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Abstract

Background: Gene expression profiling of spontaneous tumors in the dog offers a unique
translational opportunity to identify prognostic biomarkers and signaling pathways that are
common to both canine and human. Osteosarcoma (OS) accounts for approximately 80% of all
malignant bone tumors in the dog. Canine OS are highly comparable with their human counterpart
with respect to histology, high metastatic rate and poor long-term survival. This study investigates
the prognostic gene profile among thirty-two primary canine OS using canine specific cDNA
microarrays representing 20,313 genes to identify genes and cellular signaling pathways associated
with survival. This, the first report of its kind in dogs with OS, also demonstrates the advantages of
cross-species comparison with human OS.

Results: The 32 tumors were classified into two prognostic groups based on survival time (ST).
They were defined as short survivors (dogs with poor prognosis: surviving fewer than 6 months)
and long survivors (dogs with better prognosis: surviving 6 months or longer). Fifty-one transcripts
were found to be differentially expressed, with common upregulation of these genes in the short
survivors. The overexpressed genes in short survivors are associated with possible roles in
proliferation, drug resistance or metastasis. Several deregulated pathways identified in the present
study, including Wnt signaling, Integrin signaling and Chemokine/cytokine signaling are comparable
to the pathway analysis conducted on human OS gene profiles, emphasizing the value of the dog as
an excellent model for humans.

Conclusion: A molecular-based method for discrimination of outcome for short and long
survivors is useful for future prognostic stratification at initial diagnosis, where genes and pathways
associated with cell cycle/proliferation, drug resistance and metastasis could be potential targets
for diagnosis and therapy. The similarities between human and canine OS makes the dog a suitable
pre-clinical model for future 'novel' therapeutic approaches where the current research has
provided new insights on prognostic genes, molecular pathways and mechanisms involved in OS
pathogenesis and disease progression.
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Background

Naturally occurring cancer in the dog has been repeatedly
emphasized as an excellent model for humans, because
similarities in histology, tumor biology, disease progres-
sion and response to conventional therapies offer a
unique translational opportunity in the broader prospect
of cancer research. Since the release of the canine genome
in 2005, dog spontaneous tumors have been in the spot-
light for 'state-of-the-art' linkage to preclinical human
cancer research, where strong similarities in cancer associ-
ated gene families were found when comparing the
humans to dog [1]. Among the tumors of the dog, oste-
osarcoma (OS), an aggressive malignant bone tumor that
occurs spontaneously, is one of the most outspoken and
invaluable cancer for comparative oncology studies [2].
Commonly affected dog breeds include the large-to-giant
breeds [3-6]. The median age of dogs affected with OS is
around 7 to 10 years, with a subset of tumors arising in
younger dogs (18-24 months). The appendicular skeleton
is affected in 77% of the dogs, implying an association
with rapid early bone growth [3,7] as well as with
increased stress on weight bearing areas of the limb.
Affected dogs often present with progressive lameness,
hard bony swelling or even pathological fracture of the
affected bone [8,9]. No strong sex predilection is noted,
although males are overrepresented in most studies. His-
tologically, OS is a heterogeneous tumor that in addition
to producing an osteoid matrix, can also present with a
fibroblastic and cartilaginous matrix. OS is commonly
subdivided into osteoblastic, fibroblastic, telangiectatic,
chondroblastic and mixed forms classifications [10].

The prognosis of dogs with OS is unfortunately poor,
mainly due to its fast spreading nature; by the time the
tumor is found at the primary site, most have already
metastasized [11], usually to the lungs, or less frequently
in bone and other soft tissues [12]. The goal of therapy is
to remove the primary tumor and detectable metastases as
well as to initiate multimodal chemotherapy to eradicate
micrometastases. The prognosis varies with the type of
surgery and chemotherapy [13,14]. The prognosis for
dogs without surgery and adjuvant chemotherapy is poor,
with a median survival time of 1-3 months. With amputa-
tion alone, median survival time can vary from 1 to 6
months [12,15,16]. Some dogs develop metastases within
4 months regardless of the therapy modality, while others
survive for longer periods of time [17]. One of the key fac-
tors contributing to intensified proliferative activity of the
tumor in dogs leading to poor outcome is the deregula-
tion of cellular signals, including growth factors and hor-
mones [18,19]. This poor prognosis feature is comparable
to human OS, where there is still ample room for new
therapeutics development, primarily to eradicate
micrometastases and improve survival.

http://www.molecular-cancer.com/content/8/1/72

Recent advances in human cancer management have
focused on molecular targeted therapies where high
throughput screening technologies have been incorpo-
rated to identify novel markers for cancer pathogenesis
and specific characterizations of tumors. Over the last dec-
ade, gene expression profiling has been able to identify
key genes and cellular signaling pathways involved in
development and progression of human OS. Microarray
technology, a robust method for analyzing global gene
expression profiles has been incorporated in those stud-
ies. In line with this technology, human OS cell lines have
been compared with normal human osteoblasts to pro-
vide insights into genes that are involved in OS tumori-
genesis [20]. Aside from the conventional comparisons
between tumor and normal tissues, other comparisons
have been conducted in human OS, including the differ-
ential analysis of metastatic tumors compared with less
aggressive tumor models [21], gene expression profiling
that predicts response to chemotherapy [22] and molecu-
lar classification of chemotherapy resistant pediatric OS
[23]. The use of these genetic markers for diagnosis and/
or prognosis in canine OS is not completely understood
and to date no such prognostic global gene profiling have
been carried out for the dog.

Thus, for comparative pathobiology and new drug discov-
ery arenas, it would be useful to stratify dogs at diagnosis
into 'poor' and 'good' outcome groups based on tumor
gene expression profiles. To address this issue, a canine-
specific cDNA microarray representing 20,313 genes was
used to differentiate the gene expression profile of tumors
from dogs that survived less than 6 months from the pro-
files of those that survived longer. The survival-associated
genes and cellular signaling pathways based on global
gene expression profiles of thirty-two primary canine OS
are identified. Molecular profiling of canine OS with
known survival times will help define tumor biology per-
taining to prognosis and facilitate future targeted thera-
pies.

Results

Retrospective clinical - histological data analysis

The 32 dogs in this study varied in clinicopathological
parameters (Table 1). The present experimental design
hereby defines dogs with poor prognosis (short survivors,
SS) as those surviving less than 6 months and favorable
prognosis (long survivors, LS) as those dogs with survival
of 6 months or longer. The overall survival times (ST) of
these dogs were between 6 and 1752 days with a median
value of 204 days. Dogs with poor prognosis (SS) had a ST
of 6-169 days (<6 months); while the better prognosis
group (LS) had a ST of 239-1752 days (>6 months).
Beside the distinction in survival time between these two
groups, the SS group also exhibited a significantly shorter
disease free interval in a Kaplan-Meier survival analysis
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Table I: Summary of clinical and histology data from 32 dogs used in this study

SURVIVAL
GROUP

SHORT
SHORT
SHORT
SHORT
SHORT
SHORT
SHORT
SHORT

SHORT
SHORT
SHORT
SHORT
SHORT

SHORT

SHORT
SHORT
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG

LONG

ARRAY

0O NNV A WD —

9

10
I
12
13

14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32

SURVIVAL TIME
(days)

36
79
13
169
121
66
119
66

77
164
140
6l
50

47

65
6
352
274
1752
307
1619
1185
1289
257
445
284
239
705
348
312
920

312

AGE
(Year, Month)

9,2
8,8
2,6
4.8
79
9.8
7,1

11,6

7,0
6,7
7.4
58
11,9

6,8

6,2
6,1

9.8
8,8
3,8
43

3,7
23

50
8,4
10,4
7,0
8,4
8,3

9,0
58
7.3

10,2

SEX

TTMmXXXXXTIXT

X7mXXX

X" MMM AT MIIIINI M

X

BREED

Boxer
Vizsla
Labrador retriever
Great Dane
Rottweiler
Dobermann
Rottweiler
Belgian Shepherd
(tervuren)
Great Dane
Dobermann
Rottweiler
Great Dane
Belgian Shepherd
(tervuren)
Rhodesian
ridgeback
Great Dane
Rottweiler
Dobermann
cross
Stabyhoun
Great Dane
Siberian husky
Flatcoat retriever
Rottweiler
Bouvier
Scottish collie
cross
Rottweiler
cross
Mastiff
Mastiff
Belgian Shepherd
(malinois)
Rottweiler

TUMOR
LOCATION

Rib
distal radius
proximal humerus
distal radius
proximal humerus
ulna
distal femur
proximal humerus

distal tibia

distal tibia
distal radius & ulna

distal femur
distal tibia & fibula

distal femur

proximal humerus
mandible
proximal tibia
ulna
extraskeletal
distal radius
mandible
rib
distal radius
distal radius
distal radius
distal radius
scapula
metatarsus
distal radius
scapula
mandible

distal femur

HISTOLOGY
SUBTYPE

OB/CB/FB
OB

OB
OB/FB
OB/CB/FB
OB/TL
OB

OB

OB/FB
CB
OB/FB
OB
OB

OB/FB

OB/CB
OB/FB
OB/FB
OB/FB/TL
OB/FB
CB
OB/TL
OB/TL
OB/FB
OB/FB
OB
OB/CB
OB/FB

FB

OB
OB/FB
OB/FB/CB

OB/CB

HISTOLOGY
GRADE

highly malignant
highly malignant
highly malignant
highly malignant
medium malignant
medium malignant
highly malignant
highly malignant

highly malignant
highly malignant
highly malignant
medium malignant
highly malignant

highly malignant

highly malignant
highly malignant
medium malignant
medium malignant
highly malignant
medium malignant
highly malignant
highly malignant
highly malignant
highly malignant
highly malignant
highly malignant
highly malignant
low malignant
highly malignant
highly malignant
highly malignant

highly malignant

POST OPERATIVE
CHEMOTHERAPY

No
Yes
No
Yes
Yes
No
Yes
Yes

Yes
No
No
Yes
No

Yes

Yes
No
Yes

Yes
Yes
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No

Yes

Abbreviations: M, male; F, female; OB, osteoblastic; CB, chondroblastic; FB, fibroblastic; TL, telangiectic; highly malignant, Grade 3; medium malignant, Grade 2; low malignant, Grade |.
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(Figure 1). Fisher's exact test revealed no significant differ-
ences in discrete data distribution between the 2 groups of
survival with respect to sex, neuter status, histological
grade and postoperative chemotherapy, the exception
being metastatic disease status (P < 0.018). This is because
metastatic disease was seen in all dogs in the short survi-
vor's group while 6 dogs from the long survivors' group
did not develop metastasis before death (died due to
other causes); this was censored for subsequent analyses
(Table 2). Tumors were located mostly at appendicular
sites, but other locations such as mandible, rib, scapula,
metatarsus and extraskeletal were also present. Further
potential confounders identified through a univariable
Cox regression analysis of the whole population (n = 32)
included histological grade, postoperative chemotherapy,
alkaline phosphatase (ALP) measurement at diagnosis,
sex, age and neuter status (Additional file 1). Alkaline
phosphatase (ALP) level and age at presentation were
found to have P values of less than 0.15 and were then fur-
ther subjected to multivariate analysis. Elevation of serum
ALP is a known negative prognosticator in dogs with OS
and this is apparently also true here, multivariate analysis
using the ALP data available for the dogs in this study (n
= 23) showed this confounder to be significantly associ-
ated with survival (HR = 1.005; CI: 1.000-1.009 with cor-
responding P value of 0.035).

Although the small population size in the present study is
unlikely to show significant differences, it is important to
identify any possible confounding factors that may influ-
ence survival/prognosis and should be considered when
interpreting the expression data at biological levels. In
both survival groups, dogs were subjected to a variety of

http://www.molecular-cancer.com/content/8/1/72

single agent therapies, including lobaplatin, doxorubicin
or carboplatin; or a combination of carboplatin and dox-
orubicin. Some were treated with postoperative chemo-
therapy and some not, and Kaplan-Meier analysis showed
that chemotherapy did not significantly prolong survival
in the overall population (log rank score 1.353, P value
0.245), neither among short survivors (log rank score
0.460, P value of 0.498) nor among long survivors (log
rank score 0.033, P value 0.857) separately (Figure 2).
Although these survival curves only represent bivariable
analyses (treated vs. not treated) that do not include all
confounding variables, a separate univariable and subse-
quent multivariable statistical model with inclusion of
variables such as histological grade, alkaline phosphatase,
neuter status, gender and age upon chemotherapy stratifi-
cation revealed that none of the variables appeared to
have influenced survival significantly (Additional file 2).
An additional important insight from the long survival
group is that all 4 dogs that were censored from the study
(death due to other causes and no apparent metastatic dis-
ease until death) received postoperative chemotherapy,
which suggests possibilities that these dogs had
responded reasonably well to the chemotherapeutic
regime. Finally, since both survival groups consist of com-
parable heterogeneous populations of dogs and poor sur-
vivors tend to have higher ALP measurements, the
arbitrary but defendable approach to a binary distinction
of 'good' and 'poor' outcome based on 6 month survival
time is supported for further gene expression profiling.

Microarray data analysis
Comparison of short and long survivors using two-class
unpaired Significance Analysis of Microarrays (SAM)

Table 2: Distribution of variables between the SS and LS groups by Fisher's exact test

Parameter Short survivors Long survivors (Fisher's exact test)
P value

n n

Gender >0.999

Male 9 9

Female 7 7

Neuter status >0.999

Neutered 5 6

Intact I 10

Metastasis present at time of death 0.018%*

Yes 16 10

No 0 6

Postoperative chemotherapy 0.458

No 7 4

Yes 9 12

Histological grade >0.999

Low and medium 3 4

High 13 12

Analysis on discrete variables comparing the short and long survivors revealed no significant differences in the distribution of variables assessed

except for metastatic disease status. **Significance defined as P < 0.05.
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Kaplan-Meier survival analysis comparing long survivors (LS) and short survivors (SS) of dogs with OS. (A) Sur-
vival time (ST) and (B) disease free interval (DFl) Kaplan-Meier product limit estimate revealed differences in ST with signifi-
cance of P < 0.0001 (log rank test of 36.58) and DFl with P < 0.0001 (log rank test of 28.35).

revealed fifty-one genes that were differentially regulated
at a false discovery rate (FDR) of 10%. All these genes were
found to be upregulated in the SS group where 37 of them
were upregulated with a fold change of more than 1.4
(Table 3). Of the 37 genes, 8 were not functionally anno-
tated for the dog and 5 others were unknown Expressed
Sequence Tags (ESTs). To further visualize the gene
expression data, hierarchical clustering was performed on
all 32 arrays based on the differentially expressed genes
(Figure 3). A gene tree dendrogram revealed two distinct
clusters, where Cluster 2 appears to distinguish long from
short survivors or, in other words, this signature defines
prognosis based on the 6 month survival binary outcome.
Within Cluster 1, particular attention should also be given
to a further separation into 2 different subgroups (A and
B). Although Fisher's exact test revealed no significant dif-
ferences among the variables assessed with respect to his-
tological grade, sex, neuter status and postoperative
chemotherapy (Additional file 3), this could primarily be
due to the low number of subjects within each subgroup
(n = 8) which most likely will not allow statistical signifi-
cance. We did find a significant difference in terms of
overall survival time between the two subgroups, with
subgroup A: having a shorter survival time than subgroup

B. The log rank score was 5.82, with a corresponding P
value of 0.0158 (Figure 4).

Quantitative real-time PCR analysis

To verify the microarray analysis, QPCR was performed
on four candidate genes and two reference genes, HPRT
and RPS19 that were used to normalize the expression
data. The overall expression patterns of the candidate
genes were comparable to the microarray analysis. Quan-
titative real-time PCR revealed common overexpression of
ANKRD17, MGST1, MRPS31 and NCORI1 in short survi-
vors compared to long survivors by 1.35, 1.46, 1.53 and
1.1 fold respectively.

Molecular functions and biological process analyses

Various molecular functions of the genes differentially
expressed by short and long survivors of canine OS were
defined into categories according to the Gene Ontology
database, including: DNA repair and integrity, cell cycle/
proliferation, stress response, apoptosis regulation, pro-
tein modification and metabolism, and mRNA transcrip-
tion regulation (Additional file 4). Several of these genes
have been implicated in tumorigenesis and cancer biology
for both humans and dogs. HSP70/MOT, HSP60 and
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Kaplan-Meier survival curves of dogs treated with and without postoperative chemotherapy. (A) Overall popula-
tion (n = 32 dogs); (B) Among short survivors group (n = 16 dogs) and (C) long survivors (n = 16 dogs). Chemotherapy did not
significantly prolong life in the overall population or the subpopulations.

NCOR1 have been implicated in human OS, while
HMGB1, HSP90 and MGST1 have been associated with
both human and canine OS. Generally, the overexpressed
genes were linked to 3 main biological processes known
in advanced cancer: mainly cell cycle and proliferation,
followed by drug resistance and/or metastasis (Table 4).

Pathway analyses

The number of annotated genes in the present study is too
low to form any relevant protein networks. Therefore, we
used the 'Shortest path analyses' by MetaCore, which
allows for one intermediate gene to be linked to the differ-
ential genes in order to form a more informative gene-pro-
tein network. These intermediate genes may be a
transcription factor, receptor or ligand. Transcripts with
limited information available on network or associated
with a pathway were excluded, leaving a final gene regula-
tory network generated based on 11 genes that were over-
expressed in short survivors of canine OS with the
addition of seven transcription factors, one receptor and a
ligand (Figure 5). Transcription factors p53, c-myc, SP1
and NF-kB seemed to play roles as 'central hubs' connect-
ing these transcripts. All three heat shock proteins
(HSP90-alpha, HSP60 and MOT/HSAP9/GRP75)
appeared to be linked to a common transcription factor c-
myc.

Because the interaction among genes is definitely more
complex, we performed a PANTHER® pathway analysis in
which functional and pathway data available on human
transcripts were used as reference to analyze the tran-

scripts from the present study in the dog. PANTHER® anal-
ysis on the 51 differentially expressed genes by SAM yields
too few genes associated with a cellular signaling path-
way, undermining the power of pathway analysis. This is
mainly because a majority of genes are not associated with
a signaling pathway, but also because the dog lacks func-
tional annotation at present. Therefore, we excluded the
FDR correction for multiple testing and selected a longer
list of genes with a threshold of P < 0.05 from EDGE (a
microarray analyzing software). After removal of non-
annotated genes and transcript replicates, there were 533
genes mapped on PANTHER® which permitted further
analysis. Identified pathways included the top four com-
monly associated with cancer and OS pathogenesis: Wnt
signaling, inflammation mediated by chemokine and
cytokine signaling, integrin signaling, and ubiquitin pro-
teasome (Table 5). Our pathway list was then compared
with three microarray datasets of human osteosarcoma
[24,25]. Two gene lists were obtained from Srivastava A.,
et al., 2006: one of genes overexpressed in human osteo-
genic sarcomas in comparison to normal bones, the other
a partial list of genes upregulated in a highly metastatic
human OS cell line, and a gene list from Rajkumar T., et
al., 2008 identifying genes that were differentially
expressed in a doxorubicin drug resistant human OS cell
line. These gene lists, obtained either from the authors
themselves or via the supplementary tables provided in
their articles, were subsequently subjected to PANTHER®
pathway analysis as similarly conducted in the present
study to define pathways pertaining to drug resistance/
metastasis/tumorigenesis of OS. Comparison of the top
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Table 3: Thirty-seven differentially expressed genes between (SS) and (LS) of canine OS based on SAM analysis

http://www.molecular-cancer.com/content/8/1/72

Gene Clone ID  Q-value (%) Fold change Gene description Gene symbol
DG2-21gl3 0.00 4.1 WD repeat and SOCS box containing protein 2 WSB2
DG2-23cl5 0.00 33 cofilin 2 CFL2
DG2-72g4 0.00 2.7 ankyrin repeat domain protein |7 isoform a ANKRDI7
DG42-128j23 0.00 2.1 paraoxonase | PONI
DG2-112nl1 0.00 2.1 Kinesin heavy chain (Ubiquitous kinesin heavy chain) UKHC
DG32-16lcl | 0.00 2.0 WNK lysine deficient protein kinase | WNKI
DG2-6317 0.00 1.7 nuclear receptor co-repressor | NCORI
DG32-237kl | 0.00 1.6 Ribosomal LI domain containing protein |(PBKI) RSLIDI
DGl 1-239n21 0.00 1.6 cell-cycle and apoptosis regulatory protein | CCARI
DG2-28n13 0.00 1.5 28S ribosomal protein S31, mitochondrial precursor MRPS3 1
DG2-59p21 0.00 1.4 #NA
DG2-90b10 4.6l 22 Heat shock protein HSP 90-alpha HSP90
DG2-123a3 4.6l 2.0 Microsomal glutathione S-transferase | MGSTI
DG2-86b3 4.6l 1.6 Canis familiaris similar to T06D8.1a
DG8-102i3 4.6l 1.5 #NA
DG2-100e22 4.6l 1.5 COMM domain containing protein 8 COMMDS8
DG2-106f2 4.61 1.4 Translocation protein SEC63 homolog SEC63
DG2-130mI4 4.61 1.4 Canis familiaris similar to CG1218-PA
DG2-90cl6 6.15 2.6 #NA
DG43-1al5 6.15 24 #NA
DGI14-71c7 6.15 1.8 serine/arginine repetitive matrix | SRRMI
DG2-72p3 6.15 1.6 Vacuolar ATP synthase subunit C V-ATPase C
DG32-216j13 6.15 1.6 Flavin reductase (NADPH-dependent diaphorase) (FLR) BVRB
DG2-94j4 6.15 1.5 Canis lupus familiaris high-mobility group box | HMGBI
DG2-42j4 6.15 1.4 FRAIOACI protein isoform FRAIOACI-1)

DG42-89n19 6.15 1.4 #NA

DG2-19il6 9.70 72 #NA

DG2-18m22 9.70 4.6 plasma glutamate carboxypeptidase PGCP
DG9-134g22 9.70 1.9 ankyrin repeat domain || ANKRDI |
DG2-123m9 9.70 1.9 CGI12795-PA

DGI4-14il9 9.70 1.7 Stress-70 protein, mitochondrial precursor (HSAP9) (Mortalin) MOT
DG9-2129 9.70 1.5 CGI12795-PA

DG2-60f1 | 9.70 1.5 #NA

DG2-25k5 9.70 1.4 SMC6 protein SMCé
DG14-86117 9.70 1.4 #NA

DG2-24i24 9.70 1.4 60 kDa heat shock protein, mitochondrial precursor HSP60
DGl 1-243el6 9.70 1.4 splicing factor, arginine/serine-rich 2, interacting protein SFRS2IP

All these genes were upregulated in short survivors. Genes were selected at a FDR <10% and of fold change of >1.4. (*#NA: non-annotated for

Canis familiaris)

20 pathway hits from these 3 studies in human OS (Table
5) revealed seven pathways overlapping with the present
study on canine OS, including Wnt, chemokine/cytokine,
Alzheimer disease-presenilin pathway, fibroblast growth
factor (FGF), platelet derived growth factor (PDGF), apop-
tosis and interleukin signaling pathways.

Discussion

Canine OS gene expression profiling as a model for human
oS

Osteosarcoma (OS) is a devastating disease in both
human and dogs. The clinical presentation, characteristics
and disease progression is similar in people and dogs
except for the age of clinical onset, where 75% of human

cases affect young adolescents while onset is predomi-
nantly observed in middle-aged to older dogs. For dogs,
the decision to initiate treatment is often made by the
owners. The standard therapy for canine OS primarily
involves amputation or limb sparing surgery, followed by
adjuvant chemotherapy. Some dogs tend to develop
metastases within 4 months regardless of the therapy
modality, while others survive for longer periods of time
[17]. Similarly, despite the advance standard of care for
children with OS, only 60% reach a 5-year disease free
interval and 20% will not survive beyond 5 years [26].

The similarities seen in OS disease progression and sur-
vival rates in humans and dogs provides a reasonable jus-
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Figure 3

Dendrogram and heat map generated by hierarchical
clustering of differentially expressed genes between
SS and LS. Differentially expressed genes were selected at
false discovery rate of 10% between short survivors (SS) and
long survivors (LS) of canine OS. Genes found upregulated
are shown in red and downregulated genes are represented
in green.

tification to compare gene expression profiles based on
clinical outcomes once these are adjusted for comparative
lifetimes. The similarities in the genetic expression and
biological behavior of canine and human OS also makes
the dog a suitable model to study this disease [27,28].
Gene expression profiling of spontaneous tumors in the
dog offers a unique translational opportunity to identify
prognostic biomarkers and signaling pathways common
to both species. This is further supported by a report on
the strong similarity in the gene expression profile found
in both canine and human pediatric OS, suggesting that
specific genes and pathways are commonly involved in
these two species (Paoloni, M. et al., 2005, personal com-
munication).

Further, various clinical and pathological methods are
being used as prognostic indicators for canine OS, but to
our knowledge, this is the first research conducted using
canine specific cDNA microarray to analyze gene expres-
sion profiles associated with survival in a panel of thirty-
two primary canine OS. The ability to identify gene mark-
ers of tumor aggressiveness at the time of primary tumor
removal would provide prognostic values for a tailored
therapy which can be translated to human medicine.

Clinicopathological relevance for OS prognostic gene
expression studies in dogs

Gene expression profiling on the basis of segregating and
then identifying poor and favorable outcome markers is
not novel, but this is the first study conducted in dogs

http://www.molecular-cancer.com/content/8/1/72

with OS. Selection of appropriate tumor candidates based
on clinicopathological relevance for gene profiling is cru-
cial for the overall experimental design. Although
advanced histological grade and postoperative chemo-
therapy are known confounders to influence survival and
prognosis in dogs with OS [29], these factors lack to sig-
nificantly influence survival in the present study popula-
tion, mainly due to the small population size. Elevation of
serum alkaline phosphatase is a known negative prognos-
ticator in dogs with OS, which is true for the present study
population where poor survivors had significantly higher
alkaline phosphatase levels than long survivors. Some
dogs, despite receiving postoperative chemotherapy, did
not live beyond 6 months and can be characterized as
'poor responders' to chemotherapy. On the other hand,
the majority of dogs that received chemotherapy within
the long survivors was censored which suggests that either
these tumors responded to the chemotherapy or the pri-
mary tumor did not harbor the aggressive phenotype.
These data further justify distinguishing between good
and poor outcome: dogs can be assessed at the gene-bio-
logical level of primary tumors regardless of post-opera-
tive chemotherapy. In addition, the current gene profiling
was carried out on tumors prior to chemotherapy, where
"clues' at gene expression levels will help to determine
which animals will probably live longer regardless of
either the type of regime or decision to include postoper-
ative chemotherapy (Figure 6). To further improve the
efficacy of therapy, it is necessary to identify dogs with OS
with an increased risk of treatment failure, as well as to
identify those that might not need aggressive chemother-
apeutic protocols.

To address issues concerning applicability for tailored
therapies, microarray technologies have identified new
molecular subclassifications in various human tumors,
but to date there are no such reports for prognostic signa-
tures in human and canine OS. The current research thus
provides new insights into possible prognostic molecular
subclassifications in canine OS. Hierarchical clustering of
the differentially expressed genes revealed that long survi-
vors have a similar gene expression profile, which is dis-
tinctly different from that of short survivors: these genes
appear to be consistently downregulated among the long
survivors. In contrast, clustering the genes based on
expression was found to separate the short survivors into
2 subgroups. Cluster 1 genes were found to be overex-
pressed in subgroup B in comparison to the rest of the
tumors, making this subgroup unique among the 32
tumors. Intriguingly, subgroup A appeared to have a sig-
nificantly decreased survival compared to subgroup B
where it shares common downregulation of genes with
cluster 1. The mechanism behind this evident contradic-
tion can only be speculated. Possibly, upregulation of
both cluster 1 and cluster 2 genes provides a somewhat

Page 8 of 18

(page number not for citation purposes)



Molecular Cancer 2009, 8:72

0.8

Survival probability
Survival probability

1

—_—

0.0

T T T
50 100 150 200

o =

A Overall survival time (days) B

Figure 4

http://www.molecular-cancer.com/content/8/1/72

1.0

0.8

0.0

subgroup
A
ol | B

1 ) | 1
0 50 100 150 200
Disease free interval (days)

Kaplan-Meier curves of overall survival and disease free interval comparing subgroup A with subgroup B. All
dogs that lived less than 6 months are characterized as poor survivors but among these dogs there were differences in gene
expression which divides them into 2 different subgroups where they were subsequently found to significantly differ in survival

time and not disease free interval.

protective mechanism that improves survival as compared
to the combination seen for subgroup A. On the other
hand, the data can also be interpreted such that Cluster 1
genes are upregulated in 25% of canine OS, where its
overexpression is related to poor prognosis. Cluster 2
genes appear to be true prognostic gene signature, defin-
ing the gene expression that segregates short (<6 months)
from long survivors. The importance of these findings is
they provide insights into possible existence of molecular
subclassifications among short survivors that may be reg-
ulated by different signaling pathways whereby, due to
the complex interaction among genes, these subgroups
may respond differently to certain targeted therapies.
These interpretations must be addressed cautiously given
the small number of samples and differentially expressed
genes selected for the generation of the present dendro-
gram. As has been noted previously, "a replicable classifi-
cation is not necessarily a useful one; but a useful one that
characterizes some aspect of the population must be rep-
licable" [30]. Therefore, insights into molecular sub-clas-
sifications among the canine OS from the present study
require further validation on a larger and independent set
of tumors.

Differentially expressed genes between short and long
survivors: similarities with human OS

For a more biologically meaningful approach to data
analysis, we looked at the level of common biological
processes that differentiates short from long survivors.
Genes highly expressed among short survivors of canine
OS are likely to contribute to the aggressive nature of the
disease in terms of increased cell cycle and proliferation,
drug resistance and metastasis-associated properties.
Among the transcripts that were differentially expressed
between the two survival groups that have been impli-
cated in human OS were HSP70/MOT, HSP60 and
NCOR1, while HMGB1, HSP90 and MGST1 have been
reported for both human and canine OS. Following dis-
cussion will focus on the relevance of these genes to
human and canine OS pathogenesis and disease progres-
sion.

The main goal for discovering new therapeutic interven-
tions for OS is to inhibit metastasis and eradicate
micrometastases. The difference in growth patterns of
metastases may be detected by differences in gene expres-
sion of primary tumors at the point of amputation. Due to
their gene expression differences, some dogs develop
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Table 4: Gene transcripts overexpressed in short survivors of canine OS found associated with 3 main biological processes

Gene ID

Fold change

Gene description

Gene symbol

Metastasis-associated

DG2-23cl5 33
DG14-14i19 1.7
DG2-72p3 1.6

Drug resistance

DG2-112nl1 2.1
DG2-123a3 2.0
DG2-72p3 1.6
DG2-94j4 1.5

Cell cycle/proliferation

DG2-23cl5 33
DG32-16lcll 2.0
DGI14-71c7 1.8
DGl14-14il9 1.7
DG32-237kl | 1.6
DGI1-239n21 1.6
DG2-106f2 1.4
DG2-25k5 1.4

cofilin 2
Stress-70 protein, mitochondrial precursor (HSAP9) (GRP 75) (Mortalin)
Vacuolar ATP synthase subunit C

Kinesin heavy chain (Ubiquitous kinesin heavy chain)
Microsomal glutathione S-transferase |

Vacuolar ATP synthase subunit C

high-mobility group box |

cofilin 2

WNK lysine deficient protein kinase |

serine/arginine repetitive matrix |

Stress-70 protein, mitochondrial precursor (HSAP9) (GRP 75) (Mortalin)
Ribosomal L1 domain containing protein | (PBKI protein)

cell-cycle and apoptosis regulatory protein |

Translocation protein SEC63 homolog

SMC6 protein

CFL2
MOT
V-ATPase C

UKHC
MGSTI
V-ATPase C
HMGBI

CFL2
WNKI
SRRMI

MOT
RSLIDI
CCARI
SEC63

SMCeé

The 3 processes commonly confer for the aggressive phenotype of tumor in general which include increased drug resistance, high proliferation and

differentiation and high metastasis.

metastasis rapidly and others have delayed metastatic dis-
ease, which contributes significantly to their survival. In
the overall clinical data comparison in this study, there
were long survivors who did not develop metastases at all.
We did not exclude these tumors from the analysis
because they appear to be true survivors, where there was
no metastatic disease detected after primary tumor
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removal. Among the differentially expressed genes
between short and long survivors, CFL2, MOT and V-
ATPase C have been associated with invasion and metas-
tasis in various human tumors [31-33]. The metastatic
potential of the stated genes in OS has not been reported
previously; therefore additional research into their exact
functions in OS metastasis is required.
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Gene regulatory network generated through MetaCore's 'shortest path analysis' algorithm.
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Table 5: Deregulated pathways in canine OS pertaining to aggressive phenotype

http://www.molecular-cancer.com/content/8/1/72

Reference
Study approach

Present study on canine osa Srivastava et al., 2006 Rajkumar, T. et al., 2008 Srivastava et al., 2006

poor survival associated

high metastatic

drug resistant

osteogenic tumor

profile profile profile profile
Samples used 32 primary tumors human osa cell lines cell line resistant to 10 tumors and 8 normal
doxorubicin bones
Total differential 1426 1999 485 194
expressed genes
Total Mapped IDs on 533 1185 295 159
PANTHER®
Huntington disease 12 A A
Whnt signaling pathway 10 A A A
Chemokine/cytokine 8 A A A
signaling pathway
Integrin signalling pathway 7 A A
Parkinson disease 6 A A
Ubiquitin proteasome 6 A
pathway
Alzheimer disease- 5 A A A
presenilin pathway
Cadherin signaling pathway 5 A
Endothelin signaling 5
pathway
Glycolysis 5
Heterotrimeric G-protein 4 A
signaling pathway
Angiogenesis 3 A
Cytoskeletal regulation by 3 A
Rho GTPase
EGF receptor signaling 3 A
pathway
FGF signaling pathway 3 A A A
p53 pathway 3 A
PDGF signaling 3 A A A
pathway
T cell activation 3 A A
TGF-beta signaling 3 A A
pathway
Androgen/estrogene/ 2
progesterone biosynthesis
Apoptosis signaling 2 A A A
pathway
B cell activation 2
Hedgehog signaling 2
pathway
Hypoxia response via HIF 2
activation
Interferon-gamma signaling 2
pathway
Interleukin signaling 2 A A A
pathway
Oxidative stress response 2
p53 pathway feedback 2
loops 2
P13 kinase pathway 2 A
Ras Pathway 2 A A

Comparison of the top 20 pathways from 3 published human OS studies revealed 7 pathways (in bold letters) that are commonly deregulated in both
human and canine OS. (A: Common pathway hits found across different gene sets published for human OS to the present study in canine)
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Classification of dogs: poor survivors (SS) and long survivors (LS).

Over the past decade, besides metastasis, there has been
growing interest in the development of multidrug resist-
ance in OS, where various genes have been reported to
contribute to the drug resistance phenotype [24,34,35].
The two drug resistance related genes overexpressed in
poor survivors found in the present research in canine OS
include HMGB1 and MGST1. HMGB1 expression levels
have been previously investigated in 5 canine OS where its
expression was suggested to be a potential marker for cis-
platin therapy based clinical outcome [36]. This gene may
play a role in protecting OS cells, making them less sus-
ceptible to the cisplatin where it has been similarly associ-
ated with activation of p53 [37,38] and drug resistance in
other human tumors [37,39]. Similarly, MGST1 was
found to be overexpressed in several human malignant
tissues where it was shown to protect cells from several
cytotoxic drugs [40,41] as well as by direct detoxification
and downstream protection of tumor cells from oxidative
stress [40]. Preliminary evidence suggests overexpression
of another family member, glutathione S-transferase =, is

significantly related to poor histological response to pre-
operative chemotherapy and poorer prognosis in human
OS [41]. Similarly, an in vitro model of canine OS
(COS31) with high glutathione-S-transferase activity was
found to be resistant to cytotoxic effects of cisplatin [42].
Drug resistance issue is of interest in the present study
population because despite given postoperative chemo-
therapy there were dogs unable to extend survival beyond
6 months while others received no chemotherapy and yet
lived much longer. This suggests that screening through
gene profiles can help with therapeutic decisions by segre-
gating dogs based on key targets for personalized chemo-
therapy, and hence ensure treatment success.

Genes associated with proliferation, cell cycle and differ-
entiation revealed at present have not been described for
OS pathogenesis except for Mortalin (MOT/HSP70),
HSP90 and HSP60. MOT/HSP70 has been previously
shown to form complexes with p53 tumor suppressor,
causing inactivation of the wild type p53 leading to exces-
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sive proliferation [43]. Knockdown of MOT/HSP70 by
shRNA expression plasmids have proven to cause growth
arrest in human OS [44]. Since MOT has been found
upregulated in short survivors in this study and since it is
known that p53 mutations are common feature of poor
prognosis in canine and human OS, extensive in depth
investigation should be done to elucidate both the role of
MOT/HSP70 as a prognostic marker and its association
with p53 in OS. The other two heat shock protein family
members revealed by the present study include HSP90
and HSP60, both having been strongly implicated in mul-
tiple stages of tumorigenesis from proliferation to
impaired apoptosis and angiogenesis, invasion and
metastasis. High expressions of HSP90-beta have been
reported in 3 human OS cell lines as well as in 3 primary
tumors from microarray analysis in previous research
[20]. In primary human OS removed at surgery, HSP90o
was found to be 40% overexpressed and HSP60 60% [45].
In another, expression of HSP60 was detected in 83% of
human OS biopsy specimens, and 43% of these OS
patients had increased levels of anti-hsp60 antibodies in
their serum [46]. Recently, in vitro studies have demon-
strated that inhibition of HSP90 exhibits selective cytotox-
icity in canine OS cells by downregulation of Met, Akt and
p-STAT3, key players for multiple oncogenic signaling
pathways [47]. A growing body of evidence suggests that
heat shock proteins provide protection to a large group of
client proteins: they help protect highly aggressive and
metastatic cells from cellular stressors in the tumor micro-
environment. The overexpression of all these HSP family
members in poor survivors of canine OS makes them
interesting in the context of drug development for the next
generation of HSP inhibitors.

Another candidate gene of interest to both human and
canine OS is NCOR1. We found that NCOR1 was overex-
pressed in 8 out of 32 (25%) of tumors, all from subgroup
B (among the candidates from gene Cluster 1) and there
was a clear downregulation among all long survivors. In
human OS, NCOR1 was amplified in 22.6% of tumors
where it did not correlate with disease free interval, and
amplification status correlated significantly with tumor
size [48]. The mechanistic role of NCOR1 as an independ-
ent negative prognosticator in both human and canine OS
is currently unknown, although the overexpression of
NCORI1 in 25% of canine tumors could be related to its
possible amplification status, similar to what is seen for
human OS. Here, we have confirmed the overexpression
of MGST1 & NCORL1 in poor survivors as has been previ-
ously described for both canine and human OS, and iden-
tified two new candidates, ANKRD17 and MRPS31,
choosing to validate expression data using quantitative
real-time PCR. Those dogs that lived less than 6 months
were found to highly express these genes in parallel to the
microarray expression data, which suggests these tran-

http://www.molecular-cancer.com/content/8/1/72

scripts could be attractive therapeutic targets and markers
for future prognosis and disease progression for canine
OS.

Pathway Analyses

Pathway analysis in dogs has its limitations because path-
way identification relies heavily on existing functional
annotation, which is still limited for the canine species.
Our preliminary work networking a limited number of
candidate genes identifies c-myc, SP1, p53 and NF-kB as
the 'central hubs' connecting the candidate genes, where
these transcription factors have been extensively described
and associated with poor prognosis in various tumors,
including OS [49-51]. Transcripts such as MOT/GRP75,
HSP60, p53, HMGB1; VEGFR and NCOR1 from this net-
work have been previously described for cancer pathogen-
esis. It has been proposed that one or a few key genes can
trigger a succession of events leading to abnormal expres-
sion of many genes in cancer. Pathway analysis provides a
much more practical way to analyze expression data
across species which may shed light into common path-
ways important for targeted therapies. A few pathways
have been previously proposed to be of importance in
either human or canine OS pathogenesis. Gene enrich-
ment for two major pathways, namely Wnt signaling and
chemokine/cytokine signaling, was found to be common
among the studies conducted in human OS, and in the
present study in dogs. Extensive investigations have been
initiated to understand how Wnt signaling is involved in
human OS pathogenesis and disease progression. Wnt sig-
naling is not only important for cell proliferation and dif-
ferentiation, but may also have possible autocrine or
paracrine influence on the metastatic potential of OS [52-
54]. Preliminary investigations on the roles of Wnt signal-
ing in canine OS pathogenesis and disease progression are
underway. Nevertheless, the importance of chemokine
signaling has been described in canine OS where its recep-
tor (CXCR4) was found to participate in directional
migration in vitro [55]. Further research has shown that
canine and human primary OS do express CXCR4, which
may be involved in metastatic progression of this disease
[56]. Molecular strategies targeting these 2 pathways may
be beneficial for both human and dogs.

Use of microarrays for OS prognosis prediction

Clinical, histological and gene expression analysis in com-
bination have the ability to improve the accuracy of clini-
cal diagnostics and prognostics by precisely segregating
individuals into meaningful groups, allowing for better
decision making for therapeutics. However, in the past,
these advanced approaches have, for most studies in
human malignancies, failed to be reproduced; instead,
parallel studies using distinct data sets frequently identify
different gene sets as a result of variations in computa-
tional analysis methods to sample processing, array plat-
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forms and research questions [57,58]. Other common
barriers to reproducibility include differences in experi-
mental design, small sample size and lack of assessment
in secondary independent populations. A general prob-
lem of prognostic studies is that analyses are carried out
on thousands of genes generated from small number of
samples, which are often difficult to acquire from dogs
where decisions to treat and follow up rely heavily on the
owners. Although different human OS gene sets from dif-
ferent platforms and analysis techniques were identified
from independent studies, they all seem to achieve agree-
ment when it comes to pathway analysis. This insight is
first described in the present study, where we performed
gene-pathway enrichment analysis on distinct gene sets
from several human OS studies and compared the result
with our prognostic genes from the dog to reveal several
common pathways conferring pathogenesis and the
aggressive phenotype of OS. The conventional single
biomarker discovery approach is being slowly overtaken
by the idea that complex interactions among multiple
genes are required to produce a disease phenotype which
can be best described in terms of its deregulation of cellu-
lar signaling pathways. Preliminary studies have been ini-
tiated in an independent and larger set of canine and
human OS samples to further investigate and validate the
roles of the main pathways for the aggressive phenotype
revealed by the present analysis.

Conclusion

The premise that gene expression profiling can be used to
segregate and then identify negative and favorable prog-
nosis cancer patients is not novel; however this is the first
report of its kind in canine OS and probably in any natu-
rally occurring cancer in the dog. The present study has
revealed candidate genes that can be followed up in pro-
spective studies as negative prognostic markers and thera-
peutic targets for canine OS. A molecular-based method to
discriminate between short and long survivors of canine
OS may be useful for future prognostic stratification of
dogs at initial diagnosis, since genes associated with cell
cycle/proliferation, drug resistance and metastasis are
commonly overexpressed in short survivors of canine OS.
In addition, we found that these survival-associated genes
enrich prominent pathways such as Wnt and chemokine/
cytokine signaling, which were also among the top path-
ways revealed by comparative pathway analysis with
those of human OS gene profiling studies. These findings
emphasize the excellent translational opportunity offered
by canine expression studies of OS pathogenesis and dis-
ease progression that can be used for future therapeutic
and prognostic strategies. Other approaches, such as pro-
tein profiling as well as in vitro studies, will be necessary
to elucidate further the biological significance of these
findings.

http://www.molecular-cancer.com/content/8/1/72

Methods

Patient and tumor data

Thirty-two histological confirmed canine OS, with availa-
ble survival data, that were presented at the University
Clinic for Companion Animals in Utrecht The Nether-
lands from 1996 - 2003 were selected in this study. These
dogs were not subjected to any sort of therapy prior to har-
vesting of the tumor tissue. Tumor samples were har-
vested under sterile conditions during surgery
(amputation/marginal resection/total resection). Samples
were snap-frozen in liquid nitrogen and stored in sterile
tubes at -70°C. An adjacent tumor specimen was fixed in
4% neutral buffered formalin, decalcified in 10% EDTA
and embedded in paraffin. Four pm tissue sections were
stained with hematoxylin and eosin where the diagnosis
and histological grading was carried out by a board certi-
fied veterinary pathologist [59]. Various clinical and path-
ological parameters were evaluated retrospectively for the
dogs included in this study.

Statistical and survival analysis

All 32 dogs in this study were followed up from the time
of diagnosis until death, for up to a period of 5 years. Sur-
vival time (ST) was recorded for all dogs. ST was defined
as the time period from initial diagnosis until death.
Patients were censored if they died due to causes other
than metastatic disease. The Kaplan-Meier method was
used to draw disease free interval survival curves. Tests for
comparison of groups of survival data were made using
the Mantel-Cox log rank test (SPSS version 15.0). Univar-
iate Cox proportional hazard analysis was conducted on
the overall population of 32 dogs with and without strat-
ification for chemotherapy. Variables found by univariate
analysis to influence survival at a cut off of P < 0.15 were
further subjected to multivariate analysis using the Cox
proportional hazard regression model (backward elimi-
nation using Newton Raphson algorithm) to determine
whether the variables could independently influence sur-
vival in the whole and/or subpopulation of dogs in the
present study. Hazard ratios (HR) and confidence inter-
vals (CI) were calculated and reported using EGRET for
Windows Version 2.013 (Cytel Software Corporation,
Cambridge, MA, USA). Further analyses on discrete varia-
bles comparing the subpopulation of dogs were per-
formed using the Fisher's exact test on SPSS version 15.0.
Statistical significance was defined as P < 0.05.

RNA isolation and amplification

Bone tumor samples were pulverized for 45 seconds at a
speed of 2000 rounds per minute in the Mikro Dismem-
brator®* U (B. Braun Biotech International, Melsungen,
Germany) in ribonuclease free plastic containers. The pro-
cedure was repeated if samples were too big. Cooling in
liquid nitrogen between cycles was performed. Bone
tumor powder was stored in sterile tubes at -70°C. Total

Page 14 of 18

(page number not for citation purposes)



Molecular Cancer 2009, 8:72

RNA isolation and purification was carried out with 600
mU/ml Proteinase K® as an additional pretreatment step
using the RNeasy mini kit (Qiagen, The Netherlands) fol-
lowing the manufacturer's protocol. The RNA samples
were treated with DNase-I (Qiagen RNase-free DNase kit).
Total RNA was quantified using the NanoDrop® spectro-
photometer (NanoDrop Technologies). cRNA synthesis
was performed using the protocol described. Quality of
total and amplified cRNA was analyzed using a bioana-
lyzer (Agilent Technologies, The Netherlands).

Microarray hybridization and data normalization
Thirty-two tumors were sorted into two prognosis groups
based on survival time (ST). They were defined as short-
term survivors (SS; 16 dogs with a negative prognosis that
survived less than 6 months) and long-term survivors (LS;
16 dogs with better prognosis that survived 6 months or
longer). Microarray hybridization, scanning and image
analysis were conducted according to the protocol
described [60]. A common reference cRNA pool consist-
ing of all 32 tumors was used to hybridize against each
tumor on the array. Dyes were swapped as described in
previous literatures [61], where equal numbers of samples
within each tumor group were subjected to dye swap to
avoid dye bias effect. Defective spots were flagged and
normalization was carried out using the Lowess print-tip
normalization technique. Log transformation was applied
to the microarray raw data after normalization and data
from dye swap arrays were switched before they were sub-
jected for further statistical analysis. The microarray data
files were deposited in the public database (GEO:
GSE14033).

Microarray data analysis
Microarray data analysis and calculations were performed
using a two class unpaired approach to compare the nor-

Table 6: Primers used for quantitative real-time PCR
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malized and log-transformed expression data between the
two groups. Calculations were done using Significance
Analysis of Microarray (SAM) (Stanford University, CA,
USA) [62], using 100 permutations to the k-nearest neigh-
bor with 10 neighbors and newly initialized random
seeds for each analysis. The gene list for this analysis was
generated at a false discovery rate (FDR) of 10%. Genes
with fold changes of 1.4 and above were selected for fur-
ther analyses [63]. Hierarchical clustering of genes that
were differentially regulated between the two groups of
tumors was performed. A two-dimensional dendrogram
of both gene tree and condition tree based on standard
correlation was generated using the GeneSpring® (Agilent
Technologies, The Netherlands) software [64]. The Gene
Ontology (GO) database was used to cross check the gene
molecular and biological functions http://

www.ncbi.nlm.nih.gov.

Quantitative real-time PCR

Total tumor RNA was isolated using the protocol men-
tioned above. Synthesis of cDNA was carried out from 1.0
pg total RNA in 40 pl reaction volumes using the iScript™
cDNA synthesis kit as described by the manufacturer's
protocol (Bio-Rad, The Netherlands). Quantitative real-
time PCR (Q-PCR) was performed on four candidate
genes from the list of differential expressed genes, as well
as the ribosomal protein S19 (RPS19) and hypoxanthine
phosphoribosyl transferase (HPRT) as endogenous refer-
ence gene for normalizations. Primer sets (Table 6) were
designed using the software Primer 3 [65]. Q-PCR was car-
ried out using the SYBR® green fluorescent dye method,
which was further analyzed by the Bio-Rad MyIQ software
(BioRad, The Netherlands). The Q-PCR products were
sequenced to verify the specificity of the primer sets. Data
was analyzed on REST-XL (pair wise fixed reallocation and
randomization test) software [66] that estimates a relative

Gene symbol Forward and Reverse Primers Temp (°C)

ANKRD17 FW: 5'-~AAGTAGCGCACCACCTTCAC-3' 60.0
RW: 5'-CTAGCAGCAAATGGTGGACA-3'

MRPS3|1 FW: 5'-GAATTGGTCCTTGCTTTGGA-3' 60.0
RW: 5'-ATCCAGTGGACGAAAGATGG-3'

NCORI FW: 5-TCTTCCTCTGCGTTTTCCAT-3' 59.6
RW: 5'-GCATCCCAAAAACTTTGGAC-3'

MGSTI FW: 5'-CGGACAGATGATAGGGTGG-3' 62.0
RW: 5'-GATTTGGCTGGGGAAGG-3'

RPSI9 FW: 5'-CCTTCCTCAAAAAGTCTGGG-3' 61.0
RW: 5'-GTTCTCATCGTAGGGAGCAAG-3'

HPRT FW: 5'-AGCTTGCTGGTGAAAAGGAC-3' 56.0

RW: 5'-TTATAGTCAAGGGCATATCC-3'
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normalized fold change of gene expression between the
two groups which is then compared to the microarray fold
change data.

Pathway analyses

Analysis of gene regulatory networks present among the
differentially expressed genes identified by SAM was per-
formed using the 'Shortest Path Analysis' algorithm of
MetaCore™ Analytical Suite (GeneGo Inc., St. Joseph, MI,
USA) [67]. In addition, for further insight into overall
pathway discovery, we applied a less stringent rule where
correction for multiple testing method was not applied in
obtaining differential expressed genes [68]. EDGE (Extrac-
tion of Differential Gene Expression) software http://fac
ulty.washington.edu/jstorey/edge was used to generate
the genes differentially expressed between the short and
long survivors of canine OS at a cutoff threshold of P <
0.05 [69]. The differential expressed genes identified by
EDGE from the present study in canine were compared
with the human homologues to obtain a list of gene sym-
bols or human RefSeq ID that was later subjected for path-
way analysis using the program PANTHER® (Protein
ANalysis THrough Evolutionary Relationships) http://
www.pantherdb.org/[60,68]. Pathways revealed by this
analysis were sorted according to number of gene hits and
compared with the top 20 pathways from various human
OS microarray studies.
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Additional material

Additional file 1

Univariate analysis. a) Univariate analysis of specific variable influences
on survival time (ST) among dogs from the entire population of study. b)
Variables with P < 0.15 from univariate analysis that were subsequently
forced into multivariate model identifies elevation of serum alkaline phos-
phatase with significantly increased HR for a shorter ST. § Missing data,
* Category which was used as baseline reference, + Continuous variables
Click here for file
|http://www.biomedcentral.com/content/supplementary/1476-
4598-8-72-S1.doc]

Additional file 2

Cox proportional hazard analysis upon stratification for postoperative
chemotherapy. Cox proportional hazard analysis (univariate) upon strat-
ification for postoperative chemotherapy revealed no significant influence
of the variables assessed on survival time of the dogs in the total population
of study (n = 32).

Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
4598-8-72-S2.doc]

Additional file 3

Fisher's exact test and univariate Cox proportional hazard analysis
carried out on the new subgroups. Both subgroups did not differ in fre-
quency distribution of the variables assessed and none of the variables
assessed were found to significantly influence survival. NA, non applicable;
HR, hazard ratio

Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
4598-8-72-S3.doc]

Additional file 4

Differential expressed genes categorized based on their molecular
functions.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
4598-8-72-S4.doc]
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