCM database. Red and blue squares
denote high versus low levels of expression of each individual gene normalized to its mean expression across all tumor samples, respectively. (B)
Relative gene expression of 8 selected HO-1 target genes. The Y-axis displays the normalized DNA Microarray signal across 190 tumor samples
(comprising the X-axis). Cancer types are shown above the plot. (C) mRNA levels were measured by gRT-PCR using the RNA samples isolated
from HO-1 expressing (LMP) and HO-1 silenced (miHO-1) BeWo cells. The expression values were normalized relative to Arp. The levels of mRNA
in LMP and miHO-1 cells are shown in percentage relative to LMP cells (set to 100%). Bars represent mean (+/- SEM) of three independent

experiments.

shows the expression pattern of the 14 highly significant
HO-1 target genes in the 190 tumor samples, which
include ADAMS, AGPAT2, MICB, ST3GAL2, SLC7A1,
HSD17B1, MMP2, IFI30, COL21A1, ALPPL2, CRIP2,
BGN, TGFB1 and PXDN. To corroborate our results,
we used qRT-PCR to determine the mRNA levels of 8
HO-1 target genes in BeWo LMP and miHO-1 cells
(Fig. 2C). These 8 HO-1 target genes were selected
based on their putative role in regulation of cell plasti-
city/motility based on Gene Ontology classification and
PubMed searches. According to our results, the expres-
sion levels of these genes were the lowest in miHO-1
cells. Western blotting of LMP and miHO-1 BeWo cell
extracts confirmed the increased levels of PXDN in

LMP cells (Fig. 3A). Immunofluorescence analysis of
routinely cultured, subconfluent LMP and miHO-1
BeWo cells further corroborated western blotting data,
showing increased (mostly perinuclear) PXDN staining
in LMP cells (Fig. 3B).

HO-1 and PXDN colocalize in invasive trophoblast

To confirm a link of HO-1 with PXDN, we determined
the expression of HO-1 and PXDN in first trimester pla-
centa tissues. Among the Cytokeratin-positive (=villous,
extravillous as well a ssyncytiotrophoblast) cells, Ki67-
or p57-staining indicated proliferating (non-invasive) or
invasive, differentiated extravillous trophoblast cells,
respectively (Fig. 4). Immunofluorescence analysis of
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Gene Accession Gene Symbol Distance from HO-1 Fold Change (LMP/miHO-1)
NM_001109 ADAM8 0.5570885 2,76
NM_001012727 AGPAT2 0.6074327 2,05
NM_005931 MICB 0.66872585 2,63
NM_009179 ST3GAL2 0.680627 2,60
NM_003045 SLC7A1 0.70778143 2,63
NM_000413 HSD178B1 0.7225144 2,88
NM_008610 MMP2 0.7414118 4,83
NM_006332 IFI30 0.7581253 2,24
NM_030820 COL21A1 0.7659843 4,34
NM_031313 ALPPL2 0.77093726 2,10
NM_001312 CRIP2 0.78032595 3,39
NM_001711 BGN 0.8124546 2,01
NM_000660 TGFB1 0.82223743 3,60
NM_012293 PXDN 082782316 4,27

NOTE: Distance from HO-1 corresponds to ranking derived from the Pearson distance from HO-1. Fold change (LMP/miHO-1), the ratio of gene expression levels

in HO-1 expressing cells versus HO-1 silenced cells.

serial sections revealed pan-trophoblastic HO-1 and
PXDN staining (Fig. 4), however, proximal extravillous
trophoblasts in the cell column stained strongest for
HO-1 and PXDN. Based on our immunostaining data,
we concluded that the expression of HO-1 is coupled to
an up-regulation of PXDN in first trimester placenta.

HO-1 affects cell adhesion to extracellular matrix
molecules via PXDN

We examined the effect of HO-1 knockdown on the
attachment of BeWo LMP and miHO-1 cells to fibro-
nectin, laminin and collagen type I using cell adhesion
assays. In this assay, nonadherent cells were removed
gently and the remaining adherent cells were fixed,
stained and analysed by light microscopy. As shown in
Fig. 5A, HO-1 expressing cells (LMP) became much
more adherent compared with HO-1 deficient (miHO1)
cells. The adherent cells were measured at 550 nm fol-
lowing staining with crystal violet. As shown in Fig. 5B,
the absorbance of LMP cells was significantly higher
than that of miHO-1cells (P > 0.05). This effect was
more pronounced in the order Laminin > Fibronectin >
Collagen type L. It is noteworthy that very few cells
adhered to control wells (termed ‘Ctrl’). To examine if
the HO-1 target gene PXDN is accountable for the
increased adhesivenss of HO-1 expressing BeWo cells,
we repeated adhesion assays with BeWo cells silenced
for PXDN expression. We observed diminished PXDN
mRNA and protein levels two days after transfection of
LMP and miHO-1 BeWo cells with a PXDN-specific
siRNA, but not with a negative control siRNA, (Fig. 5C
and 5D, respectively). We evaluated effects of PXDN
knockdown on cell adhesion to Fibronectin and Lami-
nin, as BeWo cells most efficiently adhere to these

matrix proteins. Transfection with a control siRNA did
not alter the inhibitory effect of reduced HO-1 levels on
adhesion of BeWo cells to Fibronectin or Laminin (Fig.
5E and 5F). While PXDN-knockdown did not alter cell
adhesion properties of HO-1 deficient BeWo cells
(miHO-1), siRNA-mediated PXDN-knockdown abol-
ished the stimulatory effect of HO-1 on cell adhesion
observed in LMP cells (Fig. 5E and 5F). To minimize
the risk of off-target effects, we repeated the cell adhe-
sion experiments with an alternative siRNA against
PXDN with similar results (Additional File 4). To under-
mine a role of PXDN in cell adhesion, we transiently
overexpressed PXDN in BeWo miHO1 cells. Ectopic
expression of PXDN (pPXDN) resulted in enhanced
adhesion to Laminin and Fibronectin, as compare to
cells transfected with a control pasmid (Fig. 5G).

To verify that the effects of HO-1 on cell adhesion
and PXDN expression are truly related to HO-1, we
generated a HO-1 gain-of-function cell model using
607B melanoma cells, which have no detectable endo-
genous HO-1 expression. As shown by western blotting
(Fig. 6A), retroviral HO-1 gene transfer into 607B cells
resulted in stable HO-1 overexpression (MSCV-HO1’)
as compared to cells transduced with a virus containing
empty retroviral backbone (MSCV’). Adhesion to Fibro-
nectin and Laminin was more pronounced in 607B cells
overexpressing HO-1 (MSCV-HO1) as compared to
control infected cells (MSCV; Fig. 6B). Furthermore,
MSCV-HO1 cells expressed higher levels of PXDN,
compared with MSCV control cells (Fig. 6C). To investi-
gate if PXDN has pro-adhesive properties in 607B cells,
similar to BeWo cells, adhesion assays were repeated
using PXDN-silenced MSCV-HOL1 cells. siPXDN, but
not siCtrl-treatment of 607B MSCV-HO1 cells
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Figure 3 Knock-down of HO-1 in BeWo cells diminishes PXDN protein expression. (A) PXDN detection by western blotting of LMP and
miHO-1 BeWo cells. B-actin indicates equal loading. A representative example is shown. (B) Immunofluorescent detection of PXDN (=red) and
nuclei (DAPI = blue) in cultured LMP and miHO-1 BeWo cells. Fields shown are representative of each population.
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compared with EVT. Magnification: 200x.

Figure 4 PXDN and HO-1 co-localize in first trimester placenta. Immunohistochemical analyses of serial sections of placental tissues
(between 7 and 14th weeks of gestation) stained with different antibodies, counterstained with DAPI and analysed by fluorescence microscopy
as described in Materials and Methods. Trophoblast and stromal cells are marked by Cytokeratin 7 (CK7, green) and Vimentin (VIM, red) staining,
respectively. Ki67 (red) staining indicates poorly invasive but proliferative EVT, whereas p57 (green) positive cells account for invasive,
differentiated EVT. HO-1 and PXDN were stained on separate serial sections. Photographs were taken at 400-fold magnification. VC, villous core;
EVT, extravillous trophoblast; CC, cell column; ST, syncytiotrophoblast. Note the relative higher abundance of PXDN and HO-1 in CTB as

efficiently knocked-down PXDN mRNA levels (~10-fold
reduction; Fig. 7D). Furthermore, PXDN-knockdown in
607B MSCV-HOL1 cells resulted in a significant reduc-
tion in cell adhesion to Fibronectin and Laminin, as
compared to siCtrl-treated cells (Fig. 6E). Subsequently,
we examined the effect of silenced PXDN expression on
BeWo cell growth and invasion. Compared to siCtrl

transfected cells, PXDN-silenced cells showed significant
decreased cell growth over 96 hrs (Fig. 7A). Of note,
knockdown of HO-1 in BeWo cells did not affect cell
proliferation (data not shown). When testing the abilities
of BeWo cells to invade through the 8-um pores on the
polycarbonate membrane coated with matrigel, we
found that the knock-down of endogenous PXDN
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Figure 5 HO-1 mediates cell adhesion via PXDN in BeWo choriocarcinoma cells via PXDN. (A) Control-infected (LMP) or miHO-1 (miHO-1)
infected BeWo cells were seeded on fibronectin (FN), collagen type | (Col 1), laminin (Ln) or tissue culture plastic (TC) and assayed for adhesion
as described in Materials&Methods. Photographs were taken at a 40x magnification. (B) The absorbance of fixed and crystal-violet stained cells at
550 nm of ctrl (LMP) infected cells were arbitrarily set to 100% in each experiment. Note that HO-1 deficient BeWo cells (miHO-1) became less
adherent than LMP cells expressing HO-1 endogenously (*P < 0.05 vs LMP cells). PXDN knocked down in BeWo LMP and miHO-1 cells after
transient transfection with a control (siCtrl) or PXDN-specific (siPXDN) siRNA, as determined by real-time PCR (C) and western blotting (D). B-actin
indicates equal loading. Effect of PXDN-knockdown on cell adhesion to fibronectin (E) or laminin (F) in control-infected (LMP) or miHO-1 (miHO-
1) infected BeWo cells. For comparison, OD-values of ctrl (LMP) infected cells were arbitrarily set to 100% in each experiment. Note that HO-1
expressing cells (LMP), but not HO-1 deficient cells (miHO-1) became less adherent following PXDN-knockdown (*P < 0.05 vs siCtrl-treated LMP
cells). (G) Effect of ectopic PXDN expression on cell adhesion of miHO1 BeWo cells. For comparison, OD-values of cells transfected with an
empty control plasmid (pCDNA) were arbitrarily set to 100% in each experiment. Note that PXDN overexpressing cells (o0PXDN), but not mock-
transfected cells (pcDNA) became more adherent (*P < 0.05 vs pcDNA treatment).
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Figure 6 HO-1 mediates cell adhesion via PXDN in 607B melanoma cells. (A) Western blot analysis of ctrl (MSCV) or cells transduced with a
HO-1 cDNA (MSCV-HO1) demonstrates efficient HO-1 overexpression in 607B melanoma cells. B-actin indicates equal loading. A representative
example is shown. (B) Control-infected (MSCV) or HO-1 transduced (MSCV-HO-1) 607B cells were seeded on Fibronectin (FN), Laminin (Ln) or
tissue culture plastic and assayed for adhesion as described in Materials&Methods. Note that HO-1 overexpressing 607B cells (MSCV-HO1) became
more adherent than MSCV cells (*P < 0.05 vs MSCV cells). (C) PXDN mRNA levels were measured by gRT-PCR using the RNA samples isolated
from control (MSCV) or HO-1 overexpressing (MSCV-HO1) 607B cells. The expression values were normalized relative to Arp. The levels of PXDN
MRNA in MSCV and MSCV-HOT1 cells are shown in percentage relative to MSCV cells (set to 100%). Bars represent mean (+/- SEM) of three
independent experiments. (D) PXDN mRNA knocked down in 607B MSCV-HO1 cells after transient transfection with a control (siCtrl) or PXDN-
specific (siPXDN) siRNA, as determined by real-time PCR. (E) Effect of PXDN-knockdown on cell adhesion to fibronectin or laminin in HO-1
overexpressing 6078 cells. For comparison, OD-values of siCtrl infected cells were arbitrarily set to 100% in each experiment. Note that PXDN-
silenced cells (siPXDN), but not siCtrl-treated (siCtrl) cells became less adherent following PXDN-knockdown (*P < 0.05 vs siCtrl-treated MSCV-
HO1 cells).

expression significantly reduced cell invasion as com-
pared to siCtrl treated BeWo LMP cells (P < 0.05; Fig.
7B)

Discussion

In cancer, HO-1 influences tumor cell survival, apopto-
sis, invasion and metastasis as well as resistance of cer-
tain tumors to chemotherapeutic agents [7,17]. These

changes suggest alterations of signal transduction and
transcription pathways, which HO-1 affects either
directly or indirectly. To identify these regulatory
mechanisms and to determine the identity of the univer-
sal genes, expression of which is affected by HO-1, we
silenced HO-1 expression in BeWo choriocarcinoma
cells (miHO-1") and performed gene expression profil-
ing of these cells relative to BeWo cells which express
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Figure 7 PXDN-knockdown inhibits BeWo cell invasion and cell
growth. (A). Invasion assay in matrigel-coated Boyden chambers of
BeWo cells with knockdown of PXDN. Invaded cells were counted
by photographing the membrane through the microscope. Bar
graphs represent mean cell number +/- SEM of three independent
experiments. *p < 0.05 vs siCtrl-treated BeWo-LMP cells. (B) The cell
growth of siCtrl and siPXDN-treated BeWo LMP cells were examined
by BrdU assay over a 4-day period. Error bars indicate SEM (*P <
0.05 vs siCtrl-treated BeWo-LMP cells).

HO-1 endogenously (LMP’). An interesting aspect of
the 214 identified genes whose expression was affected
by HO-1, was the regulation of multiple genes linked to
cell plasticity/motility and ECM maintenance. In the
course of invasion tumor cells leave normal structures
by passing through basal membrane and migrate into
the surrounding stroma. These events include significant
changes in cell morphology as well as close interaction
of cells with extracellular matrix (ECM) and structural
rearrangement of the latter. Further evidence for a role
of HO-1 in modulating cell plasticity was revealed by
pathway prediction analysis, which demonstrated modu-
lation of genes of the extracellular region as well as
underlying signal transduction pathways (GSEA; Fig 1).
Consistent with our data, TGFB1 was identified as a
HO-1 target gene in a microarray comparison of pros-
tate cancer cells with varying HO-1 protein levels [12].).
Several potential mechanisms underlying gene regulation
by HO-1 can be envisioned that also emphasize a poten-
tial role of the enzymatic products of HO-1: regulation
of signaling pathways including ERK and p38 MAPK
[13], Akt/Protein kinase B [5], and transcription factors
such as AP-1, AP-2, Brn-3 [29], PPARy [25], NF-kappaB
[30], HSF-1 [31] and HIFla [32]. Heme containing (and
carbon monoxide) responsive transcription factors such
as NPAS2 [33] and REV-ERBo/REV-ERBJ [34,35] mod-
ulate gene expression in response to the HO-1 enzy-
matic product carbon monoxide. Recent studies revealed
the nuclear localization of HO-1, pointing to its role as
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a potential transcription factor or coregulator [29,36] Of
note, we detected a fraction of total cellular HO-1 pro-
tein in the nucleus of BeWo cells (data not shown).
Further studies are warranted to investigate potential
signaling pathways triggered by HO-1, (including the
role of nuclear HO-1) in gene regulation.

To provide unbiased proof for the role of HO-1 in
genome-wide transcriptional regulation, irrespective of
the cancer tissue type, we performed a metaprofiling
analysis using the GCM database of 190 human tumors
of 14 different types. The motivation of this data mining
strategy was to identify which genes from the 214 puta-
tive HO-1 target genes, determined in BeWo cells, most
closely correlated with the expression of HO-1 in 190
tumor samples. This unbiased comparative analysis
revealed 14 HO-1 universal target genes: proteolytic
ADAMBS8 and MMP2, acyltransferase AGPAT2, cell sur-
face protein MICB, extracellular glycosylase ST3GAL?2,
amino acid transporter SLC7A1, steroid dehydrogenase
HSD17B1, thiol reductase IFI30, alkaline phosphatase
ALPPLA2, intracellular adapter protein CRIP2, exracel-
lular matrix constituents BGN and COL21A1, multi-
functional cytokine TGFB1, and peroxidase PXDN. The
expression of these genes is strongly correlated with
that of HO-1 (P = 0.00002). The results of our data
mining and our subsequent statistical analyses were
validated by using qRT-PCR, Western blotting, and
immunostaining of LMP and miHO1 cells. Immuno-
fluorescence staining of first trimester placenta speci-
mens confirmed that HO-1 immunoreactivity is coupled
to that of PXDN in trophoblast cells (Fig. 4), which
share the capacity to migrate and invade surrounding
tissues similar to malignant cells [37]. Based on these
results, we suggest that HO-1 stimulates multiple tran-
scriptional changes and affects several cellular pathways,
including extracellular matrix organization (MMP2,
ADAMS, TGFB1, BGN, COL21A1, PXDN), signaling
(CRIP2, MICB), amino acid transport and glycosylation
(SLC7A1 and ST3GAL2), estrogen and phospholipid
biosynthesis (AGPAT2 and HSD17B1), protein stabiliza-
tion (IFI30) and phosphorylation (ALPPL2). Many of
these genes are directly associated with cancer; further
studies are warranted to identify the role of the HO-1
associated genes in the tumorigenic proteries of HO-1.

Given that cell adhesion is intrically linked to tumor
progression/invasion, and that the HO-1 gene signature
features many regulators of cell adhesion, we investi-
gated potential effects of HO-1 on cell adhesion in HO-
1 silenced BeWo cells and HO-1 overexpressing 607B
melanoma cells. Knockdown of HO-1 in BeWo cells
reduced adhesion to various ECM molecules, having
strongest effect on Laminin (Fig. 5). Stronger adhesion
of 607B cells overexpressing HO-1 confirmed a positive
role of HO-1 in cell adhesion (Fig. 7). Previously, we
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have shown that loss of HO-1 expression in BeWo cells
resulted in increased cell motility, based on boyden
chamber assays [25]. Thus, at least in BeWo cells,
knockdown of HO-1 decreases cell adhesion with a con-
comitant increase in cell motility. A reduction in cell
adhesion with a concomitant increase in cell motility is
one hallmark of mesenchymal-amoeboid transition
(MAT), a process describing a change in (cancer cell)
movement from mesenchymal to amoeboid mode. Such
type of movement was shown to be characteristic of cer-
tain malignancies, including prostate cancer [10,11].

We hypothesized that one of the HO-1 signature
genes, many of which represent potential regulators of
cell plasticity, mediates the adhesion-promoting effect of
HO-1. One promising and novel candidate was PXDN,
which could alter cell-ECM interaction either by stabili-
zation of the ECM through protein-protein interactions
via leucine-rich repeats and immunoglobulin loops, as
well as by enzymatically formed tyrosine-tyrosine cross-
links [38]. PXDN, also known as MG50, is a peroxidase
associated with the endoplasmatic reticulum, and
expressed in melanoma, breast cancer, colon cancer,
ovarian cancer, renal carcinoma as well as metastatic
gliomas [4,38-40] Silencing of PXDN abolished the
adhesion-promoting effect of endogenous HO-1 in
BeWo (LMP) and 607B (MSCV-HO1) cells (Fig. 5 and
Fig. 6), while PXDN knockdown did not affect cell adhe-
sion in HO-1 deficient cells. We hypothesize that the
PXDN dosage may be very critical for the adhesive
response, as PXDN levels in miHO-1 cells treated with
a PXDN specific siRNA were ~50 times lower compared
to LMP cells (Fig. 5): If inhibition of BeWo cell adhesion
correlates with PXDN - levels, maybe there exists a
threshold level for PXDN. However, the phenotype of
miHOL1 cells could be rescued by PXDN overexpression
(Fig. 6G). The reduced (~50%) matrigel invasion of
PXDN-silended BeWo cells is most likely due to pro-
proliferative properties of PXDN (Fig 7). However, addi-
tional mechanisms must prevail as cell growth in PXDN
silenced cells was inhibited by approximately 30% after
24 hrs, the duration of the cell invasion assay. Impor-
tantly, to our knowledge, this is the first time showing
functional effects of PXDN expression levels on cell
adhesion and invasion. Further extensive experiments
are needed to determine the molecular mechanism by
which PXDN modulates cell adhesion and invasion, and
how it is linked to the adhesion-promoting properties of
HO-1.

To conclude, our unbiased large scale genome-wide
studies clarified, for the first time, the molecular signa-
ture of HO-1 in cancer and identified the genes which
are functionally, universally, and most consistently
linked with HO-1 expression among multiple tumor
types. The identification of the HO-1 target genes will
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undoubtedly help to understand the complex network of
cellular and molecular events, which are linked to the
role of HO-1 in cancer. Ongoing studies will shed light
on the functional significance of these individual genes.

Additional material

Additional file 1: Transcriptional signature of HO-1 in BeWo
choriocarcinoma cells. The data provided represent the 214
differentially expressed genes with statistical significance (adjusted p-
value < 0.05) between HO-1 expressing control (LMP’) cells and cells
deficient in HO-1 (miHO-1).

Additional file 2: quantitative real-time PCR validation of 5 genes
regulated upon HO-1 knockdown. Graphical presentation for five
differentially expressed genes selected for gRT-PCR validation. mRNA
levels were measured by gRT-PCR using the RNA samples isolated from
HO-1 expressing (LMP) and HO-1 silenced (miHO-1) BeWo cells. The
expression values were normalized relative to Arp. The levels of mRNA in
LMP and miHO-1 cells are shown in percentage relative to LMP cells (set
to 100%). Bars represent mean (+/- SEM) of three independent
experiments.Real-time PCR verification of genes statistically significant
overexpressed in cells deficient of HO-1. Primers for selected genes were
designed using Primer3 software http://frodo.wimitedu/cgi-bin/primer3/
primer3_www.cgi with the following sequences: TNFSF10
(CTGGGACCAGAGGAAGAAGC, fwd; GCTCAGGAATGAATGCCCAC, rev),
PEG3 (TCCTCACCACCTCACTCAGTC, fwd; GGTCTCGTGGCTCCATGTC, rev),
GOLM1 (AGCGTGGACCTCCAGACAC, fwd; CTGCGGACCCTGCCTTCC, rev),
CAB39L (CCAACAGAAGCAGTGGCTCA, fwd; GCTGCAGGTCAGCTATCAGTG,
rev), CD24 (CCAACTAATGCCACCACCAAG , fwd;
TGTTGACTGCAGGGCACCAC, rev). The RNA-amount of the human Arp
gene was used as an internal control. Data were analyzed according to
the 24T method [24].

Additional file 3: Pathway analysis in HO-1 deficient BeWo cells.
Graphical presentation of 9 gene sets as heatmaps that correlate with
HO-1 expression in BeWo cells, identified by GSEA. Downregulated genes
are shown in blue and upregulated genes in red.

Additional file 4: PXDN-knockdown in BeWo cells using an
alternative siRNA oligo targeting human PXDN. Upper panel: PXDN
knocked down in BeWo LMP cells after transient transfection with a
control (siCtrl) or PXDN-specific (siPXDN#2) siRNA (Invitrogen, oligo ID:
HSS187891) , as determined by real-time PCR. Lower panel: Effect of
PXDN-knockdown using siPXDN#2 on cell adhesion to fibronectin or
laminin in control-infected (LMP) BeWo cells. For comparison, OD-values
of LMP cells treated with a control siRNA (siCtrl) were arbitrarily set to
100% in each experiment. Note that HO-1 expressing cells (LMP) became
less adherent following PXDN-knockdown.
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BackgroundHeme oxygenases are the rate-limiting enzymes in heme degradation that catalyze the conversion of heme into carbon monoxide, iron, and biliverdin. Heme oxygenase 1 (HO-1) has (cyto)protective properties and antiinflammatory, antiapoptotic, and antiproliferative capacities of HO-1 have been described in several cell types 12. Under normal physiologic conditions HO-1 expression is low but can be upregulated in response to a wide range of stimuli and activated signaling molecules, including the HO-1 substrate heme, reactive oxygen species (ROS), nitric oxide species, prostaglandins, cytokines, growth factors such as insulin, and lipopolysaccharide 2. Since heat shock (and other cellular stressors) lead to upregulation of HO-1, this molecule has also been termed heat-shock protein 32 (Hsp32).A relation between malignant behavior and alterations in expression of HO-1 may exist. Elevated HO-1 has been detected in several cancer cell lines 3456 and tumors (including lymphosarcoma, adenocarcinoma, hepatoma, glioblastoma, melanoma, prostate cancers, Kaposi sarcoma, squamous carcinoma, pancreatic cancer, brain tumors and myeloid leukemias; reviewed in 7), thereby affecting tumor cell apotosis, proliferation, invasion and metastasis 7. Furthermore, HO-1 gene polymorphisms have been associated with increased cancer susceptibility 89.Cell adhesion is an important determinant of organised growth and the maintenance of architectural integrity. Changes in cell-cell and cell-extracellular matrix (ECM) adhesion accompany the transition from benign tumours to invasive, malignant cancers and the subsequent metastatic dissemination of tumour cells 61011. Specifically, alterations in ECM remodeling have been shown to affect adhesion properties of neoplastic cells. Although several studies have linked expression of HO-1 with various stages of tumor progression 12131415, the molecular mechanisms underlying HO-1-mediated changes in adhesion of neoplastic cells remain elusive.We used gene expression profiling as a global assay to identify a common gene set directly linked to HO-1 in 14 cancer types. One of the genes that emerged was PXDN, the human homologue of the Drosophila gene peroxidasin. PXDN is a cell surface peroxidase associated with the extracellular matrix 12 and was found to play a key role in HO-1-dependent cell adhesion of neoplastic cells in our investigations. Our results reflect, for the first time, that HO-1 mediates genome-wide effects on transcriptional regulation of genes potentially involved in tumorigenesis. Moreover, our findings provide insights into the mechanisms underlying HO-1-dependent tumor invasion and support the notion that HO-1 represents a molecular target in cancer.Materials and metodsConstruction of transgenic cell linesConstitutive stable HO-1 knock-down in BeWo choriocarcinoma cells (European Collection of Cell Cultures (Salisbury, UK) was generated by transduction with a microRNA (miRNA) adapted retroviral vector. Briefly, an shRNAmir (microRNA-adapted short hairpin RNA) against human HO-1 in pSM2 vector (oligo ID: V2HS_133107; Open Biosystems, Huntsville, AL, USA) was subcloned into the LMP vector Open Biosystems). Constitutive HO-1 overexpression in 607B melanoma cells 16 (kindly provided by Dr. Volker Wachek, was kindly provided by V. Wacheck; Department of Clinical Pharmacology, Medical University of Vienna, Austria) was generated by transduction with the retroviral vector MSCVpuro (Clontech, Mountain View, CA, USA) containing the human HO-1 cDNA 17. For production of recombinant retroviruses, HEK293FT cells (Invitrogen, Carlsbad, CA, USA) were co-transfected with a vector containing the viral packaging proteins gag and pol, a vector containing env, and either LMP (ctrl), LMP-miHO1 (LMP containg miRNA against human HO-1), MSCV (ctrl) or MSCV-HO1 (MSCV containing the HO-1 cDNA). Vectors containing gag, env, and pol were kind gifts from Dr. Ewan Rosen (Beth Israel Deaconess Medical Center, Harvard Medical School, Boston , MA, USA). Forty-eight hours after transfection, viral supernatants were collected, BeWo and 607B cells were transduced in the presence of polybrene (8 �g/ml). Stable integrants were selected with puromycin (5 �g/ml). Knock-down or overexpression of HO-1 was verified by Western blotting (Fig 1A and Fig Seven A).Transient TransfectionsSmall interfering (si) RNA targeting human PXDN, negative control siRNA (oligo ID: HSS187890 or cat. no. 12935-200, respectively; Invitrogen), pCDNA 3.1 (Invitrogen), or a plasmid containing the full PXDN cDNA under control of the CMV promoter (clone ID: OCABo5050A058, ImaGenes, Berlin, Germany) )were delivered into BeWo cells by nucleofection (Amaxa, Lonza Bioscinece) according to a previously optimized protocol 18.Briefly, 1 � 106 BeWo cells were nucleofected with siRNA (100 nmol/L) or 1 �g of control (pcDNA) or pPXDN plasmids following the manufacturers� instructions (solution V, program X-005) (Amaxa Biosystems, Germany). Following transfection, cells were kept in culture for 48-72 hrs, followed by cell adhesion assays.Isolation of total RNA and DNA-Microarry expression profilingBeWo choriocarcinoma cells were purchased from the European Collection of Cell Cultures (ECACC, Salisbury, UK) and were cultured in Ham F12 medium (Gibco Life Technologies, Paisley, UK) supplemented with 5% fetal bovine serum (FBS; Biochrom, AG, Berlin, Germany) and streptomycin/penicillin (Gibco) using standard culture conditions. Total RNA was extracted from subconfluent culture using an RNeasy kit (Qiagen). Total RNA (200 ng) was then used for GeneChip analysis. Preparation of terminal-labeled cDNA, hybridization to genome-wide human Gene Level 1.0 ST GeneChips (Affymetrix, Santa Clara, CA, USA) and scanning of the arrays were carried out according to manufacturer�s protocols https://www.affymetrix.com. RMA Signal extraction, normalization and filtering was performed as described (http://www.bioconductor.org/; 19). A variation filter was applied for selecting informative (i.e., significantly varying) genes. The filtering criteria for the exemplary data sets required an interquantile range > 0.5 and at least one sample with expression intensity > 100. The full gene lists are now available at Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20404.Gene set enrichment analysis (GSEA)GSEA 20, is a computational method that determines whether a given set of genes (e.g. known pathways, specific areas of the genome or clusters from a cluster analysis) shows statistically significant differences between two phenotypic states (i.e. LMP vs. miHO-1). Briefly, the GSEA calculation involves 3 steps: calculation of an Enrichment Score (ES) followed by estimation of the significance level of ES and adjustment for Multiple Hypothesis Testing. We used a publicly available database of gene sets contained within the Molecular Signature Database (MSigDB; 20) to test for enrichment upon HO-1 knockdown.Statistical Microarray Group ComparisonsTo calculate differential gene expression between individual sample groups, we performed a statistical comparison using the LIMMA package as described previously 19. Briefly, LIMMA estimates the fold change between predefined sample groups by fitting a linear model and using an empirical Bayes method to moderate the standard errors of the estimated log-fold changes for each probe set 21. A multiple testing correction based on the false discovery rate (FDR) was performed to produce adjusted p-values. All calculations were performed in ��R.��Human tumor gene expression databasesHuman tumor gene expression data was used from the Global Cancer Map comprising 190 specimens of 14 different tumor types (breast, pancreas, lung, bladder, ovary, melanoma, uterus, renal, prostate, central nervous system, lymphoma, colorectal, mesothelioma, and leukemia)22. Gene expression data from the normal tissues were discarded. Only the data related to cancerous tissues were further analyzed. The GeneNeighbors module of the GenePattern software was used to identify genes, the expression of which was closely correlated with that of HO-1 23. Heatmap construction: We used the Pearson distance as a measure of similarity in the expression pattern. This algorithm produced a numerical score that represented the calculated Pearson distance for each gene relative to the HO-1 gene. The genes were then ranked so that the low score indicates the close similarity of the expression pattern of the particular gene with that of the HO-1 gene.Kolmogorov-Smirnov statisticsTo evaluate the significance of the coexpression pattern of genes, we used the Kolmogorov-Smirnov (KS) statistics. For our analysis, we selected the genes that are differentially expressed in LMP vs miHO1 cells with at least a 2-fold difference (i.e. out of 214 differentially expressed genes, 67 genes were coexpressed with HO1, leaving 45 input genes after mapping onto the respective arrays). We discarded the genes with either overly low or overly high expression levels (<50 and >15,000 relative units in more than half of the arrays, respectively). We also did not include genes that had either less than a 2-fold difference or less than a 50 relative unit difference across all tumor tissues. Finally, out of 16063 genes, 7978 remained. We then determined the positional distribution of the 45 genes within the list of 7978 genes ordered by the Pearson distance relative to HO-1 in the 190 tumor tissues and reported the 14 genes (out of the 45 input genes) being closest to HO-1. In other words, we selected the 14 genes displaying the smallest Pearson distance relative to HO-1. These genes are coexpressed with HO-1 in the tumor specimens and also induced by HO-1 in BeWo cells expressing HO-1 endogenously. We next calculated the KS score for these 14 genes using R. The higher the KS score, the more the expression pattern of the particular gene set is analogous across all tumors. We also performed the same KS analysis for 14 randomly selected genes using 100,000 permutations. The frequency of events when the KS score of the randomly chosen gene set was equal to or exceeded that of the �target gene set was taken as a P value (P = 0.00002).Real-time PCRTotal RNA (1 �g) was reverse transcribed into cDNA by MMLV enzyme (Promega, Mannheim, Germany) with random hexamers (1 �g/�g total RNA). All PCRs were performed using the SYBR Geen kit (BioRad, Hercules, CA, USA). Primers for selected genes were designed using Primer3 software http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi with the following sequences,: HO-1 (CAGGATTTGTCAGAGGCCCTGAAGG, fwd; TGTGGTACAGGGAGGCCATCACC, rev) ADAM8 (CCGCTACGTGGAGCTGTATG, fwd; CCAGCATCT �GGAACTCTGCAT, rev), COL21A1 (GAACCCTGGC TACCCTGGAC, fwd; GTGTCCCTGCAATTCCCTG, rev), CRIP2 (CGCTGCAGCAAGAAGGTG, fwd; 5&prime; -GCCAATCCTTGCCCAGAG, rev), IFI30 (CCTACG GAAACGCACAGGA, fwd; GAACTCCCACCTGC CACTG, rev), MICB (ACCTCAGGAGGACCCTGAC-TC, fwd; GGAGGGAATGCAAGCCTC, rev), MMP2 (GACCTTGGGAGAAGGCCAAG, fwd; CCATCGG�CGTTCCCATACT, rev), PXDN (GTCGTGGCCCA�CCTGACTG, fwd; GTGTCGCTGGGAATGCTG, rev), TGFB1 (TGGAGCCTGGACACGCAGTA , fwd; GCCC �GGGTTATGCTGGTTG, rev) and ARP (GCCAA TAAGGTGCCAGCTGCTG, fwd; TCTTGCCCATCA-GCACCACAG, rev). Using the ABI Prism 7700 sequence detection system (PE Applied Biosystems, Warrington, UK), PCR cycling conditions were as follows: initial denaturation at 95�C for 10 min, followed by 40 cycles at 94�C for 30 seconds, 60�C for 15 seconds and 72�C for 30 seconds and a 10 minutes terminal incubation at 72�C. Sequence Detector Software (SDS version 1.6.3, PE Applied Biosystems) was used to extract the PCR data, which were then exported to Excel (Microsoft, Redmond, WA) for further analyses. The RNA-amount of the human Arp gene was used as an internal control. Data were analyzed according to the 2-��CT method 24.Western blot analysesWestern blot analyses were performed using standard protocols as recently done 25. Equal amounts of protein lysates (35 �g) were separated on 10% SDS/polyacrylamide (PAA) gels and transferred onto Polyvinylidene fluoride (PVDF)-membranes (GE Healthcare, Amersham, Buckinghamshire, UK). After blocking filters were incubated overnight (4�C) with monoclonal mouse antibodies against human HO-1 (clone OSA110; 1:1000; Stressgen, Ann Arbor, MI, USA), PXDN (clone clone A01; 1:1000; Abnova, Taipei City, Taiwan), &beta;-actin (1:5000; Abcam, Cambridge, MA, USA). After 1 h of treatment (room temperature) with secondary antibodies (anti-mouse Ig horseradish peroxidase linked, Amersham; 1:20.000) signals were developed by using ECL Plus Western Blotting Detection System (Amersham Pharmacia Biotech, Piscataway, NJ, USA).ImmunofluoresceneCells grown on coverslips were washed, fixed with 4% paraformaldehyde, permeabilized with 0.5% Triton-X 100 and blocked with goat serum. Expression of HO-1 and PXDN were detected with the antibodies described above. Cells were incubated with secondary antibodies conjugated to Alexa594 or Alexa488 (1:500; Molecular Probes, Eugene, OR, USA) and visualized using a Zeiss Axioskop 2 microscope, Zeiss Axiocam and Photoshop. As negative control coverslips were incubated with the respective isotype control IgG and secondary antibodies (data not shown). First trimester placental tissue were dehydrated and embedded in paraffin (Merck) as described elsewhere 26. Serial sections (2-3 �m) were prepared, deparaffinized and finally heated in a microwave oven (�2 5 min, 850 W). After incubation in blocking solution (NEN, Boston,MA, USA), slides were incubated overnight with primary antibodies, washed 3 times in PBS (each 5 min) and followed by incubation with secondary antibodies conjugated to Alexa594 or Alexa488 (1 hour, Molecular Probes, Eugene, OR). The following primary antibodies/dilutions were utilized: PXDN (Sigma, 1:50) cytokeratin 7 (clone OV-TL, 8,3 �g/ml, DAKO, Glostrup, Denmark), HO-1 (clone OSA-110, 1:1000, Stressgen, Ann Arbor, MI), Ki67 (clone Ki-S5, 10 �g/ml, Chemicon), Kip2/p57 (C-20, rabbit, 2 �g/ml, Santa Cruz Biotechnolgy, Santa Cruz, CA) and Vimentin (clone Vim 3B4, Dako). As a negative control, the primary antibody was replaced by buffer or isotype IgG. Finally, all sections were counterstained with 1 �g/ml DAPI (Roche) and covered with Fluoromount-G (Soutech, Birmingham, AL).Cell Adhesion AssayAdhesion assays were performed as described by 27, with minor modifications. 96 well plates were coated overnight at 4�C with Fibronectin (10 �g/ml; SIGMA), rat tail Collagen , or with Laminin (10 �g/ml; SIGMA) in PBS. Wells were rinsed and blocked for 1 h with 1% BSA in PBS. Logarithmic phase cells were harvested with trypsin and plated at 40 000 cells per well. After 30 min of incubation at 37�C, wells were rinsed to remove non-adherent cells. Adhered cells were fixed in 10% formalin for 5 min and stained with 0.1% crystal violet (in 20% MeOH) for 5 min. Excess dye was washed off with water and absorbance was measured at 595 nm. Bars represent mean absorbance +/- SEM of each condition tested in triplicates. All values have had background substracted that represents cell adhesion to wells blocked with 1% BSA in PBS.Cell Invasion assayThe invasion of BeWo cells was measured by using the Transwell chambers (Chemicon, Millipore, CA) according to the manufacturer�s protocol. Briefly, the BeWo cells were electroporated with 20 �M of a control siRNA or siRNA targeting human PXDN with the Amaxa method as described elsewhere 18. 24 hours later, the cells were seeded onto the membrane of the upper chamber of the transwell at a concentration of 2�105/ml in 500 �l of DMEM/F12 medium. The medium in the upper chamber was serum-free. The medium at the lower chamber contained 10% Foetal Calf serum as a source of chemoattractants. Cells that passed through the Matrigel coated membrane were stained with Cell Stain Solution containing crystal violet �supplied in the Transwell Invasion assay (Chemicon, Millipore, CA) and photographed after 20 hours of incubation.Cell Proliferation AssayThe effect of CO on proliferation of RAECs was determined with a nonradioactive bromodeoxyuridine (BrdU)-based cell-proliferation assay 28(per the manufacturer�s guidelines; Roche, Basel, Switzerland). Following electroporation of 1 � 106 BeWo cells with 20 �M control or PXDN siRNA according to a previously optimized protocol 18, 2500 cells were seeded into 96 well plates and left for 24 hrs to recover. The cells were �stimulated to proliferate with 10% FBS and BrdU incorporation was measured at indicated time points.Statistical analysisStudent�s t test was used for comparison between the groups. P value < 0.05 was considered significant.ResultsGene expression profilingWe used gene expression profiling to determine the genome-wide effect of HO-1 on the transcriptome of BeWo choriocarcinoma cells. BeWo cells were used in these experiments because these cells show relatively high levels of endogenous HO-1 expression. Expression of HO-1 was silenced in BeWo cells by a micro-RNA adapted retroviral vector targeting human HO-1. Western blotting demonstrated an efficient knockdown of HO-1 expression in BeWo cells stably expressing miHO-1 (henceforth referred to as �miHO-1�) as compared to BeWo cells stably expressing the LMP control sequence (referred to as �LMP�) (Fig. 1). RNA isolated from control (LMP) or miHO1 infected (miHO-1) cells was labeled and hybridized to human genome-wide gene level 1.0 ST arrays. Among 214 differentially expressed genes with statistical significance (adjusted p-value < 0.05), 67 genes were expressed at higher levels in HO-1 expressing control (LMP) cells and 147 genes in cells deficient in HO-1 (miHO-1, see Additional file 1). Top 30 differentially expressed genes are shown in Table 1. An obvious feature of HO-1 was its effect on the expression of genes which are either directly or indirectly linked to cell adhesion and the integrity or remodelling of extracellular matrix (CD24, HOOK1, LAYN, HEY1, MME, RRAS2, FZD3, KIF14, KIF18A, DAAM1, BCL6, PLS1, ERBB2IP, BGN, FSD1, IFI30, LGALS3BP, FMNL1, TMSL3, CORO1A, TFF1, CLEC11A, ADAM8, ECM1, PLTP, TGFB1, PXDN, COL21A1 and MMP2; Table 1, and Additional Files 1 &2).Pathway prediction analysesTo further explore the dataset, GSEA 20 was used to identify groups of functionally related genes with expression patterns that correlate with HO-1 expression. GSEA is a method for interpreting gene expression data that focus on groups of genes sharing common biological function, chromosomal location or regulation. This approach can show important effects on pathways, which might be missed in single-gene analyses 20. Fig. 1C displays the top 10 pathways regulated by HO-1 expression in BeWo cells. Amongst others, HO-1 expressing BeWo cells were significantly enriched in pathways regulating extracellular matrix orchestration and signal transduction. Plotting of the enrichment score vs the rank-ordered gene list for the top-scoring gene set �xtracellular region� illustrates increased expression of ECM molecules and their remodeling enzymes in HO-1 expressing BeWo LMP cells (Fig. 1D). A more detailed analysis of this pathway revealed enhanced expression of several ECM molecules including extracellular matrix-1 (ECM1), collagen type IX, &alpha;3 (COL9A3, sarcoglycans &beta; and -&epsi; (SGC&beta; and SBC&epsi;), and the matrix remodeling factors MMP2 and TGF&beta;1 (Fig. 1E). The significant gene sets �receptor binding�, integral to plasma membrane� and �system development� contained further genes related to cell plasticity and ECM organization, including IGF2, placental growth factor (PGF), collagen type I &alpha;1 (COL1A1), fibroblast growth factor receptors 3 and 4 (FGFR-3,-4), ADAM8, (see Additional File 3). These observations suggest that HO-1 expressing cells produce factors relevant to cell-matrix adhesion as well as their degrading enzymes.HO-1 gene signature in 190 human tumorsWe next determined whether expression of the putative HO-1 target genes identified in BeWo cells (Additional File 1) correlates with HO-1 expression levels in human tumors. For these purpose, we performed data mining using the GCM database. This database includes the expression profiling data of 16,063 genes of 190 individual tumors of the 14 human cancer types. Using R/Bioconductor, we ranked 7978 genes (filtering described in methods) according to their level of coexpression with HO-1. The Pearson distance was used as an unbiased measure of the expression pattern similarity of the target gene with the expression pattern of HO-1. Using the data of Additional File 1, we then selected the top 14 individual genes, expression of which most uniformly correlated with that of HO-1 both in BeWo LMP cells and in 190 human tumors (Fig. 2A and Table 2). To confirm that the coexpression of these 14 genes with HO-1 is statistically significant we applied KS statistics. One hundred thousand trials with a randomly selected set of 14 genes undermined the high statistical significance of the 14 identified genes (P = 0.00002). Fig. 2B shows the expression pattern of the 14 highly significant HO-1 target genes in the 190 tumor samples, which include ADAM8, AGPAT2, MICB, ST3GAL2, SLC7A1, HSD17B1, MMP2, IFI30, COL21A1, ALPPL2, CRIP2, BGN, TGFB1 and PXDN. To corroborate our results, we used qRT-PCR to determine the mRNA levels of 8 HO-1 target genes in BeWo LMP and miHO-1 cells (Fig. 2C). These 8 HO-1 target genes were selected based on their putative role in regulation of cell plasticity/motility based on Gene Ontology classification and PubMed searches. According to our results, the expression levels of these genes were the lowest in miHO-1 cells. Western blotting of LMP and miHO-1 BeWo cell extracts confirmed the increased levels of PXDN in LMP cells (Fig. 3A). Immunofluorescence analysis of routinely cultured, subconfluent LMP and miHO-1 BeWo cells further corroborated western blotting data, showing increased (mostly perinuclear) PXDN staining in LMP cells (Fig. 3B).HO-1 and PXDN colocalize in invasive trophoblastTo confirm a link of HO-1 with PXDN, we determined the expression of HO-1 and PXDN in first trimester placenta tissues. Among the Cytokeratin-positive (=villous, extravillous as well a ssyncytiotrophoblast) cells, Ki67- or p57-staining indicated proliferating (non-invasive) or invasive, differentiated extravillous trophoblast cells, respectively (Fig. 4). Immunofluorescence analysis of serial sections revealed pan-trophoblastic HO-1 and PXDN staining (Fig. 4), however, proximal extravillous trophoblasts in the cell column stained strongest for HO-1 and PXDN. Based on our immunostaining data, we concluded that the expression of HO-1 is coupled to an up-regulation of PXDN in first trimester placenta.HO-1 affects cell adhesion to extracellular matrix molecules via PXDNWe examined the effect of HO-1 knockdown on the attachment of BeWo LMP and miHO-1 cells to fibronectin, laminin and collagen type I using cell adhesion assays. In this assay, nonadherent cells were removed gently and the remaining adherent cells were fixed, stained and analysed by light microscopy. As shown in Fig. 5A, HO-1 expressing cells (LMP) became much more adherent compared with HO-1 deficient (miHO1) cells. The adherent cells were measured at 550 nm following staining with crystal violet. As shown in Fig. 5B, the absorbance of LMP cells was significantly higher than that of miHO-1cells (P > 0.05). This effect was more pronounced in the order Laminin > Fibronectin > Collagen type I. It is noteworthy that very few cells adhered to control wells (termed �Ctrl�). To examine if the HO-1 target gene PXDN is accountable for the increased adhesivenss of HO-1 expressing BeWo cells, we repeated adhesion assays with BeWo cells silenced for PXDN expression. We observed diminished PXDN mRNA and protein levels two days after transfection of LMP and miHO-1 BeWo cells with a PXDN-specific siRNA, but not with a negative control siRNA, (Fig. 5C and 5D, respectively). We evaluated effects of PXDN knockdown on cell adhesion to Fibronectin and Laminin, as BeWo cells most efficiently adhere to these matrix proteins. Transfection with a control siRNA did not alter the inhibitory effect of reduced HO-1 levels on adhesion of BeWo cells to Fibronectin or Laminin (Fig. 5E and 5F). While PXDN-knockdown did not alter cell adhesion properties of HO-1 deficient BeWo cells (miHO-1), siRNA-mediated PXDN-knockdown abolished the stimulatory effect of HO-1 on cell adhesion observed in LMP cells (Fig. 5E and 5F). To minimize the risk of off-target effects, we repeated the cell adhesion experiments with an alternative siRNA against PXDN with similar results (Additional File 4). To undermine a role of PXDN in cell adhesion, we transiently overexpressed PXDN in BeWo miHO1 cells. Ectopic expression of PXDN (pPXDN) resulted in enhanced adhesion to Laminin and Fibronectin, as compare to cells transfected with a control pasmid (Fig. 5G).To verify that the effects of HO-1 on cell adhesion and PXDN expression are truly related to HO-1, we generated a HO-1 gain-of-function cell model using 607B melanoma cells, which have no detectable endogenous HO-1 expression. As shown by western blotting (Fig. 6A), retroviral HO-1 gene transfer into 607B cells resulted in stable HO-1 overexpression (�MSCV-HO1�) as compared to cells transduced with a virus containing empty retroviral backbone (�MSCV�). Adhesion to Fibronectin and Laminin was more pronounced in 607B cells overexpressing HO-1 (MSCV-HO1) as compared to control infected cells (MSCV; Fig. 6B). Furthermore, MSCV-HO1 cells expressed higher levels of PXDN, compared with MSCV control cells (Fig. 6C). To investigate if PXDN has pro-adhesive properties in 607B cells, similar to BeWo cells, adhesion assays were repeated using PXDN-silenced MSCV-HO1 cells. siPXDN, but not siCtrl-treatment of 607B MSCV-HO1 cells efficiently knocked-down PXDN mRNA levels (~10-fold reduction; Fig. 7D). Furthermore, PXDN-knockdown in 607B MSCV-HO1 cells resulted in a significant reduction in cell adhesion to Fibronectin and Laminin, as compared to siCtrl-treated cells (Fig. 6E). Subsequently, we examined the effect of silenced PXDN expression on BeWo cell growth and invasion. Compared to siCtrl transfected cells, PXDN-silenced cells showed significant decreased cell growth over 96 hrs (Fig. 7A). Of note, knockdown of HO-1 in BeWo cells did not affect cell proliferation (data not shown). When testing the abilities of BeWo cells to invade through the 8-�m pores on the polycarbonate membrane coated with matrigel, we found that the knock-down of endogenous PXDN expression significantly reduced cell invasion as compared to siCtrl treated BeWo LMP cells (P < 0.05; Fig. 7B)DiscussionIn cancer, HO-1 influences tumor cell survival, apoptosis, invasion and metastasis as well as resistance of certain tumors to chemotherapeutic agents 717. These changes suggest alterations of signal transduction and transcription pathways, which HO-1 affects either directly or indirectly. To identify these regulatory mechanisms and to determine the identity of the universal genes, expression of which is affected by HO-1, we silenced HO-1 expression in BeWo choriocarcinoma cells (�miHO-1�) and performed gene expression profiling of these cells relative to BeWo cells which express HO-1 endogenously (�LMP�). An interesting aspect of the 214 identified genes whose expression was affected by HO-1, was the regulation of multiple genes linked to cell plasticity/motility and ECM maintenance. In the course of invasion tumor cells leave normal structures by passing through basal membrane and migrate into the surrounding stroma. These events include significant changes in cell morphology as well as close interaction of cells with extracellular matrix (ECM) and structural rearrangement of the latter. Further evidence for a role of HO-1 in modulating cell plasticity was revealed by pathway prediction analysis, which demonstrated modulation of genes of the extracellular region as well as underlying signal transduction pathways (GSEA; Fig 1). Consistent with our data, TGFB1 was identified as a HO-1 target gene in a microarray comparison of prostate cancer cells with varying HO-1 protein levels 12.). Several potential mechanisms underlying gene regulation by HO-1 can be envisioned that also emphasize a potential role of the enzymatic products of HO-1: regulation of signaling pathways including ERK and p38 MAPK 13, Akt/Protein kinase B 5, and transcription factors such as AP-1, AP-2, Brn-3 29, PPAR&gamma; 25, NF-kappaB 30, HSF-1 31 and HIF1&alpha; 32. Heme containing (and carbon monoxide) responsive transcription factors such as NPAS2 33 and REV-ERB&alpha;/REV-ERB&beta; 3435 modulate gene expression in response to the HO-1 enzymatic product carbon monoxide. Recent studies revealed the nuclear localization of HO-1, pointing to its role as a potential transcription factor or coregulator 2936 Of note, we detected a fraction of total cellular HO-1 protein in the nucleus of BeWo cells (data not shown). Further studies are warranted to investigate potential signaling pathways triggered by HO-1, (including the role of nuclear HO-1) in gene regulation.To provide unbiased proof for the role of HO-1 in genome-wide transcriptional regulation, irrespective of the cancer tissue type, we performed a metaprofiling analysis using the GCM database of 190 human tumors of 14 different types. The motivation of this data mining strategy was to identify which genes from the 214 putative HO-1 target genes, determined in BeWo cells, most closely correlated with the expression of HO-1 in 190 tumor samples. This unbiased comparative analysis revealed 14 HO-1 universal target genes: proteolytic ADAM8 and MMP2, acyltransferase AGPAT2, cell surface protein MICB, extracellular glycosylase ST3GAL2, amino acid transporter SLC7A1, steroid dehydrogenase HSD17B1, thiol reductase IFI30, alkaline phosphatase ALPPLA2, intracellular adapter protein CRIP2, exracellular matrix constituents BGN and COL21A1, multifunctional cytokine TGFB1, and peroxidase PXDN. The expression of these genes is strongly correlated with that of HO-1 (P = 0.00002). The results of our data mining and our subsequent statistical analyses were �validated by using qRT-PCR, Western blotting, and immunostaining of LMP and miHO1 cells. Immunofluorescence staining of first trimester placenta specimens confirmed that HO-1 immunoreactivity is coupled to that of PXDN in trophoblast cells (Fig. 4), which share the capacity to migrate and invade surrounding tissues similar to malignant cells 37. Based on these results, we suggest that HO-1 stimulates multiple transcriptional changes and affects several cellular pathways, including extracellular matrix organization (MMP2, ADAM8, TGF&beta;1, BGN, COL21A1, PXDN), signaling (CRIP2, MICB), amino acid transport and glycosylation (SLC7A1 and ST3GAL2), estrogen and phospholipid biosynthesis (AGPAT2 and HSD17B1), protein stabilization (IFI30) and phosphorylation (ALPPL2). Many of these genes are directly associated with cancer; further studies are warranted to identify the role of the HO-1 associated genes in the tumorigenic proteries of HO-1.Given that cell adhesion is intrically linked to tumor progression/invasion, and that the HO-1 gene signature features many regulators of cell adhesion, we investigated potential effects of HO-1 on cell adhesion in HO-1 silenced BeWo cells and HO-1 overexpressing 607B melanoma cells. Knockdown of HO-1 in BeWo cells reduced adhesion to various ECM molecules, having strongest effect on Laminin (Fig. 5). Stronger adhesion of 607B cells overexpressing HO-1 confirmed a positive role of HO-1 in cell adhesion (Fig. 7). Previously, we have shown that loss of HO-1 expression in BeWo cells resulted in increased cell motility, based on boyden chamber assays 25. Thus, at least in BeWo cells, knockdown of HO-1 decreases cell adhesion with a concomitant increase in cell motility. A reduction in cell adhesion with a concomitant increase in cell motility is one hallmark of mesenchymal-amoeboid transition (MAT), a process describing a change in (cancer cell) movement from mesenchymal to amoeboid mode. Such type of movement was shown to be characteristic of certain malignancies, including prostate cancer 1011.We hypothesized that one of the HO-1 signature genes, many of which represent potential regulators of cell plasticity, mediates the adhesion-promoting effect of HO-1. One promising and novel candidate was PXDN, which could alter cell-ECM interaction either by stabilization of the ECM through protein-protein interactions via leucine-rich repeats and immunoglobulin loops, as well as by enzymatically formed tyrosine-tyrosine crosslinks 38. PXDN, also known as MG50, is a peroxidase associated with the endoplasmatic reticulum, and expressed in melanoma, breast cancer, colon cancer, ovarian cancer, renal carcinoma as well as metastatic gliomas 4383940 Silencing of PXDN abolished the adhesion-promoting effect of endogenous HO-1 in BeWo (LMP) and 607B (MSCV-HO1) cells (Fig. 5 and Fig. 6), while PXDN knockdown did not affect cell adhesion in HO-1 deficient cells. We hypothesize that the PXDN dosage may be very critical for the adhesive response, as PXDN levels in miHO-1 cells treated with a PXDN specific siRNA were ~50 times lower compared to LMP cells (Fig. 5): If inhibition of BeWo cell adhesion correlates with PXDN - levels, maybe there exists a threshold level for PXDN. However, the phenotype of miHO1 cells could be rescued by PXDN overexpression (Fig. 6G). The reduced (~50%) matrigel invasion of PXDN-silended BeWo cells is most likely due to pro-proliferative properties of PXDN (Fig 7). However, additional mechanisms must prevail as cell growth in PXDN silenced cells was inhibited by approximately 30% after 24 hrs, the duration of the cell invasion assay. Importantly, to our knowledge, this is the first time showing functional effects of PXDN expression levels on cell adhesion and invasion. Further extensive experiments are needed to determine the molecular mechanism by which PXDN modulates cell adhesion and invasion, and how it is linked to the adhesion-promoting properties of HO-1.To conclude, our unbiased large scale genome-wide studies clarified, for the first time, the molecular signature of HO-1 in cancer and identified the genes which are functionally, universally, and most consistently linked with HO-1 expression among multiple tumor types. The identification of the HO-1 target genes will undoubtedly help to understand the complex network of cellular and molecular events, which are linked to the role of HO-1 in cancer. Ongoing studies will shed light on the functional significance of these individual genes.Competing interestsThe authors declare that they have no competing interests.Authors� contributionsST carried out the GeneChip and bioinformatic as well as statistical analysis and drafted the manuscript. AJ carried out adhesion assays and western blotting. SH and MK carried out the immunostaining. MM designed primers and performed real-time PCR measurements. JH generated retroviral constructs, conducted retroviral gene transductions and cell proliferation assays. JL performed cell invasion assays and transient transfections. HP and OW participated in the design and coordination of the study. MB conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.
BackgroundHeme oxygenases are the rate-limiting enzymes in heme degradation that catalyze the conversion of heme into carbon monoxide, iron, and biliverdin. Heme oxygenase 1 (HO-1) has (cyto)protective properties and antiinflammatory, antiapoptotic, and antiproliferative capacities of HO-1 have been described in several cell types 12. Under normal physiologic conditions HO-1 expression is low but can be upregulated in response to a wide range of stimuli and activated signaling molecules, including the HO-1 substrate heme, reactive oxygen species (ROS), nitric oxide species, prostaglandins, cytokines, growth factors such as insulin, and lipopolysaccharide 2. Since heat shock (and other cellular stressors) lead to upregulation of HO-1, this molecule has also been termed heat-shock protein 32 (Hsp32).A relation between malignant behavior and alterations in expression of HO-1 may exist. Elevated HO-1 has been detected in several cancer cell lines 3456 and tumors (including lymphosarcoma, adenocarcinoma, hepatoma, glioblastoma, melanoma, prostate cancers, Kaposi sarcoma, squamous carcinoma, pancreatic cancer, brain tumors and myeloid leukemias; reviewed in 7), thereby affecting tumor cell apotosis, proliferation, invasion and metastasis 7. Furthermore, HO-1 gene polymorphisms have been associated with increased cancer susceptibility 89.Cell adhesion is an important determinant of organised growth and the maintenance of architectural integrity. Changes in cell-cell and cell-extracellular matrix (ECM) adhesion accompany the transition from benign tumours to invasive, malignant cancers and the subsequent metastatic dissemination of tumour cells 61011. Specifically, alterations in ECM remodeling have been shown to affect adhesion properties of neoplastic cells. Although several studies have linked expression of HO-1 with various stages of tumor progression 12131415, the molecular mechanisms underlying HO-1-mediated changes in adhesion of neoplastic cells remain elusive.We used gene expression profiling as a global assay to identify a common gene set directly linked to HO-1 in 14 cancer types. One of the genes that emerged was PXDN, the human homologue of the Drosophila gene peroxidasin. PXDN is a cell surface peroxidase associated with the extracellular matrix 12 and was found to play a key role in HO-1-dependent cell adhesion of neoplastic cells in our investigations. Our results reflect, for the first time, that HO-1 mediates genome-wide effects on transcriptional regulation of genes potentially involved in tumorigenesis. Moreover, our findings provide insights into the mechanisms underlying HO-1-dependent tumor invasion and support the notion that HO-1 represents a molecular target in cancer.Materials and metodsConstruction of transgenic cell linesConstitutive stable HO-1 knock-down in BeWo choriocarcinoma cells (European Collection of Cell Cultures (Salisbury, UK) was generated by transduction with a microRNA (miRNA) adapted retroviral vector. Briefly, an shRNAmir (microRNA-adapted short hairpin RNA) against human HO-1 in pSM2 vector (oligo ID: V2HS_133107; Open Biosystems, Huntsville, AL, USA) was subcloned into the LMP vector Open Biosystems). Constitutive HO-1 overexpression in 607B melanoma cells 16 (kindly provided by Dr. Volker Wachek, was kindly provided by V. Wacheck; Department of Clinical Pharmacology, Medical University of Vienna, Austria) was generated by transduction with the retroviral vector MSCVpuro (Clontech, Mountain View, CA, USA) containing the human HO-1 cDNA 17. For production of recombinant retroviruses, HEK293FT cells (Invitrogen, Carlsbad, CA, USA) were co-transfected with a vector containing the viral packaging proteins gag and pol, a vector containing env, and either LMP (ctrl), LMP-miHO1 (LMP containg miRNA against human HO-1), MSCV (ctrl) or MSCV-HO1 (MSCV containing the HO-1 cDNA). Vectors containing gag, env, and pol were kind gifts from Dr. Ewan Rosen (Beth Israel Deaconess Medical Center, Harvard Medical School, Boston , MA, USA). Forty-eight hours after transfection, viral supernatants were collected, BeWo and 607B cells were transduced in the presence of polybrene (8 �g/ml). Stable integrants were selected with puromycin (5 �g/ml). Knock-down or overexpression of HO-1 was verified by Western blotting (Fig 1A and Fig Seven A).Transient TransfectionsSmall interfering (si) RNA targeting human PXDN, negative control siRNA (oligo ID: HSS187890 or cat. no. 12935-200, respectively; Invitrogen), pCDNA 3.1 (Invitrogen), or a plasmid containing the full PXDN cDNA under control of the CMV promoter (clone ID: OCABo5050A058, ImaGenes, Berlin, Germany) )were delivered into BeWo cells by nucleofection (Amaxa, Lonza Bioscinece) according to a previously optimized protocol 18.Briefly, 1 � 106 BeWo cells were nucleofected with siRNA (100 nmol/L) or 1 �g of control (pcDNA) or pPXDN plasmids following the manufacturers� instructions (solution V, program X-005) (Amaxa Biosystems, Germany). Following transfection, cells were kept in culture for 48-72 hrs, followed by cell adhesion assays.Isolation of total RNA and DNA-Microarry expression profilingBeWo choriocarcinoma cells were purchased from the European Collection of Cell Cultures (ECACC, Salisbury, UK) and were cultured in Ham F12 medium (Gibco Life Technologies, Paisley, UK) supplemented with 5% fetal bovine serum (FBS; Biochrom, AG, Berlin, Germany) and streptomycin/penicillin (Gibco) using standard culture conditions. Total RNA was extracted from subconfluent culture using an RNeasy kit (Qiagen). Total RNA (200 ng) was then used for GeneChip analysis. Preparation of terminal-labeled cDNA, hybridization to genome-wide human Gene Level 1.0 ST GeneChips (Affymetrix, Santa Clara, CA, USA) and scanning of the arrays were carried out according to manufacturer�s protocols https://www.affymetrix.com. RMA Signal extraction, normalization and filtering was performed as described (http://www.bioconductor.org/; 19). A variation filter was applied for selecting informative (i.e., significantly varying) genes. The filtering criteria for the exemplary data sets required an interquantile range > 0.5 and at least one sample with expression intensity > 100. The full gene lists are now available at Gene Expression Omnibus http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20404.Gene set enrichment analysis (GSEA)GSEA 20, is a computational method that determines whether a given set of genes (e.g. known pathways, specific areas of the genome or clusters from a cluster analysis) shows statistically significant differences between two phenotypic states (i.e. LMP vs. miHO-1). Briefly, the GSEA calculation involves 3 steps: calculation of an Enrichment Score (ES) followed by estimation of the significance level of ES and adjustment for Multiple Hypothesis Testing. We used a publicly available database of gene sets contained within the Molecular Signature Database (MSigDB; 20) to test for enrichment upon HO-1 knockdown.Statistical Microarray Group ComparisonsTo calculate differential gene expression between individual sample groups, we performed a statistical comparison using the LIMMA package as described previously 19. Briefly, LIMMA estimates the fold change between predefined sample groups by fitting a linear model and using an empirical Bayes method to moderate the standard errors of the estimated log-fold changes for each probe set 21. A multiple testing correction based on the false discovery rate (FDR) was performed to produce adjusted p-values. All calculations were performed in ��R.��Human tumor gene expression databasesHuman tumor gene expression data was used from the Global Cancer Map comprising 190 specimens of 14 different tumor types (breast, pancreas, lung, bladder, ovary, melanoma, uterus, renal, prostate, central nervous system, lymphoma, colorectal, mesothelioma, and leukemia)22. Gene expression data from the normal tissues were discarded. Only the data related to cancerous tissues were further analyzed. The GeneNeighbors module of the GenePattern software was used to identify genes, the expression of which was closely correlated with that of HO-1 23. Heatmap construction: We used the Pearson distance as a measure of similarity in the expression pattern. This algorithm produced a numerical score that represented the calculated Pearson distance for each gene relative to the HO-1 gene. The genes were then ranked so that the low score indicates the close similarity of the expression pattern of the particular gene with that of the HO-1 gene.Kolmogorov-Smirnov statisticsTo evaluate the significance of the coexpression pattern of genes, we used the Kolmogorov-Smirnov (KS) statistics. For our analysis, we selected the genes that are differentially expressed in LMP vs miHO1 cells with at least a 2-fold difference (i.e. out of 214 differentially expressed genes, 67 genes were coexpressed with HO1, leaving 45 input genes after mapping onto the respective arrays). We discarded the genes with either overly low or overly high expression levels (<50 and >15,000 relative units in more than half of the arrays, respectively). We also did not include genes that had either less than a 2-fold difference or less than a 50 relative unit difference across all tumor tissues. Finally, out of 16063 genes, 7978 remained. We then determined the positional distribution of the 45 genes within the list of 7978 genes ordered by the Pearson distance relative to HO-1 in the 190 tumor tissues and reported the 14 genes (out of the 45 input genes) being closest to HO-1. In other words, we selected the 14 genes displaying the smallest Pearson distance relative to HO-1. These genes are coexpressed with HO-1 in the tumor specimens and also induced by HO-1 in BeWo cells expressing HO-1 endogenously. We next calculated the KS score for these 14 genes using R. The higher the KS score, the more the expression pattern of the particular gene set is analogous across all tumors. We also performed the same KS analysis for 14 randomly selected genes using 100,000 permutations. The frequency of events when the KS score of the randomly chosen gene set was equal to or exceeded that of the �target gene set was taken as a P value (P = 0.00002).Real-time PCRTotal RNA (1 �g) was reverse transcribed into cDNA by MMLV enzyme (Promega, Mannheim, Germany) with random hexamers (1 �g/�g total RNA). All PCRs were performed using the SYBR Geen kit (BioRad, Hercules, CA, USA). Primers for selected genes were designed using Primer3 software http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi with the following sequences,: HO-1 (CAGGATTTGTCAGAGGCCCTGAAGG, fwd; TGTGGTACAGGGAGGCCATCACC, rev) ADAM8 (CCGCTACGTGGAGCTGTATG, fwd; CCAGCATCT �GGAACTCTGCAT, rev), COL21A1 (GAACCCTGGC TACCCTGGAC, fwd; GTGTCCCTGCAATTCCCTG, rev), CRIP2 (CGCTGCAGCAAGAAGGTG, fwd; 5&prime; -GCCAATCCTTGCCCAGAG, rev), IFI30 (CCTACG GAAACGCACAGGA, fwd; GAACTCCCACCTGC CACTG, rev), MICB (ACCTCAGGAGGACCCTGAC-TC, fwd; GGAGGGAATGCAAGCCTC, rev), MMP2 (GACCTTGGGAGAAGGCCAAG, fwd; CCATCGG�CGTTCCCATACT, rev), PXDN (GTCGTGGCCCA�CCTGACTG, fwd; GTGTCGCTGGGAATGCTG, rev), TGFB1 (TGGAGCCTGGACACGCAGTA , fwd; GCCC �GGGTTATGCTGGTTG, rev) and ARP (GCCAA TAAGGTGCCAGCTGCTG, fwd; TCTTGCCCATCA-GCACCACAG, rev). Using the ABI Prism 7700 sequence detection system (PE Applied Biosystems, Warrington, UK), PCR cycling conditions were as follows: initial denaturation at 95�C for 10 min, followed by 40 cycles at 94�C for 30 seconds, 60�C for 15 seconds and 72�C for 30 seconds and a 10 minutes terminal incubation at 72�C. Sequence Detector Software (SDS version 1.6.3, PE Applied Biosystems) was used to extract the PCR data, which were then exported to Excel (Microsoft, Redmond, WA) for further analyses. The RNA-amount of the human Arp gene was used as an internal control. Data were analyzed according to the 2-��CT method 24.Western blot analysesWestern blot analyses were performed using standard protocols as recently done 25. Equal amounts of protein lysates (35 �g) were separated on 10% SDS/polyacrylamide (PAA) gels and transferred onto Polyvinylidene fluoride (PVDF)-membranes (GE Healthcare, Amersham, Buckinghamshire, UK). After blocking filters were incubated overnight (4�C) with monoclonal mouse antibodies against human HO-1 (clone OSA110; 1:1000; Stressgen, Ann Arbor, MI, USA), PXDN (clone clone A01; 1:1000; Abnova, Taipei City, Taiwan), &beta;-actin (1:5000; Abcam, Cambridge, MA, USA). After 1 h of treatment (room temperature) with secondary antibodies (anti-mouse Ig horseradish peroxidase linked, Amersham; 1:20.000) signals were developed by using ECL Plus Western Blotting Detection System (Amersham Pharmacia Biotech, Piscataway, NJ, USA).ImmunofluoresceneCells grown on coverslips were washed, fixed with 4% paraformaldehyde, permeabilized with 0.5% Triton-X 100 and blocked with goat serum. Expression of HO-1 and PXDN were detected with the antibodies described above. Cells were incubated with secondary antibodies conjugated to Alexa594 or Alexa488 (1:500; Molecular Probes, Eugene, OR, USA) and visualized using a Zeiss Axioskop 2 microscope, Zeiss Axiocam and Photoshop. As negative control coverslips were incubated with the respective isotype control IgG and secondary antibodies (data not shown). First trimester placental tissue were dehydrated and embedded in paraffin (Merck) as described elsewhere 26. Serial sections (2-3 �m) were prepared, deparaffinized and finally heated in a microwave oven (�2 5 min, 850 W). After incubation in blocking solution (NEN, Boston,MA, USA), slides were incubated overnight with primary antibodies, washed 3 times in PBS (each 5 min) and followed by incubation with secondary antibodies conjugated to Alexa594 or Alexa488 (1 hour, Molecular Probes, Eugene, OR). The following primary antibodies/dilutions were utilized: PXDN (Sigma, 1:50) cytokeratin 7 (clone OV-TL, 8,3 �g/ml, DAKO, Glostrup, Denmark), HO-1 (clone OSA-110, 1:1000, Stressgen, Ann Arbor, MI), Ki67 (clone Ki-S5, 10 �g/ml, Chemicon), Kip2/p57 (C-20, rabbit, 2 �g/ml, Santa Cruz Biotechnolgy, Santa Cruz, CA) and Vimentin (clone Vim 3B4, Dako). As a negative control, the primary antibody was replaced by buffer or isotype IgG. Finally, all sections were counterstained with 1 �g/ml DAPI (Roche) and covered with Fluoromount-G (Soutech, Birmingham, AL).Cell Adhesion AssayAdhesion assays were performed as described by 27, with minor modifications. 96 well plates were coated overnight at 4�C with Fibronectin (10 �g/ml; SIGMA), rat tail Collagen , or with Laminin (10 �g/ml; SIGMA) in PBS. Wells were rinsed and blocked for 1 h with 1% BSA in PBS. Logarithmic phase cells were harvested with trypsin and plated at 40 000 cells per well. After 30 min of incubation at 37�C, wells were rinsed to remove non-adherent cells. Adhered cells were fixed in 10% formalin for 5 min and stained with 0.1% crystal violet (in 20% MeOH) for 5 min. Excess dye was washed off with water and absorbance was measured at 595 nm. Bars represent mean absorbance +/- SEM of each condition tested in triplicates. All values have had background substracted that represents cell adhesion to wells blocked with 1% BSA in PBS.Cell Invasion assayThe invasion of BeWo cells was measured by using the Transwell chambers (Chemicon, Millipore, CA) according to the manufacturer�s protocol. Briefly, the BeWo cells were electroporated with 20 �M of a control siRNA or siRNA targeting human PXDN with the Amaxa method as described elsewhere 18. 24 hours later, the cells were seeded onto the membrane of the upper chamber of the transwell at a concentration of 2�105/ml in 500 �l of DMEM/F12 medium. The medium in the upper chamber was serum-free. The medium at the lower chamber contained 10% Foetal Calf serum as a source of chemoattractants. Cells that passed through the Matrigel coated membrane were stained with Cell Stain Solution containing crystal violet �supplied in the Transwell Invasion assay (Chemicon, Millipore, CA) and photographed after 20 hours of incubation.Cell Proliferation AssayThe effect of CO on proliferation of RAECs was determined with a nonradioactive bromodeoxyuridine (BrdU)-based cell-proliferation assay 28(per the manufacturer�s guidelines; Roche, Basel, Switzerland). Following electroporation of 1 � 106 BeWo cells with 20 �M control or PXDN siRNA according to a previously optimized protocol 18, 2500 cells were seeded into 96 well plates and left for 24 hrs to recover. The cells were �stimulated to proliferate with 10% FBS and BrdU incorporation was measured at indicated time points.Statistical analysisStudent�s t test was used for comparison between the groups. P value < 0.05 was considered significant.ResultsGene expression profilingWe used gene expression profiling to determine the genome-wide effect of HO-1 on the transcriptome of BeWo choriocarcinoma cells. BeWo cells were used in these experiments because these cells show relatively high levels of endogenous HO-1 expression. Expression of HO-1 was silenced in BeWo cells by a micro-RNA adapted retroviral vector targeting human HO-1. Western blotting demonstrated an efficient knockdown of HO-1 expression in BeWo cells stably expressing miHO-1 (henceforth referred to as �miHO-1�) as compared to BeWo cells stably expressing the LMP control sequence (referred to as �LMP�) (Fig. 1). RNA isolated from control (LMP) or miHO1 infected (miHO-1) cells was labeled and hybridized to human genome-wide gene level 1.0 ST arrays. Among 214 differentially expressed genes with statistical significance (adjusted p-value < 0.05), 67 genes were expressed at higher levels in HO-1 expressing control (LMP) cells and 147 genes in cells deficient in HO-1 (miHO-1, see Additional file 1). Top 30 differentially expressed genes are shown in Table 1. An obvious feature of HO-1 was its effect on the expression of genes which are either directly or indirectly linked to cell adhesion and the integrity or remodelling of extracellular matrix (CD24, HOOK1, LAYN, HEY1, MME, RRAS2, FZD3, KIF14, KIF18A, DAAM1, BCL6, PLS1, ERBB2IP, BGN, FSD1, IFI30, LGALS3BP, FMNL1, TMSL3, CORO1A, TFF1, CLEC11A, ADAM8, ECM1, PLTP, TGFB1, PXDN, COL21A1 and MMP2; Table 1, and Additional Files 1 &2).Pathway prediction analysesTo further explore the dataset, GSEA 20 was used to identify groups of functionally related genes with expression patterns that correlate with HO-1 expression. GSEA is a method for interpreting gene expression data that focus on groups of genes sharing common biological function, chromosomal location or regulation. This approach can show important effects on pathways, which might be missed in single-gene analyses 20. Fig. 1C displays the top 10 pathways regulated by HO-1 expression in BeWo cells. Amongst others, HO-1 expressing BeWo cells were significantly enriched in pathways regulating extracellular matrix orchestration and signal transduction. Plotting of the enrichment score vs the rank-ordered gene list for the top-scoring gene set �xtracellular region� illustrates increased expression of ECM molecules and their remodeling enzymes in HO-1 expressing BeWo LMP cells (Fig. 1D). A more detailed analysis of this pathway revealed enhanced expression of several ECM molecules including extracellular matrix-1 (ECM1), collagen type IX, &alpha;3 (COL9A3, sarcoglycans &beta; and -&epsi; (SGC&beta; and SBC&epsi;), and the matrix remodeling factors MMP2 and TGF&beta;1 (Fig. 1E). The significant gene sets �receptor binding�, integral to plasma membrane� and �system development� contained further genes related to cell plasticity and ECM organization, including IGF2, placental growth factor (PGF), collagen type I &alpha;1 (COL1A1), fibroblast growth factor receptors 3 and 4 (FGFR-3,-4), ADAM8, (see Additional File 3). These observations suggest that HO-1 expressing cells produce factors relevant to cell-matrix adhesion as well as their degrading enzymes.HO-1 gene signature in 190 human tumorsWe next determined whether expression of the putative HO-1 target genes identified in BeWo cells (Additional File 1) correlates with HO-1 expression levels in human tumors. For these purpose, we performed data mining using the GCM database. This database includes the expression profiling data of 16,063 genes of 190 individual tumors of the 14 human cancer types. Using R/Bioconductor, we ranked 7978 genes (filtering described in methods) according to their level of coexpression with HO-1. The Pearson distance was used as an unbiased measure of the expression pattern similarity of the target gene with the expression pattern of HO-1. Using the data of Additional File 1, we then selected the top 14 individual genes, expression of which most uniformly correlated with that of HO-1 both in BeWo LMP cells and in 190 human tumors (Fig. 2A and Table 2). To confirm that the coexpression of these 14 genes with HO-1 is statistically significant we applied KS statistics. One hundred thousand trials with a randomly selected set of 14 genes undermined the high statistical significance of the 14 identified genes (P = 0.00002). Fig. 2B shows the expression pattern of the 14 highly significant HO-1 target genes in the 190 tumor samples, which include ADAM8, AGPAT2, MICB, ST3GAL2, SLC7A1, HSD17B1, MMP2, IFI30, COL21A1, ALPPL2, CRIP2, BGN, TGFB1 and PXDN. To corroborate our results, we used qRT-PCR to determine the mRNA levels of 8 HO-1 target genes in BeWo LMP and miHO-1 cells (Fig. 2C). These 8 HO-1 target genes were selected based on their putative role in regulation of cell plasticity/motility based on Gene Ontology classification and PubMed searches. According to our results, the expression levels of these genes were the lowest in miHO-1 cells. Western blotting of LMP and miHO-1 BeWo cell extracts confirmed the increased levels of PXDN in LMP cells (Fig. 3A). Immunofluorescence analysis of routinely cultured, subconfluent LMP and miHO-1 BeWo cells further corroborated western blotting data, showing increased (mostly perinuclear) PXDN staining in LMP cells (Fig. 3B).HO-1 and PXDN colocalize in invasive trophoblastTo confirm a link of HO-1 with PXDN, we determined the expression of HO-1 and PXDN in first trimester placenta tissues. Among the Cytokeratin-positive (=villous, extravillous as well a ssyncytiotrophoblast) cells, Ki67- or p57-staining indicated proliferating (non-invasive) or invasive, differentiated extravillous trophoblast cells, respectively (Fig. 4). Immunofluorescence analysis of serial sections revealed pan-trophoblastic HO-1 and PXDN staining (Fig. 4), however, proximal extravillous trophoblasts in the cell column stained strongest for HO-1 and PXDN. Based on our immunostaining data, we concluded that the expression of HO-1 is coupled to an up-regulation of PXDN in first trimester placenta.HO-1 affects cell adhesion to extracellular matrix molecules via PXDNWe examined the effect of HO-1 knockdown on the attachment of BeWo LMP and miHO-1 cells to fibronectin, laminin and collagen type I using cell adhesion assays. In this assay, nonadherent cells were removed gently and the remaining adherent cells were fixed, stained and analysed by light microscopy. As shown in Fig. 5A, HO-1 expressing cells (LMP) became much more adherent compared with HO-1 deficient (miHO1) cells. The adherent cells were measured at 550 nm following staining with crystal violet. As shown in Fig. 5B, the absorbance of LMP cells was significantly higher than that of miHO-1cells (P > 0.05). This effect was more pronounced in the order Laminin > Fibronectin > Collagen type I. It is noteworthy that very few cells adhered to control wells (termed �Ctrl�). To examine if the HO-1 target gene PXDN is accountable for the increased adhesivenss of HO-1 expressing BeWo cells, we repeated adhesion assays with BeWo cells silenced for PXDN expression. We observed diminished PXDN mRNA and protein levels two days after transfection of LMP and miHO-1 BeWo cells with a PXDN-specific siRNA, but not with a negative control siRNA, (Fig. 5C and 5D, respectively). We evaluated effects of PXDN knockdown on cell adhesion to Fibronectin and Laminin, as BeWo cells most efficiently adhere to these matrix proteins. Transfection with a control siRNA did not alter the inhibitory effect of reduced HO-1 levels on adhesion of BeWo cells to Fibronectin or Laminin (Fig. 5E and 5F). While PXDN-knockdown did not alter cell adhesion properties of HO-1 deficient BeWo cells (miHO-1), siRNA-mediated PXDN-knockdown abolished the stimulatory effect of HO-1 on cell adhesion observed in LMP cells (Fig. 5E and 5F). To minimize the risk of off-target effects, we repeated the cell adhesion experiments with an alternative siRNA against PXDN with similar results (Additional File 4). To undermine a role of PXDN in cell adhesion, we transiently overexpressed PXDN in BeWo miHO1 cells. Ectopic expression of PXDN (pPXDN) resulted in enhanced adhesion to Laminin and Fibronectin, as compare to cells transfected with a control pasmid (Fig. 5G).To verify that the effects of HO-1 on cell adhesion and PXDN expression are truly related to HO-1, we generated a HO-1 gain-of-function cell model using 607B melanoma cells, which have no detectable endogenous HO-1 expression. As shown by western blotting (Fig. 6A), retroviral HO-1 gene transfer into 607B cells resulted in stable HO-1 overexpression (�MSCV-HO1�) as compared to cells transduced with a virus containing empty retroviral backbone (�MSCV�). Adhesion to Fibronectin and Laminin was more pronounced in 607B cells overexpressing HO-1 (MSCV-HO1) as compared to control infected cells (MSCV; Fig. 6B). Furthermore, MSCV-HO1 cells expressed higher levels of PXDN, compared with MSCV control cells (Fig. 6C). To investigate if PXDN has pro-adhesive properties in 607B cells, similar to BeWo cells, adhesion assays were repeated using PXDN-silenced MSCV-HO1 cells. siPXDN, but not siCtrl-treatment of 607B MSCV-HO1 cells efficiently knocked-down PXDN mRNA levels (~10-fold reduction; Fig. 7D). Furthermore, PXDN-knockdown in 607B MSCV-HO1 cells resulted in a significant reduction in cell adhesion to Fibronectin and Laminin, as compared to siCtrl-treated cells (Fig. 6E). Subsequently, we examined the effect of silenced PXDN expression on BeWo cell growth and invasion. Compared to siCtrl transfected cells, PXDN-silenced cells showed significant decreased cell growth over 96 hrs (Fig. 7A). Of note, knockdown of HO-1 in BeWo cells did not affect cell proliferation (data not shown). When testing the abilities of BeWo cells to invade through the 8-�m pores on the polycarbonate membrane coated with matrigel, we found that the knock-down of endogenous PXDN expression significantly reduced cell invasion as compared to siCtrl treated BeWo LMP cells (P < 0.05; Fig. 7B)DiscussionIn cancer, HO-1 influences tumor cell survival, apoptosis, invasion and metastasis as well as resistance of certain tumors to chemotherapeutic agents 717. These changes suggest alterations of signal transduction and transcription pathways, which HO-1 affects either directly or indirectly. To identify these regulatory mechanisms and to determine the identity of the universal genes, expression of which is affected by HO-1, we silenced HO-1 expression in BeWo choriocarcinoma cells (�miHO-1�) and performed gene expression profiling of these cells relative to BeWo cells which express HO-1 endogenously (�LMP�). An interesting aspect of the 214 identified genes whose expression was affected by HO-1, was the regulation of multiple genes linked to cell plasticity/motility and ECM maintenance. In the course of invasion tumor cells leave normal structures by passing through basal membrane and migrate into the surrounding stroma. These events include significant changes in cell morphology as well as close interaction of cells with extracellular matrix (ECM) and structural rearrangement of the latter. Further evidence for a role of HO-1 in modulating cell plasticity was revealed by pathway prediction analysis, which demonstrated modulation of genes of the extracellular region as well as underlying signal transduction pathways (GSEA; Fig 1). Consistent with our data, TGFB1 was identified as a HO-1 target gene in a microarray comparison of prostate cancer cells with varying HO-1 protein levels 12.). Several potential mechanisms underlying gene regulation by HO-1 can be envisioned that also emphasize a potential role of the enzymatic products of HO-1: regulation of signaling pathways including ERK and p38 MAPK 13, Akt/Protein kinase B 5, and transcription factors such as AP-1, AP-2, Brn-3 29, PPAR&gamma; 25, NF-kappaB 30, HSF-1 31 and HIF1&alpha; 32. Heme containing (and carbon monoxide) responsive transcription factors such as NPAS2 33 and REV-ERB&alpha;/REV-ERB&beta; 3435 modulate gene expression in response to the HO-1 enzymatic product carbon monoxide. Recent studies revealed the nuclear localization of HO-1, pointing to its role as a potential transcription factor or coregulator 2936 Of note, we detected a fraction of total cellular HO-1 protein in the nucleus of BeWo cells (data not shown). Further studies are warranted to investigate potential signaling pathways triggered by HO-1, (including the role of nuclear HO-1) in gene regulation.To provide unbiased proof for the role of HO-1 in genome-wide transcriptional regulation, irrespective of the cancer tissue type, we performed a metaprofiling analysis using the GCM database of 190 human tumors of 14 different types. The motivation of this data mining strategy was to identify which genes from the 214 putative HO-1 target genes, determined in BeWo cells, most closely correlated with the expression of HO-1 in 190 tumor samples. This unbiased comparative analysis revealed 14 HO-1 universal target genes: proteolytic ADAM8 and MMP2, acyltransferase AGPAT2, cell surface protein MICB, extracellular glycosylase ST3GAL2, amino acid transporter SLC7A1, steroid dehydrogenase HSD17B1, thiol reductase IFI30, alkaline phosphatase ALPPLA2, intracellular adapter protein CRIP2, exracellular matrix constituents BGN and COL21A1, multifunctional cytokine TGFB1, and peroxidase PXDN. The expression of these genes is strongly correlated with that of HO-1 (P = 0.00002). The results of our data mining and our subsequent statistical analyses were �validated by using qRT-PCR, Western blotting, and immunostaining of LMP and miHO1 cells. Immunofluorescence staining of first trimester placenta specimens confirmed that HO-1 immunoreactivity is coupled to that of PXDN in trophoblast cells (Fig. 4), which share the capacity to migrate and invade surrounding tissues similar to malignant cells 37. Based on these results, we suggest that HO-1 stimulates multiple transcriptional changes and affects several cellular pathways, including extracellular matrix organization (MMP2, ADAM8, TGF&beta;1, BGN, COL21A1, PXDN), signaling (CRIP2, MICB), amino acid transport and glycosylation (SLC7A1 and ST3GAL2), estrogen and phospholipid biosynthesis (AGPAT2 and HSD17B1), protein stabilization (IFI30) and phosphorylation (ALPPL2). Many of these genes are directly associated with cancer; further studies are warranted to identify the role of the HO-1 associated genes in the tumorigenic proteries of HO-1.Given that cell adhesion is intrically linked to tumor progression/invasion, and that the HO-1 gene signature features many regulators of cell adhesion, we investigated potential effects of HO-1 on cell adhesion in HO-1 silenced BeWo cells and HO-1 overexpressing 607B melanoma cells. Knockdown of HO-1 in BeWo cells reduced adhesion to various ECM molecules, having strongest effect on Laminin (Fig. 5). Stronger adhesion of 607B cells overexpressing HO-1 confirmed a positive role of HO-1 in cell adhesion (Fig. 7). Previously, we have shown that loss of HO-1 expression in BeWo cells resulted in increased cell motility, based on boyden chamber assays 25. Thus, at least in BeWo cells, knockdown of HO-1 decreases cell adhesion with a concomitant increase in cell motility. A reduction in cell adhesion with a concomitant increase in cell motility is one hallmark of mesenchymal-amoeboid transition (MAT), a process describing a change in (cancer cell) movement from mesenchymal to amoeboid mode. Such type of movement was shown to be characteristic of certain malignancies, including prostate cancer 1011.We hypothesized that one of the HO-1 signature genes, many of which represent potential regulators of cell plasticity, mediates the adhesion-promoting effect of HO-1. One promising and novel candidate was PXDN, which could alter cell-ECM interaction either by stabilization of the ECM through protein-protein interactions via leucine-rich repeats and immunoglobulin loops, as well as by enzymatically formed tyrosine-tyrosine crosslinks 38. PXDN, also known as MG50, is a peroxidase associated with the endoplasmatic reticulum, and expressed in melanoma, breast cancer, colon cancer, ovarian cancer, renal carcinoma as well as metastatic gliomas 4383940 Silencing of PXDN abolished the adhesion-promoting effect of endogenous HO-1 in BeWo (LMP) and 607B (MSCV-HO1) cells (Fig. 5 and Fig. 6), while PXDN knockdown did not affect cell adhesion in HO-1 deficient cells. We hypothesize that the PXDN dosage may be very critical for the adhesive response, as PXDN levels in miHO-1 cells treated with a PXDN specific siRNA were ~50 times lower compared to LMP cells (Fig. 5): If inhibition of BeWo cell adhesion correlates with PXDN - levels, maybe there exists a threshold level for PXDN. However, the phenotype of miHO1 cells could be rescued by PXDN overexpression (Fig. 6G). The reduced (~50%) matrigel invasion of PXDN-silended BeWo cells is most likely due to pro-proliferative properties of PXDN (Fig 7). However, additional mechanisms must prevail as cell growth in PXDN silenced cells was inhibited by approximately 30% after 24 hrs, the duration of the cell invasion assay. Importantly, to our knowledge, this is the first time showing functional effects of PXDN expression levels on cell adhesion and invasion. Further extensive experiments are needed to determine the molecular mechanism by which PXDN modulates cell adhesion and invasion, and how it is linked to the adhesion-promoting properties of HO-1.To conclude, our unbiased large scale genome-wide studies clarified, for the first time, the molecular signature of HO-1 in cancer and identified the genes which are functionally, universally, and most consistently linked with HO-1 expression among multiple tumor types. The identification of the HO-1 target genes will undoubtedly help to understand the complex network of cellular and molecular events, which are linked to the role of HO-1 in cancer. Ongoing studies will shed light on the functional significance of these individual genes.Competing interestsThe authors declare that they have no competing interests.Authors� contributionsST carried out the GeneChip and bioinformatic as well as statistical analysis and drafted the manuscript. AJ carried out adhesion assays and western blotting. SH and MK carried out the immunostaining. MM designed primers and performed real-time PCR measurements. JH generated retroviral constructs, conducted retroviral gene transductions and cell proliferation assays. JL performed cell invasion assays and transient transfections. HP and OW participated in the design and coordination of the study. MB conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.
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