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Abstract
Background: NK- and T-cells are closely related lymphocytes, originating from the same early progenitor cells during 
hematopoiesis. In these differentiation processes deregulation of developmental genes may contribute to 
leukemogenesis. Here, we compared expression profiles of NK- and T-cell lines for identification of aberrantly expressed 
genes in T-cell acute lymphoblastic leukemia (T-ALL) which physiologically regulate the differentiation program of the 
NK-cell lineage.

Results: This analysis showed high expression levels of HOXA9, HOXA10 and ID2 in NK-cell lines in addition to T-cell 
line LOUCY, suggesting leukemic deregulation therein. Overexpression experiments, chromatin immuno-precipitation 
and promoter analysis demonstrated that HOXA9 and HOXA10 directly activated expression of ID2. Concomitantly 
elevated expression levels of HOXA9 and HOXA10 together with ID2 in cell lines containing MLL translocations 
confirmed this form of regulation in both ALL and acute myeloid leukemia. Overexpression of HOXA9, HOXA10 or ID2 
resulted in repressed expression of apoptosis factor BIM. Furthermore, profiling data of genes coding for chromatin 
regulators of homeobox genes, including components of polycomb repressor complex 2 (PRC2), indicated lacking 
expression of EZH2 in LOUCY and exclusive expression of HOP in NK-cell lines. Subsequent treatment of T-cell lines 
JURKAT and LOUCY with DZNep, an inhibitor of EZH2/PRC2, resulted in elevated and unchanged HOXA9/10 expression 
levels, respectively. Moreover, siRNA-mediated knockdown of EZH2 in JURKAT enhanced HOXA10 expression, 
confirming HOXA10-repression by EZH2. Additionally, profiling data and overexpression analysis indicated that 
reduced expression of E2F cofactor TFDP1 contributed to the lack of EZH2 in LOUCY. Forced expression of HOP in 
JURKAT cells resulted in reduced HOXA10 and ID2 expression levels, suggesting enhancement of PRC2 repression.

Conclusions: Our results show that major differentiation factors of the NK-cell lineage, including HOXA9, HOXA10 and 
ID2, were (de)regulated via PRC2 which therefore contributes to T-cell leukemogenesis.

Introduction
Adult lymphopoiesis starts with progenitor cells which
originate from CD34+ hematopoietic stem cells (HSC) in
the bone marrow. While the development of natural killer
(NK)- cells completes primarily in the bone marrow, T-
cells finalize their differentiation in the thymus [1-3].
Nevertheless, the facts that NK-cell differentiation also
occurs in the thymus and early thymocytes exhibit the
capacity to differentiate into NK-cells demonstrate a close
developmental relationship between these two lympho-

cytic lineages [4]. Early steps in lymphocytic differentia-
tion are principally (but not exclusively) regulated by
members of the basic helix-loop-helix (bHLH) family of
transcription factors, including TCF3/E2A and TCF12/
HEB. Downregulation of their activity by oncogenic fam-
ily members TAL1 or LYL1 contributes to T-cell leuke-
mogenesis [5-7]. Physiological expression of inhibitory
bHLH protein ID2 regulates early developmental pro-
cesses of NK-cells while ectopic expression of ID2 inhib-
its those in T-cells [8-10]. Another group of T-cell acute
lymphoblastic leukemia (T-ALL)-associated oncogenes
are homeobox genes and includes members of the NK-
like family, TLX1/HOX11, TLX3/HOX11L2 and NKX2-
5/CSX [11-13], and of the clustered homeobox genes,
HOXA5, HOXA9, HOXA10 and HOXA11 [14,15].
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Chromosomal juxtaposition of the HOXA gene cluster
with T-cell receptor (TCR)-beta via inv(7)(p15q34) or
t(7;7)(p15;q34) results in ectopic expression of several
HOXA genes [14,15]. Translocations fusing the mixed
lineage leukemia (MLL) locus with diverse partner genes
also mediate HOXA gene deregulation in both, acute
myeloid leukemia (AML) and ALL [16-18]. MLL is a
chromatin activator which embodies histone-methyl-
transferase (HMT) activity affecting histone H3 at posi-
tion K4 [19]. Vertebrates possess 4 MLL homologues
which share sequence similarity and this specific HMT
activity with the related SET1 proteins [20]. Moreover,
the fusion protein SET-NUP214 which originates by the
cryptic chromosomal aberration del(9)(q34q34) in T-ALL
mediates HOXA activation by H3 methylation at position
K79 via recruitment of HMT DOTL1 [21]. Thus, deregu-
lation of HOXA genes in T-ALL may be performed either
directly by chromosomal rearrangements or indirectly by
the aberrant activities of chromatin activators.

These activators compete with repressor complexes,
consisting of polycomb group proteins. Two distinct
polycomb repressor complexes (PRC), PRC1 and PRC2,
have been identified, comprising, firstly, BMI1 together
with CBX4 and, secondly, EED together with EPC1,
EZH2 and SUZ12 [22-24]. EZH2 is another type of HMT
which methylates histone H3K27 to mediate gene repres-
sion [25,26]. Thus, two functional types of chromatin
complexes, activators and repressors, regulate the expres-
sion of HOXA genes by differing methylation of histone
H3.

The aim of our study was to identify developmental
oncogenes and their deregulating mechanisms in T-ALL
cells. Therefore, we compared gene expression profiles of
NK- and T-cell lines and identified the conspicuous
expression of HOXA9, HOXA10 and ID2 which may rep-
resent the physiological situation in the differentiation
process of NK-cells but aberrant activity in one T-ALL
cell line. Analysis of genes, coding for chromatin activa-
tors/repressors, revealed the (de)regulatory impact of two
PRC2 components in lymphoid HOXA gene expression.

Materials and methods
Cells and treatments
Cell lines were supplied by the DSMZ (Braunschweig,
Germany). Cultivation was performed as described by
Drexler [27]. For stimulation of cell lines we used 3-Dea-
zaneplanocin A (DZNep) which was synthesized at the
National Institutes of Health, and 5-Aza-2'-deoxycytidine
(AZA) and rapamycin which were obtained from Sigma
(Taufkirchen, Germany). Primary CD34+ cells were
obtained from peripheral blood of a healthy donor and
isolated using the MACS system for cell preparations
according to the manufacturers' protocol (Miltenyi Bio-
tec, Bergisch Gladbach, Germany).

RNA extraction and cDNA synthesis
Total RNA was extracted from cells using TRIzol reagent
(Invitrogen, Karlsruhe, Germany). cDNA was subse-
quently synthesized from 5 μg RNA by random priming,
using Superscript II (Invitrogen).

Expression profiling
For quantification of gene expression via profiling we
used DNA chips U133A Plus 2.0 obtained from Affime-
trix, (Buckinghamshire, UK). Chip-data analysis was per-
formed as described recently [28]. Analysis of expression
data was performed using online programs. For creation
of heat maps and similarity trees we used CLUSTER ver-
sion 2.11 and TREEVIEW version 1.60 http://
rana.lbl.gov/EisenSoftware.htm.

Polymerase chain reaction (PCR) analysis
Quantitative expression analysis was performed using the
7500 Real-time System, commercial buffer and primer
sets for BIM, EZH2, HOP, HOXA9, HOXA10, KCNQ1
and RUNX2 (Applied Biosystems, Darmstadt, Germany).
Expression analysis of pri-miR-17-92 was performed as
described recently [29]. For normalization of expression
levels we used TBP. Quantitative analyses were per-
formed in triplicate and repeated twice.

The following oligonucleotides were used for reverse
transcription (RT)-PCR were generated by MWG Euro-
fins (Ebersberg, Germany): miR26-for: 5'-CCGGTT-
GAAATCGATGGAAC-3'; miR26-rev: 5'-
TCAGGTCCTTCACGTAGTTC-3'; miR101-for: 5'-
TCCTCATGCAAATAGCGGGAAG-3'; miR101-rev: 5'-
AAGCCATGGCATTGCAGTCCTC-3'; TEL-for: 5'-
AGGCCAATTGACAGCAACAC-3'; TEL-rev: 5'-TGCA-
CATTATCCACGGATGG-3'; TFDP1-for: 5'-TCT-
TCTCTGGGAAGGTGAAC-3'; TFDP1-rev: 5'-
TCCTACCACCAGGGTGTTTG-3'. Obtained PCR
products were analyzed by agarose gel electrophoresis.

ID2 promoter analysis
To quantify the impact of HOXA10 on the ID2 promoter
we cloned a corresponding genomic fragment containing
the HOXA10 binding site in front of a reporter gene. PCR
using oligonucleotides ID2-for (5'-GCAAGCT-
TATCTAGCCCTCCCTCTAGCTG-3') and ID2-rev (5'-
AAGGATCCTGACAGATAGGTGGCCCTAGC-3') gen-
erated a promoter fragment of 1550 bp in length. The
validity of the construct was confirmed by sequence anal-
ysis (MWG Eurofins). As described previously, the
reporter gene consists of a genomic fragment of the
HOXA9 gene, comprising exon1-intron-exon2, allowing
the quantification of the transcribed and spliced reporter
mRNA via RQ-PCR [30]. The reporter gene was cloned
via EcoRI, the promoter via HindIII/BamHI into the back-
bone of the pcDNA3 vector [30]. A cotransfected
luciferase construct served as transfection control, quan-
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tified by the Luciferase Assay System (Promega, Man-
nheim, Germany) using the luminometer Lumat LB9501
(Berthold Technologies, Bad Wildbad, Germany).

Fluorescence In Situ Hybridization (FISH)
FISH analysis was performed as described recently [31].
The following RP11-clones were obtained from the (now
defunct) clone facility at the Sanger Centre, (Cambridge,
UK): 892G20 and 355H10 for ID2; 627P22 and 812K17
for HOXA; 375K6 and 11H19 for RUNX2. Fluorescence
images were captured using an Axioskop 2 plus micro-
scope (Zeiss, Göttingen, Germany) and analyzed with
Cytovision 2 software (Applied Imaging, Newcastle, UK).

Gene transfer
Expression constructs for HOXA9, HOXA10, ID2 and
TFDP1 (in pCMV-XL5/4 vectors) were obtained from
Origene (Wiesbaden, Germany). Transfection of expres-
sion constructs into cervix carcinoma cell line HELA was
performed using transfection reagent SuperFect (Qiagen,
Hilden, Germany). Transfection experiments were per-
formed at an efficiency of about 30% as determined by
fluorescence microscopy. Expression construct for ID2
and siRNAs directed against EZH2 and HOP (Qiagen)
were electroporated into cell lines using the EPI-2500
impulse generator (Fischer, Heidelberg, Germany).
Transfection and electroporation experiments have been
performed twice.

VSV.G-pseudotyped lentiviral particles were generated
by calcium phosphate co-transfection of embryonal kid-
ney 293T cells and viral supernatants were concentrated
as previously described [32]. Lentiviral transduction of T-
ALL cell line JURKAT was performed with a multiplicity
of infection of approximately two. JURKAT-HOXA9 cells
showed low transduction efficiency and were subse-
quently sorted, using a FACSAria cell sorter (BD Biosci-
ence, Heidelberg, Germany). The transduction efficiency
of LOUCY-TFDP1 was about 60%.

Chromatin immuno-precipitation (ChIP)
ChIP analysis was performed with the ChIP Assay Kit
(Millipore-Upstate, Schwalbach, Germany). Antibody
anti-HOXA10 was obtained from Santa Cruz Biotechnol-
ogy (Heidelberg, Germany). The subsequent PCR analy-
sis was carried out, using nested ID2-oligonucleotides.

For the HOXA10-binding site: ID2-for: 5'-TATTG-
GGCGTGCTGAAACAG-3', ID2-rev: 5'-GAT-
TAAGGCAGTGCCTTCTC-3', ID2-for-nested: 5'-
CACTAGTAACTTAGGCCTCG-3', ID2-rev-nested: 5'-
CCCTGATGTTAGTAAAATGGC-3'.

For control: ID2-for: 5'-CCAGGGTGTTCTCT-
TACTTG-3', ID2-for-nested: 5'-GCCCTTTCTGCAGT-
TGGA-3', ID2-rev: 5'-CAGCATTCAGTAGGCTTGTG-
3', ID2-rev-nested: 5'-GGATCCTTCTGGTATTCA-3'.

Protein analysis
For protein analysis Western blotting was performed as
described previously [13]. Briefly, proteins obtained from
cell lysates were transferred semi-dry onto nitrocellulose
membranes (Bio-Rad, München, Germany) which were
blocked with 5% bovine serum albumin (BSA) dissolved
in phosphate-buffered-saline (PBS) buffer. Antibodies to
the following proteins were obtained from Santa Cruz
Biotechnology: E2F1, ERK1/2, ID2, STAT5; and from Cell
Signaling (Freiburg, Germany): EZH2.

MTT assay
Cell lines were treated for 16 h with 100 μM etoposide
(Sigma), which has been dissolved in dimethylsulfoxide,
and subsequently prepared for standardized MTT (3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide; obtained from Sigma) assays. The absorbance was
determined at 570 nm by an ELISA reader (Thermo Elec-
tron, Vantaa, Finland).

Results
Expression analysis of NK- and T-cell lines
Two NK-cell lines, NK-92 and YT, together with eight T-
cell lines and one sample of primary CD34+ HSC were
examined by expression profiling and subsequently by
cluster analysis (Fig. 1A). Three main clusters were dis-
cerned, comprising HSC, NK-cell lines and T-cell lines,
respectively, representing progenitor cells and two lym-
phocytic differentiation lineages. Of note, LOUCY was
the most divergent T-cell line, indicating substantial dif-
ferences in gene activities.

Figure 1 Gene expression analysis by profiling. (A) Expression pro-
filing data were analyzed by cluster analysis. Of note, all cells were or-
dered according to their origin. LOUCY was the most varied T-cell line. 
(B) Expression profiling data were transformed into a heat map, dem-
onstrating 200 top/down expressed genes in NK/T-cell lines and 
CD34+ HSCs. Red indicates high, green low and black medium expres-
sion levels. Selected top/down expressed genes are shown on the 
right, including HOXA9, HOXA10, ID2 and RUNX2 highlighted in red.
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To identify specifically expressed genes within the NK-
cell lineage we subtracted averaged values of NK- and T-
cell data sets, respectively, and ranked these differences to
generate a list of differentially expressed genes. From this
list we analyzed the top-200 over- and under-expressed
genes as heat maps (Fig. 1B). These candidates included
genes involved in immunological defence such as gran-
zymes (GZMB, GZMH) and interferon gamma (IFNG) in
addition to several differentiation factors (HOXA9,
HOXA10, ID2, RUNX2). Interestingly, LOUCY resem-
bled NK-cell lines by displaying high expression levels of
HOXA9, HOXA10, ID2 and RUNX2, suggesting deregu-
lation of these NK-lineage genes within this T-ALL cell
line [8,9,33-36]. Quantitative RT-PCR (RQ-PCR) analysis
of HOXA9, HOXA10, ID2 and RUNX2 confirmed their
expression in NK-cell lines and LOUCY (Fig. 2). Addi-
tionally, JURKAT cells also expressed HOXA10 and
CCRF-CEM expressed RUNX2. Taken together, we iden-
tified in T-ALL cell line LOUCY coexpression of four
developmental genes which are involved in NK-cell lin-
eage differentiation.

HOXA9 and HOXA10 activate expression of ID2
We subsequently focused on potential mechanisms
which might conceivably deregulate these candidate
oncogenes in LOUCY. FISH analysis using flanking
probes excluded chromosomal translocations at 7p15,
2p25 and 6p12 which might have been responsible for
high expression levels of HOXA9/HOXA10, ID2 and
RUNX2, respectively (data not shown). Sequence analy-
ses of promoter regions, according to genome browser
data of the University of California Santa Cruz (UCSC),
demonstrated binding sites for HOXA9/HOXA10 within
the promoter regions of ID2 (at -2167 bp) and of RUNX2
(at -5249 bp) which may indicate regulative interactions.
Accordingly, in osteoblasts HOXA10 has been shown to
activate expression of RUNX2 [37]. Therefore, we
decided to investigate potential oncogenic deregulations
of ID2 and/or RUNX2 by HOXA9 and HOXA10 in T-
ALL cells.

First, we transfected HELA cells with CMV-driven con-
structs for overexpression of transcription factors
HOXA9 or HOXA10. Subsequent RQ-PCR analysis dem-
onstrated elevated expression levels of ID2 in HOXA9
and HOXA10 transfected cells. However, the expression
levels of RUNX2 showed no significant alteration, failing
to support a regulatory connection (Fig. 3). Thus, these
data showed that in contrast to RUNX2, both HOXA9
and HOXA10 activated expression of ID2 in HELA.

To analyze this mechanism in T-ALL we lentivirally
transduced JURKAT cells with constructs of HOXA9 or
HOXA10 for overexpression. Subsequent expression
analysis by RQ-PCR demonstrated elevated and unal-
tered levels of ID2 and RUNX2, respectively (Fig. 4A).
Greater levels of ID2 activation were effected by
HOXA10 than by HOXA9, correlating with the results
obtained in HELA. Western blot analysis confirmed ele-
vated ID2 expression at the protein level in HOXA10
overexpressing cells (Fig. 4B). Moreover, ChIP analysis of
the ID2 promoter region at -2167 bp in LOUCY cells
demonstrated binding of HOXA10 protein (Fig. 4C), indi-

Figure 2 Gene expression analysis by real-time PCR. Quantitative 
RT-PCR analysis of candidate genes HOXA9, HOXA10, ID2 and RUNX2 
in selected T- and NK-cell lines. Of note, high expression levels of all 
four genes were confirmed in NK-92, YT and LOUCY. Expression levels 
of YT were set to 1.
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cating a direct activation mechanism by these homeodo-
main proteins in T-ALL cells. Finally, we used a reporter
gene construct combined with a corresponding fragment
of the ID2 promoter, containing the indicated HOXA10
binding site. Cotransfection together with HOXA10
expression construct into HELA cells resulted in
enhanced reporter gene activity, as compared to the vec-
tor control and analyzed by RQ-PCR. These results sup-
port the direct input of HOXA10 in ID2 expression (Fig.
4D).

Both, HOXA9 and HOXA10 are targets of MLL-fusion
proteins in AML and ALL malignancies [16]. RQ-PCR
analysis of HOXA9, HOXA10 and ID2 in MLL-transloca-
tion-positive and -negative cell lines of AML or ALL ori-
gin [18], respectively, indicated a positive correlation
between expression of HOXA9/HOXA10 and ID2 (Fig. 5,
6). These results confirmed the activating impact of
HOXA9/HOXA10 on ID2 expression and identified this
bHLH gene as indirect downstream target of MLL-fusion
proteins.

TCF3 controls many cellular processes during thymo-
cyte development, including differentiation and survival.
Accordingly, gene expression analysis of TCF3 target
genes has identified activation of the pro-apoptosis gene
BIM [38]. Since ID2 suppresses the activity of TCF3 [9],

we analyzed BIM expression in transduced JURKAT cells.
Our data demonstrated downregulation of BIM in
HOXA9/HOXA10 and ID2 overexpressing cells (Fig. 7A),
suggesting anti-apoptotic effects of these homeodomain
proteins mediated via ID2 in T-ALL cells. Accordingly,
survival analysis by MTT assay after etoposide treatment
indicated a slight reduction of apoptosis by HOXA10
overexpression (Fig. 7B).

Regulation of HOXA9 and HOXA10 by PRC2
MLL and SET1 proteins together with polycomb-related
proteins are chromatin components which regulate tran-
scription of developmental genes, including those of the
HOXA cluster [19,20,39-42]. The expression profiling
data of their corresponding genes in NK/T-cell lines dem-
onstrated differential transcript levels of PRC2 compo-
nents EZH2 and homeodomain only protein HOP (Fig.
8). While LOUCY exclusively showed silent EZH2, both
NK-cell lines together with HSC expressed HOP in con-
trast to T-ALL cell lines. The activity of these two genes

Figure 5 Expression analysis in ALL cell lines. RQ-PCR analysis of 
HOXA9, HOXA10 and ID2 demonstrated higher expression levels in 
ALL cell lines carrying MLL-translocations. The highest expression lev-
els of each gene were set to 1.
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was subsequently quantified by RQ-PCR in selected cell
lines, confirming lack of EZH2 expression in LOUCY and
exclusive expression of HOP in NK-cell lines NK-92 and
YT (Fig. 9A, B). Additionally, we confirmed absence of
EZH2 in LOUCY at the protein level by Western blot
analysis (Fig. 9C). These data support the proposed regu-
latory impact of particular PRC2-proteins in expression
of HOXA9 and HOXA10 in NK/T-cells.

Therefore, we treated EZH2-negative LOUCY and
EZH2-positive JURKAT cells with DZNep, an inhibitor of
EZH2/PRC2 [43]. Western blot analysis confirmed
reduction of the EZH2 protein level in treated JURKAT
cells (Fig. 10A). Subsequent RQ-PCR analysis of HOXA9
and HOXA10 showed unaltered and increased expres-
sion levels, respectively (Fig. 10B). Accordingly, siRNA-
mediated knockdown of EZH2 enhanced the expression
of HOXA10 in JURKAT (Fig. 11A). Thus, these results
confirmed the repressive impact of PRC2-component
EZH2 on HOXA-genes in T-cells. Moreover, DZNep
treatment resulted in increased expression of HOXA10
downstream target ID2, while that of RUNX2 remained
unaltered (Fig. 11B). EZH2/PRC2 is also involved in the
genomic imprinting of region 11p15 [44,45]. Here, we
analyzed expression of KCNQ1 (located at 11p15) by RQ-
PCR after DZNep treatment. While in LOUCY no
change of positive KCNQ1 expression level was detected,
JURKAT cells demonstrated an induction of KCNQ1
expression, confirming lack of repression by EZH2 in
LOUCY and relaxation of repression by DZNep in JUR-
KAT (data not shown).

As shown recently, EZH2 activity is reduced upon
phosphorylation via AKT-signaling [46]. To analyze this
effect, we treated JURKAT, YT and LOUCY cells with an
inhibitor of AKT-signaling, rapamycin, and subsequently
quantified HOXA10 expression. Our results demon-
strated decreased HOXA10 levels in JURKAT and YT,

indicating enhanced EZH2 activity, while those in
LOUCY consistently remained unaltered (Fig. 12).

HOP has been shown to interact with PRC2 compo-
nent EPC1 [47]. To analyze the potential impact on
expression of HOXA9/HOXA10 we lentivirally trans-
duced JURKAT cells to overexpress HOP. Subsequent
RQ-PCR analysis showed decreased expression levels of
HOXA10, indicating the enhancement of PRC2 repres-
sion activity. Accordingly, ID2 expression was decreased

Figure 7 Target gene analysis of ID2. (A) RQ-PCR analysis of BIM 
demonstrated reduced expression levels in JURKAT cells overexpress-
ing HOXA9, HOXA10 or ID2. (B) MTT assay of transduced JURKAT cells 
after treatment with etoposide indicated reduced apoptosis by 
HOXA10 overexpression.
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in HOP-transduced JURKAT cells, while RUNX2 expres-
sion remained unchanged (Fig. 13A, Fig. 4A). In NK-92
and YT siRNA-mediated knockdown of HOP or EZH2
resulted in increased expression of HOXA10 (Fig. 13A),
confirming their repressive roles in NK-cells as well. Interestingly, DZNep-treatment of HOP-transduced

JURKAT cells and corresponding vector-controls demon-
strated a much stronger increase of HOXA10 expression
in HOP-overexpressing cells (Fig. 13B). This result sug-
gested that HOP enhanced the sensitivity for DZNep,
probably by better accessibility.

Regulation of EZH2 by E2F-factors
To examine possible causes underlying the lack of EZH2
expression in LOUCY cells we looked for chromosomal
deletions by consulting genomic array data published by
the Sanger centre (Cambridge, UK). However, the EZH2

Figure 9 Expression analysis in NK/T-cells. (A) RQ-PCR analysis of 
candidate gene EZH2 in selected T- and NK-cell lines. Of note, reduced 
EZH2 expression was confirmed in LOUCY. (B) RQ-PCR analysis of can-
didate gene HOP in selected T- and NK-cell lines. Of note, high expres-
sion levels were confirmed in NK-cell lines NK-92 and YT. (C) Western 
blot analysis of EZH2 protein expression in selected NK/T-cell lines. 
ERK1/2 protein expression served as loading control. Of note, in LOUCY 
no EZH2 protein was detectable.
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locus at 7q36 showed no copy number alterations, thus
excluding genomic deletion. Moreover, treatment of
LOUCY cells with AZA to reactivate DNA-methylated
genes showed no effect on EZH2 when analyzed by RQ-
PCR (not shown), thus excluding aberrant methylation at
this locus. Although, EZH2 is the target of at least two
micro-RNAs, namely miR-26 and miR-101 [48,49], RT-
PCR analysis showed no differential expression of their
corresponding pri-micro-RNAs in LOUCY when com-
pared to control T-ALL cell lines (data not shown).

As shown previously, expression of EZH2 is regulated
by the E2F1 transcription factor which in turn is deregu-
lated by overexpressed micro-RNAs of the miR-17-92
gene cluster, reducing E2F1 protein levels in T-ALL cells
[29,50]. But RQ-PCR analysis failed to indicate enhanced
expression level of pri-miR-17-92 (not shown) and west-
ern blot analysis detected consistently high amounts of
E2F1 protein in LOUCY (Fig. 14A). However, expression
profiling analysis of all known E2F-related genes indi-
cated very low levels of TFDP1 in LOUCY which was
confirmed by RT-PCR analysis (Fig. 14B). TFDP1 is a
cofactor of E2F proteins, acting as heterodimers [51].
Subsequently ectopic expression of TFDP1 in LOUCY
cells via lentiviral transduction of a CMV-driven expres-
sion-construct resulted in elevated EZH2 expression and
accordingly decreased levels of HOXA10 transcripts as
analyzed by RQ-PCR. However, the reduction of of ID2
was quite small and not significant (Fig. 13C). In conclu-
sion, these data demonstrate that reduced TFDP1/E2F-
activity contributes to the lack of EZH2 expression in this
cell line.

Discussion
T-cell leukemogenesis involves ectopic activation of
proto-oncogenes which often regulate physiological
development. In this study, comparison of gene expres-
sion profiles of NK/T-cell lines identified the apparently
aberrant expression of developmental homeobox genes,
HOXA9 and HOXA10, a bHLH gene, ID2, and RUNX2 in
T-ALL cell line LOUCY. These T-ALL oncogenes are
physiologically expressed in hematopoietic progenitor
cells and regulate the differentiation lineage of the closely
related NK-cells [8,9,33]. Due to the high regulatory
impact of these genes we speculate that they contribute
significantly to the separate positioning of LOUCY after
cluster analysis of T-ALL cell lines.

We showed that HOXA9 and HOXA10 activated ID2 in
T-cells (and HELA) while RUNX2 was not regulated by
these homeodomain proteins. Coexpression of HOXA9/
HOXA10 and ID2 was detected in cell lines expressing
MLL-fusion proteins which have been shown to activate
particular HOXA genes, including HOXA9 and HOXA10
[16-18]. Thus, our results highlight ID2 as an indirect tar-
get of MLL fusion proteins. However, phosphorylation of
HOXA9 and HOXA10 proteins by protein kinase C
reduces their DNA-binding activity [52,53]. This modifi-
cation may explain the limited correlation between
endogenous expression levels of HOXA10 and ID2 as
observed in JURKAT cells.

Figure 14 Regulation of EZH2 expression via E2F/TFDP1. (A) West-
ern blot analysis of selected NK/T-cell lines demonstrated the presence 
of E2F1 protein in all cells including LOUCY. (B) RT-PCR analysis of 
TFDP1 in selected NK/T-cell lines demonstrated reduced expression 
level in LOUCY. Expression of TEL served as positive control, NTC: no 
template control. (C) RQ-PCR analysis of LOUCY cells which were lenti-
virally transduced with an expression construct for TFDP1 demonstrat-
ed increased expression levels of EZH2 and decreased levels of 
HOXA10 and ID2 as compared to vector control cells.
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ID2 belongs to the basic helix-loop-helix family of tran-
scription factors. Physiologically, ID2 is expressed in pro-
genitors of NK-cells and contributes essentially to the
differentiation of this lymphocytic lineage [8-10].
Together with family members TAL1 and LYL1, ID2 con-
fers the potential to suppress the activity of bHLH pro-
teins TCF3 and TCF12. Their activity in turn has
fundamental importance for T-cell development as dem-
onstrated by differentiation arrest upon suppression [5-
7]. Furthermore, TCF3 activates pro-apoptotic BIM,
enhancing sensitivity to cell death during selection pro-
cesses [38]. We showed that the expression levels of BIM
were reduced in HOXA9/HOXA10 and ID2 overexpress-
ing cells, presumably mediated by ID2. Accordingly, regu-
lation of BIM by ID2 has been also described in colorectal
carcinoma [54]. Finally, the NOTCH-pathway is fre-
quently activated via various mutations in T-ALL, and ID
proteins release the negative autoregulation of the
NOTCH-target HES1 [55]. Therefore, deregulation of
ID2 via HOXA9/HOXA10 may be a crucial step in thy-
mocytic transformation by perturbing T-cell differentia-
tion and apoptosis.

HOXA genes are physiologically expressed in lympho-
cytic progenitor cells and become downregulated during
T-cell development [14,56]. During differentiation of NK-
cells HOXA10 remains active, indicating a crucial role in
this related lymphocytic lineage [33,57]. HOXA5,
HOXA9 and HOXA10 have been identified as oncogenic
targets in T-ALL samples, supporting their dominant role
in lymphocyte development [30]. Clustered homeobox
genes, including HOXA genes, are regulated by compet-
ing chromatin complexes which comprise activating
HMTs like MLL or SET1 proteins and repressing poly-
comb-complexes [19,20,39-42]. By expression profiling
we identified two genes coding for components of PRC2,
namely EZH2 and HOP, and demonstrated their involve-
ment in regulation of HOXA9/HOXA10 expression in
NK/T-cells.

Inhibition of EZH2 by DZNep or siRNA consistently
increased expression of HOXA10 while its activation by
rapamycin decreased HOXA10 levels. The latter result
may influence the treatment of HOXA-positive T-ALL
patients because of frequent aberrant activity of the AKT-
pathway in this disease [58]. T-ALL cell line LOUCY
lacks EZH2 expression and, coherently, showed no effects
after rapamycin or DZNep treatments. These data sug-
gested that LOUCY cells have no or only restricted func-
tion of PRC2 due to absence of EZH2. Accordingly,
reduction of PRC2 component EED in embryonic stem
cells results in loss of repressor activity as well and subse-
quently in increased expression of HOXA genes [40]. In
mammalian cells knockdown of PRC2 components EZH2
or PHF1 led to upregulated HOXA gene expression [59].
Furthermore, in Drosophila mutations in each of ten

tested different PRC components, including the EZH2-
homologue, results in ectopic HOX-gene expression, sup-
porting the necessity of a complete complex for its gene
repression activity [60].

By examining the cause of EZH2 silencing in LOUCY
we identified reduced TFDP1 expression. Increased
expression of TFDP1 in LOUCY via lentiviral transduc-
tion of an expression construct restored EZH2 expres-
sion. TFDP1 is a cofactor for E2F transcription factors,
acting as heterodimers, which have been shown to regu-
late EZH2 transcriptional expression [50]. Therefore,
TFDP1 may together with T-cell expressed E2F1 physio-
logically contribute to EZH2 gene activity. E2F1 regulates
proliferation and apoptosis during T-cell development.
Reduced E2F1 activity enhances survival of both thymo-
cytes and T-ALL cells [29,61]. Therefore, we suggest that
low expression levels of TFDP1 may additionally restrict
E2F1-mediated apoptosis in T-ALL cells. Interestingly,
TFDP1 has also been shown to interact via E2F6 with
EPC1 [62], demonstrating the lack of another component
of PRC2 in this T-ALL cell line. Recently, deep sequenc-
ing analysis discovered mutated and consequently inac-
tive EZH2, identifying EZH2 as a tumor suppressor gene
in difffuse large B-cell lymphoma [63].

HOP has also been shown to interact with PRC2 com-
ponent EPC1 [47]. Forced expression of HOP in JURKAT
cells and reduced expression in NK-cell lines decreased
and increased expression of HOXA10, respectively, dem-
onstrating an inhibitory effect in T-cells and NK-cells.
Therefore, these results indicated that HOP mediated
repression of HOXA10 by modulation of PRC2 activity.
Accordingly, NK-cell line NK-92 expressed higher levels
of HOP and lower levels of HOXA9/HOXA10 in compar-
ison to YT cells, supporting a repressive role of HOP. This
mode of HOX gene regulation seems to be maintained
during the development of NK-cells and deactivated in
that of T-cells because HSCs were HOP positive. Surpris-
ingly, HOP-overexpressing T-cells were significantly
more sensitive to DZNep-treatment. This observation
confirmed an effect of HOP on PRC2 and may suggest
that HOP mediated conformational changes within this
complex, resulting in enhanced repressive activity con-
comitantly facilitated by an increased accessibility of
DZNep to its binding site.

Activating chromatin complexes contain HMT activity
mediated by closely related MLL/SET1 proteins [19,20].
Chromosomal translocations of MLL are frequent aber-
rations in both, AML and ALL, including T-ALL. Their
most prominent oncogenic targets are HOXA genes [16-
18]. Furthermore, Van Vlierberghe and colleagues identi-
fied recently a microdeletion in LOUCY, generating the
fusion gene SET-NUP214 [21]. This fusion protein in
addition to CALM-AF10, which has also been detected in
T-ALL, interacts with HMT DOTL1, performing aber-



Nagel et al. Molecular Cancer 2010, 9:151
http://www.molecular-cancer.com/content/9/1/151

Page 10 of 12
rant H3-methylation and concomitant HOXA deregula-
tion [21,64]. Another fusion protein in T-ALL, SETBP1-
NUP98, comprises the SET-interaction partner SETBP1
and, therefore, may also recruit HMT activity [65]. How-
ever, downstream effects of SETBP1-NUP98 have not yet
been analyzed. Finally, several direct interactions have
been described between activating MLL/SET1, SET and
repressing PRC complexes, respectively, representing a
large and complex network for regulation of HOXA in
addition to other developmental genes [66-68]. Those
regulative interactions together with results obtained in
this study are summarized in Fig. 15. Taken together, cer-
tain components of gene regulating chromatin com-
plexes, including MLL, SET, SETBP1 and EZH2, are
oncogenic targets, representing a key mechanism of leu-
kemic HOXA-deregulation in T-ALL. In this context,
LOUCY cells may serve as a useful model system to
investigate the function of PRC2 and its component
EZH2 in T-ALL.

Conclusions
Our data indicate that PRC2 contributes to the differenti-
ation of NK/T-cells via regulation of HOXA9/HOXA10
gene expression. Deregulated function of PRC2 is
involved in T-cell leukemogenesis, resulting in ectopic
activation of NK-cell lineage-associated HOXA9/
HOXA10 genes and their target ID2.
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Figure 15 Network of HOXA-regulation. The diagram depicts major 
chromatin complexes, including PRC1, PRC2, MLL and SET with select-
ed components or mutated fusion proteins which regulate the tran-
scription of HOXA genes.
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