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Abstract
Background: The t(9;22)(q34;q11), generating the Philadelphia (Ph) chromosome, is found in more than 90% of 
patients with chronic myeloid leukemia (CML). As a result of the translocation, the 3' portion of the ABL1 oncogene is 
transposed from 9q34 to the 5' portion of the BCR gene on chromosome 22 to form the BCR/ABL1 fusion gene. At 
diagnosis, in 5-10% of CML patients the Ph chromosome is derived from variant translocations other than the standard 
t(9;22).

Results: We report a molecular cytogenetic study of 452 consecutive CML patients at diagnosis, that revealed 50 cases 
identifying three main subgroups: i) cases with variant chromosomal rearrangements other than the classic 
t(9;22)(q34;q11) (9.5%); ii) cases with cryptic insertions of ABL1 into BCR, or vice versa (1.3%); iii) cases bearing additional 
chromosomal rearrangements concomitant to the t(9;22) (1.1%). For each cytogenetic group, the mechanism at the 
basis of the rearrangement is discussed.

All breakpoints on other chromosomes involved in variant t(9;22) and in additional rearrangements have been
characterized for the first time by Fluorescence In Situ Hybridization (FISH) experiments and bioinformatic analyses.
This study revealed a high content of Alu repeats, genes density, GC frequency, and miRNAs in the great majority of the
analyzed breakpoints.

Conclusions: Taken together with literature data about CML with variant t(9;22), our findings identified several new 
cytogenetic breakpoints as hotspots for recombination, demonstrating that the involvement of chromosomes other 
than 9 and 22 is not a random event but could depend on specific genomic features. The presence of several genes 
and/or miRNAs at the identified breakpoints suggests their potential involvement in the CML pathogenesis.

Background
Chronic myeloid leukemia (CML) is characterized by the
constitutive expression of the 5'BCR/3'ABL1 fusion gene
resulting from the t(9;22)(q34;q11); this translocation is
evident in more than 90% of patients and produces the
Philadelphia chromosome (Ph)[1].

In 5-10% of CML patients, the 5'BCR/3'ABL1 fusion
gene arises from complex variant rearrangements which

may involve one or more chromosomes in addition to 9
and 22 [2,3]. In some variant t(9;22) cases, additional
material is transferred onto the Ph chromosome, result-
ing in a "masked" Ph whereas other CML patients show a
classic Ph and an atypical der(9) chromosome as a conse-
quence of a rearrangement between the der(9)t(9;22) and
another chromosome [4,5]. Serial translocations or a sin-
gle simultaneous event are alternative hypotheses pro-
posed to justify the occurrence of these complex
rearrangements [6].

In a subset of CML patients, cryptic rearrangements
have been postulated to induce the chimeric gene forma-
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tion, such as a nonreciprocal insertion between chromo-
somes 9 and 22 or two sequential translocations restoring
the partner chromosomes morphology [7-11].

Microdeletions on the der(9) chromosome next to the
t(9;22) breakpoint have been described in patients with
classic and variant Ph translocations, and appear to be a
valuable prognostic factor [12-17]. Recently, the fre-
quency of such deletions has been investigated in the sub-
group of CML patients with a masked Ph chromosome
[18]. Additional genomic deletions on the third derivative
chromosome have also been described in CML cases with
variant translocations [19,20].

To our knowledge, an accurate breakpoints identifica-
tion and bioinformatic analysis of other chromosomes
involved in variant t(9;22) or in concomitant chromo-
somal rearrangements apart from the t(9;22) has never
been performed in CML.

In this paper, a detailed molecular cytogenetic charac-
terization of 50 (11.1%) out of 452 chronic phase (CP)
CML patients was carried out to define the precise break-
points on chromosomes other than 9 and 22. Bioinfor-
matic analysis of breakpoint regions was performed to
investigate the presence of repeated elements (Alu,
LINE), GC content, Segmental Duplications (SDs), miR-
NAs, and known genes. Our findings, taken together with
a review of literature data, allowed us to identify new
cytogenetic hotspots in CML cases with variant t(9;22).

Methods
Patients
The study included 452 CP-CML patients. All of them
were newly diagnosed at our hospital between 1990 and
2009. As a consequence of the long time span for sample
accrual, several therapeutic regimens (hydroxyurea,
interferon-α, imatinib, nilotinib, and dasatinib) were
adopted.

Out of the 452 CP-CML cases, 50 showed variant
t(9;22) or additional chromosomal rearrangements, 9 of
which have been characterized in previous reports by our
group [19-23].

Conventional cytogenetics
Conventional cytogenetic analysis of a 24-48 hour culture
was performed at diagnosis of CML on bone marrow
cells by standard techniques and evaluated by Giemsa-
Trypsin-Giemsa (GTG) banding at about the 400-band
level according to the ISCN [24]. At least 25 metaphases
were analyzed for each case.

Identification of cytogenetic hotspots
To identify new cytogenetic hotspots, an estimate of the
Haploid Autosomal Length (HAL) of the bands involved
in variant t(9;22) cases was performed [25,26]. We calcu-
lated the number of breaks expected (E) in any band,

given the null hypothesis of a random distribution of all
breaks across the genome. Reviewing large series of CML
patients with variant t(9;22) we assessed the number of
breaks observed (O) in each band and divided this value
by the expected (E) value to determine an O/E ratio. An
O/E ratio >1 identified new cytogenetic hotspots.

FISH analysis
FISH analysis was performed on bone marrow samples of
all CP-CML patients at diagnosis using "home-brew"
FISH probes specific for ABL1 and BCR genes, validated
in previous papers [13,16,27]. Breakpoints characteriza-
tion and deletions size definition were carried out with
additional bacterial artificial chromosome (BAC) and
Phage P1-derived artificial chromosome (PAC) probes.
All clones were selected according to the University of
California Santa Cruz (UCSC http://genome.ucsc.edu/
index.html; March 2006 release) database [28]; the map-
ping of each clone was first tested on normal human
metaphases. Chromosome preparations were hybridized
in situ with probes labeled with biotin by nick translation
[29]. Briefly, 500 ng of labeled probe were used for FISH
experiments; hybridization was performed at 37°C in 2×
standard saline citrate (SSC), 50% (vol/vol) formamide,
10% (wt/vol) dextran sulphate, 5 μg COT1 DNA
(Bethesda Research Laboratories, Gaithersburg, MD),
and 3 μg sonicated salmon sperm DNA in a volume of 10
μL. Post-hybridization washing was done at 60°C 0.1×
SSC. Biotin-labeled DNA was detected with Cy3-conju-
gated avidin. In cohybridization experiments, other
probes were directly labeled with fluorescein. Chromo-
somes were identified by 4',6-diamidino-2-phenylindole
(DAPI) staining. Digital images were obtained using a
Leica DMRXA epifluorescence microscope equipped
with a cooled CCD camera (Princeton Instruments, Bos-
ton, MA). Cy3 (red; New England Nuclear, NJ), fluores-
cein (green; NEN Life Science Products, Boston, MA),
and DAPI (blue) fluorescence signals, which were
detected using specific filters, were recorded separately as
gray-scale images. Pseudocoloring and merging of images
were performed with Adobe Photoshop software.

Bioinformatic analysis
Breakpoint regions on other chromosomes involved in
variant t(9;22) and additional rearrangements were
included in 250 Kb size intervals, according to the resolu-
tion limit of the BAC clones used for breakpoints defini-
tion. Each interval was checked for the presence of
interspersed repeats classes (Alu and LINE repeats), SDs,
GC content, and gene density. The UCSC Table Browser
[28] was queried for summary analysis about the items
belonging to the tracks "RepeatMasker", "Segmental
Dups", "GC Percent", and "RefSeq Genes". For SDs and
RefSeq gene analysis, both "Item count" and "Item Bases"
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values were considered, to assess their number and the
bases percentage involved in SDs or coding sequences,
respectively. For each genomic feature, the obtained value
was normalized to the mean value for the examined chro-
mosome. For example, in case 1, the breakpoint mapped
in 1q32.1 (chr1:203,949,120-204,199,120) showed an Alu
frequency of 13.47%. As the mean Alu content inside
chromosome 1 is estimated to be 11.9%, the normalized
value will be 1.13 (i.e. 13.47/11.90). Therefore, greater or
lesser values than 1 correspond to regions with a richer or
poorer content of a specific genomic feature than those
observed along the entire chromosome.

In view of the known low miRNAs density in the
human genome, regions spanning 2 Mb proximally and
distally to breakpoints were investigated by querying the
UCSC database at the track "sno/miRNA". For each chro-
mosome the expected miRNA density within a 4 Mb
interval was established according to the following for-
mula: number of miRNA along the entire chromosome/
size in bp of the chromosome × 4000000 bp. The identifi-
cation of the predicted miRNAs target genes was per-
formed by querying the miRGen database http://
www.diana.pcbi.upenn.edu/cgi-bin/miRGen/v3/Tar-
gets.cgi. Intersection data from the three widely used tar-
get prediction programs (miRanda, PicTar, TargetScan)
were considered. The definition of target genes function
as oncogenes or tumor suppressor genes (TSGs) was
made according to the National Center for Biotechnology
Information (NCBI, http://www.ncbi.nlm.nih.gov/gene/)
database.

Results
FISH data
Cytogenetic analysis and FISH experiments with specific
BAC/PAC probes for the ABL1 and BCR genes allowed us
to detect 50 (11.1%) out of 452 cases, that identify 3 main
subgroups of CML patients showing variant t(9;22) rear-
rangements, the occurrence of cryptic insertions of the
ABL1 in the BCR region (or vice versa), and the presence
of additional chromosomal abnormalities, respectively
(Table 1).
1. Variant t(9;22) rearrangements
Forty-three (9.5%) out of 452 CML patients showed the
involvement of one (90.7%) or more chromosomes (9.3%)
in addition to 9 and 22. These complex variant transloca-
tions generated a classic Ph together with a masked
der(9) in 36 out of 43 cases (83.7%) and a masked Ph in
association with a classic der(9) chromosome in 7
patients (16.3%) (Table 1). Cases with a masked der(9)
showed the presence of additional material belonging to
partner chromosomes other than chromosome 22 (Fig.
1A, B). Several chromosomes were involved in these vari-
ant translocations, with a prevalence of chromosomes 4,
6, 12, and 17 (Table 1). The 5'BCR/3'ABL1 fusion gene

was localized on the Ph chromosome in all these cases,
whereas the 5'ABL1/3'BCR gene was retained on the
der(9) only in 4 (11.1%) out of 36 patients (Table 1). In the
remaining 32 (88.9%) cases, the 5'ABL1/3'BCR gene was
not detected on der(9) due to deletions and/or 3'BCR
transfer onto partner chromosomes (Table 1; Fig. 1A, B).
Molecular cytogenetic characterization performed to
verify the presence of microdeletions at the level of the
rearrangements breakpoints revealed sequences loss in
18 out of the 43 (42%) cases. Among these 18 patients, 10
(55.6%) showed microdeletions of sequences belonging to
the third partner chromosome, revealing a high incidence
of this kind of deletions in t(9;22) variant rearrangement
cases (Table 1).

Among 7 CML cases with a "masked Ph" chromosome,
3 showed the 5'BCR/3'ABL1 fusion signal on 22q11, the
second breakpoint on the derivative chromosome 22
mapping inside chromosome 9 sequences distal to the
ABL1 gene (Table 1; Fig. 1C). In 3 cases the fusion gene
was detected on the third partner chromosome, the sec-
ond chromosome 22 breakpoint being localized cen-
tromerically to the BCR gene (Table 1; Fig. 1D). In patient
#42 the insertion of 5' BCR into the ABL1 gene caused the
5'BCR/3'ABL1 localization on der(9). The 5'ABL1/3'BCR
gene was detected on the der(9) in 3 cases with masked
Ph, was deleted in case #39 whereas in the remaining
patients the 5'ABL1 gene was retained on the der(9) and
the 3'BCR gene was transferred onto other derivative
chromosomes (Table 1). Chromosome 9 sequences loss
next to the rearrangement breakpoint was observed in
case #43 and an unusual loss of a region of about 400 Kb
localized telomerically to the ABL1 gene was detected in
case #41 [22] (Table 1).
2. Cryptic insertions
Six (1.3%) out of the 452 CML cases showed cryptic
insertions of ABL1 into BCR, or vice versa, as the cause of
the 5'BCR/3'ABL1 fusion gene generation (Fig. 1E, F).
Four (66.7%) of these cases are indicated as "Ph negative"
(Ph-), with chromosome 22 appearing normal without the
presence of additional genomic material (Table 1). Two
(33.3%) out of these 6 cases were also included in the pre-
vious group as they showed variant rearrangements gen-
erating a masked Ph (Table 1). The 5'BCR/3'ABL1 gene
was detected on the der(9) or on the der(22) at a ratio of
1:1 as a consequence of 5' BCR insertion in 9q34 or 3'
ABL1 insertion in 22q11, respectively (Table 1).
3. Chromosomal rearrangements concomitant to the 
presence of 5'BCR/3'ABL1
Conventional and molecular cytogenetic analysis showed
5 (1.1%) out of 452 CML cases bearing additional chro-
mosomal rearrangements concomitant to the generation
of the 5'BCR/3'ABL1 fusion gene (Table 1; Fig. 1G, H).
Cases #46 and #47 were also included in the previous
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5'BCR/3'ABL
location

5'ABL/3'BCR location

34), Ph 5'ABL deleted, 3'BCR on der(1)

Ph 5'ABL on der(9), 3'BCR on der(1)

Ph 5'ABL on der(9), 3'BCR on der(1)

Ph 5'ABL on der(9), 3'BCR on der(2)

Ph 5'ABL on der(9), 3'BCR on der(3)

Ph 5'ABL on der(9), 3'BCR on der(3)

Ph 5'ABL on der(9), 3'BCR on der(3)

Ph 5'ABL on der(4), 3'BCR on der(4)

11) Ph 5'ABL on der(4), 3'BCR deleted

11) Ph 5'ABL deleted, 3'BCR on der(4)

34), Ph 5'ABL deleted, 3'BCR deleted

34) Ph 5'ABL deleted, 3'BCR on der(6)

Ph 5'ABL deleted, 3'BCR on der(6)

Ph 5'ABL on der(9), 3'BCR on der(6)

34), Ph 5'ABL deleted, 3'BCR deleted

Ph 5'ABL on der(9), 3'BCR on der(7)

Ph 5'ABL on der(9), 3'BCR on der(9)

Ph 5'ABL on der(9), 3'BCR on der(9)

13), Ph 5'ABL deleted, 3'BCR deleted

Ph 5'ABL on der(9), 3'BCR on der(11)

Ph 5'ABL on der(9), 3'BCR on der(12)

Ph 5'ABL on der(9), 3'BCR on der(9)

24), Ph 5'ABL deleted, 3'BCR on der(12)

Ph 5'ABL on der(9), 3'BCR on der(12)
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Table 1: Cytogenetic groups identified in a large series of CML patients at diagnosis

Cases Chromosomal rearrangements Ph chromosome Deletions

Variant t(9;22)
#1 t(1;9;22)(q32.1;q34;q11) Ph+ del(1)(q32), del(9)(q

del(22)(q11)

#2 t(1;9;22)(p34.2;q34;q11) Ph+ -

#3 der(9)t(9;22)(q34;q11), der(1)ins(1;22)
(p36;q11q13), der(22)t(9;22)

Ph+ -

#4 t(2;9;22)(q37.1;q34;q11) Ph+ -

#5 t(3;9;22)(p21.31;q34;q11) Ph+ del(22)(q11)

#6 t(3;9;22)(p21.31;q34;q11) Ph+ -

#7 t(3;9;22)(p21.31;q34;q11) Ph+ -

#8 t(4;9;22)(p16.3;q34;q11) Ph+ del(9)(q34)

#9 t(4;9;22)(p16;q34;q11) Ph+ del(9)(q34), del(22)(q

#10 t(4;9;22)(q12;q34;q11) Ph+ del(4)(q12), del(22)(q

#11 t(4;9;22)(p16.2;q34;q11) Ph+ del(4)(p16), del(9)(q
del(22)(q11)

#12 t(6;9;22)(p12.3;q34;q11) Ph+ del(6)(p12), del(9)(q

#13 t(6;9;22)(p21.31;q34;q11) Ph+ del(6)(p21p21), 
del(9)(q34q34),
del(22)(q11q11)

#14 t(6;9;22)(q14.1;q34;q11) Ph+(×2) -

#15 t(7;9;22)(p14.3;q34;q11) Ph+ del(7)(p14), del(9)(q
del(22)(q11)

#16 t(7;9;22)(p22;q34;q11) Ph+ -

#17 der(9)t(9;22)(q34;q11), der(9)ins(9;9)
(q34;q22q34)

Ph+ -

#18 t(9;22;9;14)(q34;q11;p12;q11) Ph+ -
#19 t(9;11;22)(q34;q13.1;q11) Ph+ del(9)(q34), del(11)(q

del(22)(q11)

#20 t(9;11;22)(q34;q21;q11) Ph+ -

#21 t(9;12;22)(q34;q23.3;q11) Ph+ -

#22 t(9;12;22)(q34;q13.2;q11) Ph+ -
#23 t(9;12;22)(q34;q24.31;q11) Ph+ del(9)(q34), del(12)(q

del(22)(q11)

#24 t(9;12;22)(q34;q24.21;q11) Ph+ -
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#25 t(9;13;22)(q34;q14.12;q11) Ph+ del(9)(q33q34), 
del(13)(q14), del(22)(q11)

Ph 5'ABL on der(13), 3'BCR deleted



Ph 5'ABL on der(14), 3'BCR on der(14)

Ph 5'ABL on der(9), 3'BCR on der(14)

Ph 5'ABL on der(9), 3'BCR on der(15)

Ph 5'ABL on der(9), 3'BCR on der(16)

Ph 5'ABL on der(9), 3'BCR on der(17)

Ph 5'ABL on der(9), 3'BCR on der(9)

Ph 5'ABL on der(9), 3'BCR on der(17)

Ph 5'ABL on der(9), 3'BCR on der(17)

Ph 5'ABL on der(9), 3'BCR on der(19)

Ph 5'ABL deleted, 3'BCR deleted

Ph 5'ABL deleted, 3'BCR on der(X)

der(7) 5'ABL on der(9), 3'BCR on der(9)

der(8) 5'ABL on der(9), 3'BCR on der(9)

der(10) 5'ABL deleted, 3'BCR deleted

der(22) 5'ABL on der(9), 3'BCR on der(9)

der(22) 5'ABL on der(9), 3'BCR on der(6)

der(9) 5'ABL on der(9), 3'BCR on der(20)

der(22) 5'ABL deleted, 3'BCR on der(12)

) der(9) 5'ABL deleted, 3'BCR on der(22)

der(22) 5'ABL on der(9), 3'BCR on der(22)

der(22) 5'ABL on der(9), 3'BCR on der(22)

der(9) 5'ABL on der(9), 3'BCR on der(22)

der(9) 5'ABL on der(9), 3'BCR on der(20)

der(22) 5'ABL deleted, 3'BCR on der(12)

Ph 5'ABL on der(9), 3'BCR on der(9)

Ph 5'ABL on der(9), 3'BCR on der(9)

Ph 5'ABL on der(9), 3'BCR on der(9)

der(22) 5'ABL on der(9), 3'BCR on der(22)

der(9) 5'ABL on der(9), 3'BCR on der(22)
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 a

l. 
M

ol
ec

ul
ar

 C
an

ce
r 2

01
0,

 9
:1

20
w

.m
ol

ec
ul

ar
-c

an
ce

r.c
om

/c
on

te
nt

/9
/1

/1
20

Pa
ge

 5
 o

f 1
7

#26 der(9)t(9;22)(q34;q11),
der(14)ins(14;9)(q32;q34q34), der(22)t(9;22)

Ph+ del(9)(q34), del(22)(q11)

#27 t(9;14;15;22)(q34;q24.2;?;q11) Ph+ -

#28 t(9;15;22)(q34;q24.3;q11) Ph+ -

#29 t(9;16;22) (q34;p11.2;q11) Ph+ -

#30 t(9;16;17;22)(q34;q24.3;p13.1;q11) Ph+ -

#31 t(9;17;22)(q34;q21.2;q11) Ph+ -

#32 t(9;17;22) (q34;q25.3;q11) Ph+ -

#33 t(9;17;22) (q34;p13.3;q11) Ph+ -

#34 t(9;19;22)(q34;q13.32;q11) Ph+ -

#35 t(9;21;22)(q34;q22.13;q11) Ph+ del(9)(q34), del(21)(q22), 
del(22)(q11)

#36 t(9;X;22)(q34;q13.1;q11) Ph+ del(9)(q33q34)

#37 t(7;9;22)(q22.2;q34;q11) masked Ph -

#38 t(8;9;22)(p12;q34;q11) masked Ph -

#39 t(9;10;22)(q34;p11.22;q11) masked Ph del(9)(q34), del(22)(q11)

#40 t(9;15;22)(q34;q24.1;q11) masked Ph -

#41 t(6;9;12;22)(p22.1;q34;q13.13;q11) masked Ph del(9)(q34)

#42* der(9)ins(9;22)(q34;q11q11),
der(22)t(20;22)(q13.33;q11)

masked Ph -

#43* der(22)t(12;22)(p13;q11)ins(22;9)(q11;q34q34) masked Ph del(9)(q34)

Cryptic insertions
#44 ins(9;22)(q34;q11q11) Ph- del(9)(q34), del(22)(q11q12

#45 der(22)t(9;22)(q34;q11)ins(22;22)(q11;q11q12) Ph- -

#46* der(9)ins(22;9)(q11;q34q34)t(9;11)(p22.3;p15.4) Ph- -

#47* ins(9;22)(q34;q11q11), t(1;20;21) Ph- -

#42* der(9)ins(9;22)(q34;q11q11),
der(22)t(20;22)(q13.33;q11)

masked Ph -

#43* der(22)t(12;22)(p13;q11)ins(22;9)(q11;q34q34) masked Ph del(9)(q34)

Additional chromosomal rearrangements
#48 t(9;22)(q34;q11), del(11)(q14q24) Ph+ del(11)(q14q24)

#49 t(9;22)(q34;q11), t(14;15)(q32.31;q24.1) Ph+ del(14)(q32), del(22)(q11)

#50 der(9)t(9;22)(q34;q11)t(9;11)(p24.1;q12.1) Ph+ -

#46* der(9)ins(22;9)(q11;q34q34)t(9;11)(p22.3;p15.4) Ph- -

#47* ins(9;22)(q34;q11q11), t(1;20;21) Ph- -

Three subgroups of CML patients have been identified according to the chromosomal rearrangements detected by FISH experiments: cases s
characterized by cryptic insertions of the ABL1 into the BCR region (or vice versa), and cases bearing additional chromosomal abnormalities. Ca

Table 1: Cytogenetic groups identified in a large series of CML patients at diagnosis (Continued)
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w a masked der(9) whereas a masked Ph in association with a classic der(9) was revealed in patients #37- #43. For each subgroup, the chromosomal rearrangements identified, the appearance of the 
der(22) chromosome, the occurrence of microdeletions next to chromosomal breakpoints, the location of the 5'BCR/3'ABL1 and of the 3'ABL1/5'BCR fusion genes are reported.
* indicates cases included in several cytogenetic subgroups.
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patients group as they showed cryptic insertions; the
remaining 3 CML cases carried a classic Ph chromosome.

Bioinformatic analysis of breakpoints on other 
chromosomes involved in variant t(9;22) or in concomitant 
chromosomal rearrangements
FISH experiments with BAC clones specific for other
chromosomes involved in variant or additional chromo-
somal rearrangements revealed a total number of 58
breakpoints. These breakpoints were mapped within a
single BAC clone or in the region between two overlap-
ping or adjacent clones (Table 2). In cases with sequences
loss, two different breakpoints were defined at the level of
the deleted regions boundaries.

Interestingly, the majority of breakpoints on chromo-
somes involved in variant or additional chromosomal
rearrangements showed a high frequency of Alu repeats
(Table 2; Fig. 2A). In fact, 41 out of 58 (71%) breakpoints
showed an Alu content of more than one whereas the
remaining 17 out of 58 (29%) had a content of less than
one. Instead, the LINE content was lower than one in 44
out of 58 (76%) breakpoints (Table 2). Thirty-five out of
41 breakpoints (85%) with Alu >1 showed a LINE amount
< 1 (Table 2).

Most of the analyzed breakpoints map within gene-rich
regions as a RefSeq Genes Item count of more than one
was observed in 45 out of 58 (78%) breakpoints (Table 2;
Fig. 2B). Moreover, 40 out of 58 (69%) breakpoints
showed a RefSeq Genes Item bases value of more than 1
(Table 2). It is worthy of note that 34 out of 41 bp (83%)
with Alu >1 showed a RefSeq Genes Item count >1 (Table
2). The number of known genes localized at breakpoints
and their function as oncogenes and/or TSGs are
reported in Table 3.

In the search for SDs, 49 out of 58 (84%) and 51 out of
58 (88%) breakpoints revealed SDs Item count and SDs
Item bases of less than one, respectively (Table 2). In
cases showing the presence of SDs within breakpoint
regions no specific association with chromosomes 9 and
22 was detected, as the duplicated elements recognized
several chromosomal regions.

Finally, a GC content >1 was detected in 43 out of 58
(74%) breakpoints (Table 2; Fig. 2C). A GC content of
more than one was identified in 34 out of 41 (83%) break-
points with Alu >1 and in 34 out of 45 (76%) with a Ref-
Seq Genes Item count >1 (Table 2).

The search for miRNAs revealed a different density
from the expected value in 32 out of 58 (55%) breakpoint

Figure 1 FISH pattern observed with specific probes for the ABL1 and BCR genes on bone marrow metaphases from the analyzed CML pa-
tients. Examples from each of the identified cytogenetic groups are shown: "masked der(9)" (A, B), "masked Ph" (C, D), "cryptic insertions" (E, F), and 
"concomitant rearrangements" (G, H).



F SEQ 
(IB)

REF SEQ 
(IC)

SD (IC) SD (IB) GC

0,71 2,16 0,67 0,21 1,06

1,11 3,09 0,44 0,27 1,07

0,76 1,85 0,22 0,15 0,91

1,3 1,01 0 0 1,05

1,7 7,05 0 0 1,24

1,84 9,88 0,77 0,44 1,32

2,02 6,58 0 0 1,18

0,33 0,65 0 0 1,18

1,9 1,31 0,38 0,33 1,34

0 0 0 0 0,94

0 0 0 0 0,95

1,76 1,72 0 0 0,95

0,93 1,72 0 0 0,92

1,63 4,32 0 0 1,09

0,21 4,75 1,05 0,49 0,98

2,37 2,16 0 0 0,95

1,06 2,54 0,92 5,42 1,05

1,95 2,12 0,61 0,07 1,09

1,01 4,09 0 0 1,2

2,16 1,87 0 0 0,93

1,78 2,34 0,16 0,05 1,07

2,32 0,46 0 0 1,12

0,49 0,82 0,47 0,15 1,02

0,43 1,1 40,59 18,97 1,1

1,1 3,85 0 0 1,17

1,73 6,88 0 0 1,32

2,01 2,2 0 0 1,11

1,6 3,02 0 0 0,96

0,49 0,82 0 0 0,9

2 0,82 0 0 1,13

0 0 0 0 1,04

1,47 2 4,8 0,33 1,14
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Table 2: Bioinformatic analysis of the analyzed breakpoints

Cytogenetic 
Band

Case Molecular Breakpoint 250 Kb interval ALU LINE RE

1p34.2 2 RP11-318G20_RP11-632A13 chr1:40,158,249-40,408,249 2,27 0,77

1q32.1 1 RP11-219P13_RP11-1089F13 chr1:203,949,120-204,199,120 1,13 0,78

1q32.1 1 RP11-145I13_RP11-57I17 chr1:205,496,738-205,746,738 0,52 1,55

2q37.1 4 RP11-332L11_RP11-94I20 chr2:234,468,641-234,718,641 0,69 0,94

3p21.31 5 RP11-804H15_RP11-3B7 chr3:49,112,155-49,393,337 4,17 0,16

3p21.31 6 RP11-352L13_RP11-419G15 chr3: 48,395,535-48,645,535 2,37 0,38

3p21.31 7 RP11-316 M24 chr3:48,787,955-49,037,955 4,6 0,45

4p16.2 11 RP11-323F5_RP11-341O1 chr4:4,566,405-4,816,405 1,22 0,54

4p16.3 8 RP11-919N24 chr4:2,277,155-2,527,155 3,37 0,56

4q12 10 RP11-680 M13_RP11-167A8 hr4:58,262,438-58,512,438 0,39 1,34

4q12 10 RP11-622J1_RP11-793H8 chr4:58,796,340-59,046,340 0,5 1,28

6p12.3 12 RP3-347E1_RP11-446F17 chr6: 46,562,151-46,812,151 0,67 1,1

6p12.3 12 RP1-142O9_RP11-28H17 chr6:49,380,518-49,630,518 0,82 1,04

6p21.31 13 RP11-666K4_RP11-652G7 chr6: 36,095,599-36,345,599 1,52 0,82

6p22.1 41 RP11-635O11 chr6:27,927,951-28,177,951 1,2 0,78

6q14.1 14 RP11-1063N1_RP11-422O8 chr6:83,741,988-83,991,988 1,21 0,86

7p14.3 15 RP11-803J20_RP11-350H1 chr7:32,789,214-33,039,214 1,91 0,65

7q22.2 37 RP11-251G23 chr7:104,889,282-105,139,282 2,55 0,5

8p12 38 RP11-346L1_RP11-113G10 chr8:37,576,531-37,826,531 2,13 0,44

9p22.3 46 RP11-307K19_RP11-518K17 chr9:15,456,627-15,734,271 1,47 1,44

9p24.1 50 RP11-1084A8 chr9:6,611,140-6,861,140 3,44 0,34

9q22.31 17 RP11-412A12 chr9:93,506,167-93,756,167 1,18 0,78

10p11.22 39 RP11-241I20 chr10:32,250,540-32,500,540 2,18 0,68

11p15.4 46 RP11-120E20 chr11:3,312,588-3,573,461 1,56 0,64

11q12.1 50 RP11-624G17 chr11:56,933,830-57,183,830 2,55 0,44

11q13.1 19 RP11-665N17 chr11:64,231,470-64,481,470 2,03 0,24

11q13.1 19 RP11-821O7_RP11-755F10 chr11:65,514,670-65,764,670 1,28 1,4

11q14.2 48 RP11-185J12 chr11: 85,624,712-85,874,712 1,45 1,09

11q21 20 RP11-8N17 chr11:95,707,670-95,957,670 0,45 1,6

11q24.2 48 RP11-417F7 chr11:124,646,245-124,896,245 1,21 0,52

12p13.32 43 RP11-319E16 chr12:5,129,118-5,379,118 0,41 0,94

12q13.13 41 RP11-199A1_RP11-714I16 chr12:50,354,699-50,604,699 1,17 0,52
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w 12q13.2 22 RP11-559I11_RP11-973D8 chr12:54,434,528-54,684,528 2,86 0,38 1,65 6,35 0,48 0,48 1,11

12q23.3 21 RP11-643D8_RP11-711H11 chr12:103,184,790-103,434,790 1,41 0,58 1,33 2,33 0 0 1,07



0,98 0,33 0 0 1,01

1,91 4,67 0 0 1,25

2,18 1,67 0 0 1,1

2,43 3,5 0 0 0,98

2,09 4,38 0 0 1,06

1,38 10,02 0 0 1,16

0,81 0,41 0 0 1,01

1,07 2,5 0,44 0,44 1,07

2,38 2,92 0 0 1,14

1,7 3,7 0,41 0,14 0,96

1 8,53 3,28 2,71 1,19

1 8,53 3,28 2,71 1,19

0,82 1,48 6,78 5,58 1,2

0,39 0,28 6,11 5,91 0,93

1,86 5,1 0 0 1,21

1,56 6,66 0,29 0 1,1

1,49 0,52 0,58 0,23 1,02

0,47 2,45 1,59 1,92 1,1

0,22 0,87 0,29 0,93 1,2

0,93 1,77 0 0 1,03

1,47 4,29 1,87 0,91 1,27

1,77 2,67 0 0 0,98

1,57 2,67 0 0 1,04

3,32 1,95 0 0 0,97

e reported values were normalized to the mean value for 
r breakpoints was identified.
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12q24.21 24 RP11-812F13_RP11-379F8 chr12:114,736,981-114,986,981 0,91 0,86

12q24.31 23 RP11-463O12_RP11-197N18 chr12:121,846,884-122,096,884 2,14 0,57

12q24.31 23 RP11-338K17_RP11-380L11 chr12:122,702,493-122,952,493 2,21 0,72

13q14.12 25 RP11-106H11 chr13:45,408,774-45,658,774 0,98 0,88

13q14.12 25 RP11-24B19 chr13:50,678,660-50,928,660 0,9 0,65

14q11.2 18 RP11-749G5_RP11-298I3 chr14:22,280,500-22,530,500 3,01 0,39

14q24.2 27 RP11-667E7 chr14:71,197,805-71,447,805 1,05 1,2

14q32.31 49 RP11-796G6_RP11-350L3 chr14:101,148,480-101,398,480 1 1,41

14q32.31 49 RP11-114H15_RP11-356L8 chr14:101,630,161-101,880,161 2,78 0,54

15q22.2 27 RP11-74K1 chr15:58,405,774-58,655,774 1,06 0,44

15q24.1 40 RP11-247C2 chr15:72,080,168-72,330,168 1,06 0,56

15q24.1 49 RP11-247C2 chr15:72,080,168-72,330,168 1,06 0,56

15q24.3 28 RP11-20 M10 chr15:75921863-76171863 0,88 0,47

16p11.2 29 RP11-779B17 chr16:31,765,790-32,015,790 2,15 0,56

16q24.3 30 RP11-79A1 chr16:88,199,243-88,449,243 1,92 0,21

17p13.1 30 RP11-89D11 chr17:7,395,110-7,645,110 1,66 0,64

17p13.3 33 RP5-1029F21 chr17:267,052-517,052 1,11 1,18

17q21.2 31 RP11-156A24 chr17:36,799,760-37,049,760 0,39 0,52

17q25.3 32 RP11-46E14 chr17:75,272,119-75,522,119 0,83 0,63

19q13.32 34 RP11-846 M4 chr19:51,871,627-52,121,627 1,41 0,64

20q13.33 42 RP4-591C20_RP11-266K16 chr20:62,058,835-62,308,835 0,95 0,29

21q22.13 35 RP11-315B15_RP11-777J19 chr21:37,536,287-37,809,765 2,2 0,89

21q22.13 35 RP11-105O24_RP11-1021I19 chr21:37,747,110-37,997,110 0,98 1,02

Xq13.1 36 RP11-69L22_RP11-237F13 chrX:68,788,268-69,038,268 0,66 1,58

The 250 Kb size intervals covering the molecular breakpoints were analyzed for the presence of Alu, LINE, RefSeq Genes, SDs, and GC. Th
each chromosome. In cases characterized by sequences deletions or the involvement of several chromosomes, more than one molecula

Table 2: Bioinformatic analysis of the analyzed breakpoints (Continued)
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regions (Fig. 2D). In detail, in 30 (94%) and 2 out of 32
(6%) breakpoints a higher or lower number of miRNA
than the expected value was identified, respectively (Fig.
2D). In the remaining 26 out of 58 (45%) breakpoints no
miRNA was revealed in the 4 Mb analyzed intervals. It is
noteworthy that in case #49 with an additional
t(14;15)(q32;q24) a miRNA cluster of 54 elements was
revealed in the 14q32 breakpoint region. In this patient a

microdeletion of about 450 Kb was detected on 14q32,
resulting in the loss of almost the entire miRNA cluster.
The list of miRNAs found at the breakpoints is reported
in Table 4; in addition to the 14q32 miRNA cluster a total
number of 63 known miRNA was identified, 8 (13%) of
which show involvement in hematological malignancies.
Moreover, querying the miRGen database (the intersec-
tion data from the miRanda, PicTar, and TargetScan pro-

Figure 2 Histograms representing the frequency distribution of genomic features in the breakpoint regions. All values shown for Alu (A), Ref-
Seq Genes Item count (B), GC (C), and miRNAs (D) are reported in logarithmic scale. Chromosomal bands with a null value were excluded from the 
analysis. The observed distribution of miRNAs within 4 Mb intervals (brown) was compared to the expected mean value for each chromosome (or-
ange).
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Table 3: Genes with known function identified in breakpoint regions

Cytogenetic Band Case Molecular Breakpoint Breakpoint region Deleted region

1p34.2 2 RP11-318G20_RP11-632A13 chr1:40,270,704-40,309,712

1q32.1 1 RP11-1089F13_RP11-145I13 chr1:203,989,316-2

2q37.1 4 RP11-332L11_RP11-94I20 chr2:234,593,254-234,594,028

3p21.31 5 RP11-804H15_RP11-3B7 chr3:49,112,155-49,222,551

3p21.31 6 RP11-352L13_RP11-419G15 chr3:48,468,265-48,572,806

3p21.31 7 RP11-316 M24 chr3:48,859,939-48,965,972

4p16.2 11 4ptel_RP11-341O1 chr4:0-4,673,371

4p16.3 8 RP11-919N24 chr4:2,317,528-2,486,782

4q12 10 RP11-167A8_RP11-622J1 chr4:58,389,737-58

6p12.3 12 RP11-446F17_RP1-142O9 chr6: 46,562,151-4

6p21.31 13 RP11-666K4_RP11-652G7 chr6:36,174,067-36,267,130 chr6:46,715,042-49

6p22.1 41 RP11-635O11 chr6:27,960,335-28,145,568

6q14.1 14 RP11-1063N1_RP11-422O8 chr6:83,875,190-83,886,368

7p14.3 15 RP11-803J20_RP11-350H1 chr7:32,469,044-33,359,385

7q22.2 37 RP11-251G23 chr7:104,957,075-105,071,488

8p12 38 RP11-346L1_RP11-113G10 chr8:37,687,186-37,715,876

9p22.3 46 RP11-307K19_RP11-518K17 chr9:15,455,865-15,456,627

9p24.1 50 RP11-1084A8 chr9:6,611,140-6,861,140

9q22.31 17 RP11-412A12 chr9:93,553,640-93,708,694

10p11.22 39 RP11-241I20 chr10:32,303,829-32,447,252

11p15.4 46 RP11-120E20 chr11:3,573,461-3,758,006

11q12.1 50 RP11-624G17 chr11:56,953,550-57,164,109

11q13.1 19 RP11-665N17_RP11-821O7 chr11:64,481,470-6

11q14.2 48 RP11-185J12_RP11-417F7 chr11: 85,874,712-

11q21 20 RP11-8N17 chr11:95,755,457-95,909,884

12p13.32 43 RP11-319E16 chr12:5,163,930-5,344,301

12q13.13 41 RP11-199A1_RP11-714I16 chr12:50,423,209-50,425,214

12q13.2 22 RP11-559I11_RP11-973D8 chr12:54,583,954-54,618,511
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12q24.31 23 RP11-197N18_RP11-338K17 chr12:121,978,125

13q14.12 25 RP11-106H11_RP11-24B19 chr13:45,658,774-5

14q11.2 18 RP11-749G5_RP11-298I3 chr14:22,375,744-22,435,254

14q24.2 27 RP11-667E7 chr14:71,230,541-71,415,068

14q32.31 49 RP11-350L3_RP11-114H15 chr14:101,273,490

15q22.2 27 RP11-74K1 chr15:58,530,516-58,531,032

15q24.1 40 RP11-247C2 chr15:72,158,366-72,251,969

15q24.1 49 RP11-247C2 chr15:72,158,366-72,251,969

15q24.3 28 RP11-20 M10 chr15:75,965,658-76,128,067

16p11.2 29 RP11-779B17 chr16:31,786,062-31,995,517

16q24.3 30 RP11-79A1 chr16:88,125,792-88,522,693

17p13.1 30 RP11-89D11 chr17:7,436,436-7,603,767

17p13.3 33 RP5-1029F21 chr17:343,377-440,727

17q21.2 31 RP11-156A24 chr17:36,841,610-37,007,910

17q25.3 32 RP11-46E14 chr17:75,316,874-75,477,363

19q13.32 34 RP11-846 M4 chr19:51,889,293-52,103,962

20q13.33 42 RP4-591C20_RP11-266K16 chr20:62,100,354-62,267,316

21q22.13 35 RP11-777J19_RP11-105O24 chr21:37,641,259-3

Xq13.1 36 RP11-69L22_RP11-237F13 chrX:68,857,148-68,969,387

The number of the genes with known function mapping in the breakpoint regions or located inside the deleted regions was reported for e
according to the NCBI.

Table 3: Genes with known function identified in breakpoint regions (Continued)
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Table 4: Known miRNA mapped at the breakpoint regions.

Cytogenetic Band miRNA miRNA position Hematologic Malignancies 
involvement

1p34.2 mir-30e chr1:40,992,614-40,992,705 no

mir-30c-1 chr1:40,995,543-40,995,631 no

1q32.1 mir-135b chr1:203,684,053-203,684,149 no

mir-29c chr1:206,041,820-206,041,907 CLL36,37, ALL37

mir-29b-2 chr1:206,042,411-206,042,491 AML38, ALL38

mir-205 chr1:207,672,101-207,672,210 no

2q37.1 mir-562 chr2:232,745,607-232,745,701 no

3p21.31 mir-1226 chr3:47,866,049-47,866,123 no

mir-425 chr3:49,032,585-49,032,671 no

mir-191 chr3:49,032,805-49,033,396 AML39, ALL40

mir-566 chr3:50,185,763-50,185,856 no

4p16.3 mir-943 chr4:1,957,909-1,958,002 no

mir-571 chr4:333,946-334,041 no

6p12.3 mir-586 chr6:45,273,389-45,273,485 no

7p14.3 mir-550-2 chr7:32,739,118-32,739,214 no

mir-548n chr7:34,946,897-34,946,971 no

11p15.4 mir-675 chr11:1,974,565-1,974,637 no

mir-483 chr11:2,111,940-2,112,015 no

11q12.1 mir-130a chr11:57,164,997-57,165,585 no

11q13.1 mir-1237 chr11:63,892,650-63,892,751 no

mir-192 chr11:64,414,935-64,415,544 no

mir-194-2 chr11:64,415,153-64,415,737 no

mir-612 chr11:64,968,505-64,968,604 no

11q21 mir-548l chr11:93,839,309-93,839,394 no

12p13.32 mir-200c chr12:6,942,873-6,943,440 no

mir-141 chr12:6,943,271-6,943,865 no

12q13.13 mir-1293 chr12:48,914,192-48,914,262 no

12q13.2 mir-196a-2 chr12:52,671,789-52,671,898 no

mir-615 chr12:52,714,001-52,714,096 no

mir-148b chr12:53,017,267-53,017,365 no

mir-1228 chr12:55,874,554-55,874,626 no

mir-616 chr12:56,199,213-56,199,309 no

mir-26a-2 chr12:56,504,409-56,504,992 no

13q14.12 mir-16-1 chr13:49,521,110-49,521,198 CLL41, MDS42

mir-15a chr13:49,521,006-49,521,588 CLL43, MM44

14q11.2 mir-208a chr14:22,927,645-22,927,715 no

mir-208b chr14:22,957,036-22,957,112 no

14q32.31 miRNA cluster 1 chr14:99,645,745--101,096,512 AML45, B-cell malignancies46

14q32.31 miRNA cluster 2 chr14:99,645,745-103,653,604 AML45, B-cell malignancies46

15q24.1 mir-630 chr15:70,666,612-70,666,708 no

mir-631 chr15:73,433,005-73,433,079 B cell lymphomas47

15q24.3 mir-184 chr15:77,289,185-77,289,268 no

16p11.2 mir-1826 chr16:33,873,009-33,873,093 no
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grams) allowed the identification of the predicted target
genes in 19 out of 63 (30%) analyzed miRNAs (see Addi-
tional File 1). Among the identified target genes, several
play a role as oncogenes or TSGs (see Additional File 1).
Noteworthy, some miRNAs share the same target onco-
genes or TSGs; for example, PPM1D (protein phos-
phatase, Mg2+/Mn2+ dependent, 1D) and AKT3 (v-akt
murine thymoma viral oncogene homolog 3) genes are
the most frequent miRNAs targets (see Additional File 1).

Identification of cytogenetic hotspots
Our study revealed 46 cytogenetic breakpoints on other
chromosomes involved in variant t(9;22) rearrangements
(see Additional File 2). The assessment of the O/E ratio
for each breakpoint allowed us to identify 24 hotspots, 12
of which have been previously described in literature [26]
(see Additional File 2). Notably, 4 out of 12 new hotspots
showed a ratio >2 involving the chromosomal bands
4q12, 9p11, 11q21 and 21q22 (see Additional File 2).

To investigate the breakpoints distribution in the
genome, a review of literature data about variant t(9;22)
following the study by Fisher et al. was carried out [4,30-
33]. In total, 60 new hotspots were identified, 18 of which

have already been reported [26]. However, 10 previously
published hotspots were not supported by our literature
review (see Additional File 2). Among the 60 new
hotspots, 27 showed an O/E ratio > 2.

Treatment response
Data on the response to treatment in the analyzed CML
patients were only available for about 50% of the cases; a
summary is shown in Table 5. All the cases evaluable for
the response to interferon-α therapy were non respond-
ers whereas 11 out of 17 (65%) cases treated with imatinib
achieved cytogenetic response. Among patients resistant
to imatinib, 3 (75%) treated with dasatinib achieved
CCyR.

Discussion
Literature data indicate that breakpoints on additional
chromosomes involved in CML cases with variant t(9;22)
are not distributed randomly in the genome but show
hotspots [26]. Several genomic features such as the den-
sity of CpG islands, genes, Alu repeats, recombination
events, openness of the chromatin structure and tran-

17p13.1 mir-195 chr17:6,861,408-6,861,994 CLL37, ALL37

mir-497 chr17:6,861,954-6,862,065 no

mir-324 chr17:7,067,340-7,067,422 no

17p13.3 mir-22 chr17:1,563,947-1,564,031 no

mir-132 chr17:1,899,952-1,900,052 T-cell leukemia48

mir-212 chr17:1,900,315-1,900,424 no

17q25.3 mir-657 chr17:76,713,671-76,713,768 no

mir-338 chr17:76,714,278-76,714,344 no

mir-1250 chr17:76,721,591-76,721,703 no

19q13.32 mir-330 chr19:50,834,092-50,834,185 no

mir-642 chr19:50,870,026-50,870,122 no

mir-769 chr19:51,214,030-51,214,147 no

mir-220c chr19:53,755,341-53,755,423 no

20q13.33 mir-1-1 chr20:60,561,708-60,562,278 no

mir-133a-2 chr20:60,572,314-60,572,915 no

mir-124-3 chr20:61,280,297-61,280,383 no

mir-941-1 chr20:62,021,238-62,021,326 no

mir-941-2 chr20:62,021,545-62,021,633 no

mir-941-3 chr20:62,021,657-62,021,745 no

mir-1914 chr20:62,043,262-62,043,341 no

mir-647 chr20:62,044,428-62,044,523 no

21q22.13 mir-802 chr21:36,014,883-36,014,976 no

For each cytogenetic band identified in this study are reported known miRNAs, the mapping position derived from the UCSC database 
querying, and their implication in hematological malignancies according to literature data.

Table 4: Known miRNA mapped at the breakpoint regions. (Continued)
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Table 5: Response to treatment of 50 CML patients included in the study

Case Hydroxyurea Interferon-α Imatinib Nilotinib Dasatinib

#1 NE NE NR NR CCyR

#2 NE NE CCyR NE NE

#3 NA NA NA NA NA

#4 NA NA NA NA NA

#5 NE NE CCyR NE NE

#6 NE NE NR NE NE

#7 NA NA NA NA NA

#8 NA NA NA NA NA

#9 NA NA NA NA NA

#10 NA NA NA NA NA

#11 NE NR NE NE NE

#12 NR* NE NE NE NE

#13 NE NE CCyR NE NE

#14 NA NA NA NA NA

#15 NA NA NA NA NA

#16 NA NA NA NA NA

#17 NE NE CCyR NE NE

#18 NA NA NA NA NA

#19 NE NE CCyR NE NE

#20 NA NA NA NA NA

#21 NE NE CCyR NE NE

#22 NA NA NA NA NA

#23 NA NA NA NA NA

#24 NA NA NA NA NA

#25 NE NR NR NE CyCR

#26 NE NR CCYR NE NE

#27 NA NA NA NA NA

#28 NA NA NA NA NA

#29 NA NA NA NA NA

#30 NE NE CCyR NE NE

#31 NE NE NR NE NE

#32 NA NA NA NA NA

#33 NA NA NR NE NR

#34 NA NA NA NA NA

#35 NE NE CCyR NE NE

#36 NA NA NA NA NA

#37 NR* NE NE NE NE

#38 NE NR NE NE NE

#39 NA NA NA NA NA

#40 NE NR NE NE NE

#41 NE NR PCyR NE NE

#42 NA NA NA NA NA

#43 NE NR CCyR NE NE

#44 NA NA NA NA NA

#45 NA NA NA NA NA

#46 NE CHR NE NE NE

#47 NA NA NA NA NA

#48 NE NR NE NE NE

#49 NE NR NR NE CCyR

#50 NA NA NA NA NA

NE = Not Evaluable; NA = Not Available; NR = Non Responder; CCyR = Complete Cytogenetic Response; CHR = Complete Hematologic Response; 
PcyR = Partial Cytogenetic Response; * = patient who died in the pre imatinib era, of blast crisis.
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scription activity have been correlated to the occurrence
of breakpoints in variant t(9;22) cases [26,33,34].

In this study, we have performed for the first time a pre-
cise molecular cytogenetic characterization of break-
points involved in variant t(9;22) or in additional
rearrangements, in 50 CML cases. To identify genomic
elements with a role in the occurrence of chromosomal
translocations, bioinformatic analysis was carried out to
investigate the distribution and density of several
genomic features, such as Alu, LINE, GC, SDs, miRNAs,
and genes at breakpoint regions. To date, according to the
miRBase database http://www.mirbase.org[35] the total
number of known miRNAs is very low (about 720) as
compared to the human genome size (3.1 × 109 bp). In
this study the miRNAs density within the 4 Mb analyzed
intervals resulted higher than the expected value in 32
out of 58 (55%) breakpoint regions. These findings sug-
gest a potential role for miRNAs in the pathogenesis of
CML cases with variant or additional chromosomal rear-
rangements. Few miRNAs located at breakpoint regions
have previously been described in several hematological
malignancies [36-48]. However, none of them was
involved in CML. It is worth noting the presence of the
miRNA cluster next to the breakpoint region in 14q32
(case #49). miRNAs in this region are organized in an
imprinted domain regulated by a differentially methy-
lated region located upstream of the miRNA cluster. It
has been reported that these miRNAs act as tumor sup-
pressor genes and that changes in their methylation sta-
tus could promote tumor development [49]. Querying of
miRGen and NCBI databases showed the involvement of
interesting target oncogenes or TSGs implicated in a
wide variety of biological processes including cell prolif-
eration, differentiation, apoptosis, and tumorigenesis.

Increasing evidence shows a high density of inter-
spersed repetitive elements, such as Alu and LINE, at
some chromosomal translocation breakpoints, suggest-
ing a mediator role of some recurrent rearrangements in
tumors [50]. Because a much higher density of Alu
repeats has been observed in the DNA sequences flank-
ing the ABL1 and BCR genes, it has been hypothesized
that Alu elements provide hotspots for non allelic homol-
ogous recombination and mediate chromosomal translo-
cation in CML [34,50]. Our data, supported by
bioinformatic evidence, suggest that the high density of
Alu repeats could increase the propensity to undergo
rearrangements also of other chromosomes involved in
variant t(9;22). In our CML series, a high Alu density was
detected in 71% of the analyzed breakpoints. Moreover, a
rich content of Alu repeats was revealed also on break-
point regions identified in chromosomal rearrangements
concomitant to the t(9;22).

Literature data revealed a preferential breakpoints dis-
tribution in CML cases with variant t(9;22) within the

CG-richest regions of the genome corresponding to the
G-light banding karyotype [26,33]. Our data confirmed
this association, as 83% of the identified cytogenetic
breakpoints mapped inside G-light bands. Moreover, we
report the first bioinformatic evidence of the association
between GC-content and breaks in cases with variant
t(9;22), as 73% of the molecular breakpoints showed a GC
content >1. In addition, these data showed that CG rich-
ness was related to other genomic features such as Alu
content and a greater gene density than the mean
expected value.

The search for SDs revealed a low density in the major-
ity of the analyzed breakpoints, without showing any spe-
cific association with chromosomes 9 and 22 regions,
unlike what has been reported about the occurrence of
the t(9;22) in CML [51].

Moreover, our study provided an outline of the fre-
quency and molecular features of the most relevant cyto-
genetic groups identified in a very large series of CML
patients at diagnosis. Three-way translocations were the
most frequent among variant t(9;22) rearrangements,
chromosomes 4, 6, 12, and 17 being common partners.
However, no cytogenetic breakpoints clustering was
revealed when the same partner chromosome was rear-
ranged, except for the 3p21 band, that was involved in 3
CML cases with variant t(9;22).

As to the mechanisms involved in the formation of the
variant t(9;22) rearrangements, our data indicated that
the most probable mechanism, identified in cases with a
"masked der(9)" chromosome, is a single event consisting
of multiple simultaneous breaks and rejoins (one-step
model). In fact, splitting of the 5'ABL1/3'BCR fusion gene
signal was observed in the majority (27 out of 36, 75%) of
analyzed cases. A two-step mechanism was hypothesized
in about 11% of cases bearing a "masked der(9)" chromo-
some; the permanence of the 5'ABL1/3'BCR gene on the
der(9) suggests that a second break occurred inside the
chromosome 22 sequence telomeric to the BCR gene. On
the contrary, in 71.4% of cases (#37 - #41) with a "masked
Ph" chromosome a second break located proximally to
BCR or distally to ABL1 was identified, suggesting the
occurrence of a two-step mechanism in the majority of
the CML patients included in this group.

In our study, FISH 'walking' with BAC/PAC contigs
belonging to the chromosomes 9 and 22 next to the
t(9;22) breakpoint regions allowed us to assess the fre-
quency of deletions in three main cytogenetic subgroups
of CML patients and the size of these microdeletions.
Confirming the deletion frequency reported in literature
[12], 12 out of the 36 (33%) cases with a "masked der(9)"
chromosome showed chromosome 9 and/or 22
sequences loss. Moreover, in about 55% of these patients
we found extensive genomic deletions on the third chro-
mosome, in addition to deletions on der(9). Chromosome

http://www.mirbase.org
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9 sequences deletions were detected in 3 out of 6 (50%)
cases with a masked Ph (#39, #41, and #43) and in 1 out of
4 (25%) Ph- cases (#44). These frequencies are higher than
the value recently reported in literature [18].

The biological significance and the prognostic impact
of the cytogenetic molecular heterogeneity occurring in
the generation of the 5'BCR/3'ABL1 fusion gene remain
to be clarified. However, the bioinformatic analysis per-
formed in this study on a large number of breakpoints in
CML cases with variant t(9;22) or additional chromo-
somal alterations revealed that the rearranged regions are
characterized by an elevated content of miRNAs, Alu
repeats, GC and known genes.

In conclusion, this genomic analysis of breakpoint
regions provides clues to a better understanding of the
pathogenetic mechanisms that underlie CML onset. Fur-
ther analyses will be needed to demonstrate the func-
tional meaning of these genomic features.

List of abbreviations
(CP-CML): Chronic Myeloid Leukemia; (FISH): Fluores-
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