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Abstract

Background: CDKN2A/p | 6/NK4ais frequently altered in human cancers and it is the most important
melanoma susceptibility gene identified to date. pl6/NK42 inhibits pRb phosphorylation and induces
cell cycle arrest, which is considered its main tumour suppressor function. Nevertheless, additional
activities may contribute to the tumour suppressor role of pl6/NK4a and could help explain its
specific association with melanoma predisposition. To identify such functions we conducted a
yeast-two-hybrid screen for novel p|6/NK4a binding partners.

Results: We now report that p | 6/NK42interacts with the chromatin remodelling factor BRGI. We
investigated the cooperative roles of pl6/NK42and BRG1 using a panel of cell lines and a melanoma
cell model with inducible p16NK4 expression and BRG1 silencing. We found evidence that BRGI
is not required for pléNK4a.induced cell cycle inhibition and propose that the pl6NK4.BRGI
complex regulates BRGI chromatin remodelling activity. Importantly, we found frequent loss of
BRGI expression in primary and metastatic melanomas, implicating this novel pl6/NK4a binding
partner as an important tumour suppressor in melanoma.

Conclusion: This data adds to the increasing evidence implicating the SWI/SNF chromatin
remodelling complex in tumour development and the association of pl6NK4 with chromatin
remodelling highlights potentially new functions that may be important in melanoma predisposition
and chemoresistance.

Background etrant melanoma susceptibility gene; more than 50
The cyclin dependent kinase inhibitor p16!NK4a js fre-  germline mutations have been identified in high-risk
quently inactivated in human cancers and is a highly pen-  melanoma-prone families [1]. The principal function of
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p16/NK4a jg to inhibit cell cycle progression by preventing
the cyclin dependent kinases CDK4 and CDK6 from phos-
phorylating the retinoblastoma protein, pRb. In the pres-
ence of p16!NK4a, pRb remains hypophosphorylated and
forms active pRb-E2F transcriptional repressor complexes
that silence genes required for S-phase entry. Conse-
quently, ectopic expression of p16!NK4a promotes pRb-
dependent G1 cell cycle arrest and senescence. Moreover,
functional p16!NK4ajs commonly maintained in pRb-defi-
cient tumors (reviewed by Sherr & Roberts [2]), and this
underscores the dependency of p16!NK4a on the pRb path-
way.

Hypophosphorylated pRb can repress gene transcription
at least partly by remodelling chromatin structure through
its interactions with proteins such as HDAC1, BRM and
BRG1 [3-5]. As the catalytic core of the SWI/SNF chroma-
tin remodelling complex, the interaction between BRG1
and pRb was proposed to recruit the complex to E2F
responsive promoters and enhance pRb transcriptional
repressor activity. [5] There is also evidence that BRG1 acts
upstream of pRb by repressing cyclin D1 expression [6]
and upregulating the expression of the CDK inhibitors
p21Wafl, p15INKdb gnd p16INK4a [7-9] to maintain pRb in
an active, hypophosphorylated state. Not surprisingly,
BRG1 may function as a tumor suppressor; BRG1
hemizygous mice are susceptible to tumors [10], while
complete loss of BRG1 potentiates lung cancer develop-
ment [11] and BRG1 is silenced or mutated in human
tumor cell lines derived from breast, ovarian, lung, brain
and colon cancers [4,12]. BRG1 is also lost in established
neuroendocrine carcinomas and adenocarcinomas of the
cervix [13], and the loss of BRG1 expression in lung cancer
is associated with a poor prognosis [14,15].

In this study, it is identified for the first time that BRG1
specifically associates with p16!NK4a jn yivo, and that both
proteins are frequently lost in human melanomas.
Although both BRG1 and p16!NK4a regulate pRb activity
we found no evidence that p16!NK4aand BRG1 co-operate
in cell cycle regulation. Targeted silencing of BRG1 did not
diminish pRb-dependent p16INK4a jctivities; pl6INK4a
retained potent cell cycle inhibitory activity and induced
senescence in the presence and absence of BRG1. Contrary
to previous reports, that BRG1-deficient cells are relatively
resistant to pl16NK4a-.induced cell cycle arrest [16], we
show that pRb activity is BRG1-independent and thus,
BRG1 does not influence p16NK4a-mediated cell cycle
inhibition. Together with the frequent loss in primary
melanomas the novel BRGI1 interaction with the
melanoma associated tumor suppressor p16NK42 implies
an important role for BRG1 in melanoma.

http://www.molecular-cancer.com/content/8/1/4

Results

BRG] binds p 1 6!NK4a

From a yeast two-hybrid screen using full-length human
p16/NK4a 35 bait, we isolated the C-terminal 530 amino
acids of the chromatin remodelling factor BRG1 as a
potential binding partner (Figure 1A). This segment of
BRG1 incorporates the ATPase domain, which facilitates
ATP hydrolysis, and the bromodomain, which enables
binding to acetylated histones [17]. To confirm that full-
length BRG1 also binds p16/NK42in human cells, both pro-

A Y2H clone
1070 aa 1600 aa
1 1600 aa

| E

DNA-stimmulated Bormo-

ATPase domain  domain
B Lysate P
2, ¢
P %0 2
3 5 & 3
- s BRG1
-— - — po]BINKAa
FLAG-BRG1 - } i | -
MYC-p16iN<da + o+ + o+ o+ o+

C MYC_p16|NK43

Figure |

Identification of BRGI as p16'NK4a binding partner. A
Schematic illustration of BRGI highlighting the domains iso-
lated in the yeast 2-hybrid screen (Y2H clone) B U20OS cells
were transfected with MYC-p16/NK42and FLAG-BRGI or
control vector and immunoprecipitations were performed
with a mouse-anti-FLAG antibody or a matched mouse IgG
as indicated. BRGI and p16/NK42 were detected on immunob-
lots with anti-FLAG and anti-MYC antibodies. C Fluorescent
microscopy images (FM) and confocal microscopy images
(CF) of SW-13 cells grown on cover slips and transfected
with MYC-p|6/NK4a and FLAG-BRGI and probed with anti-
FLAG and anti-MYC antibodies.
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teins were co-expressed transiently in U20S osteosarcoma
cells and MYC-tagged p16!NK4awas specifically co-purified
with FLAG-tagged BRG1 in immunoprecipitation assays
using a FLAG-specific antibody (Figure 1B). Further, when
both proteins were co-expressed in the SW-13 adrenocor-
tical carcinoma cell line, they co-localized in the nucleus
in distinct nuclear speckles (Figure 1C).

To verify that endogenous BRG1 also interacts with
p16INK4a we initially utilized the WMM1175_p16INKaa
inducible melanoma cell model, which we have previ-
ously described [18]. p16INK4a expression was induced
with IPTG to reach physiologically relevant levels compa-
rable to those seen in the WS-1 normal human dermal
fibroblasts at passage 20 (Figure 2A). Using a p16!NK4a.
specific antibody we isolated BRG1 from nuclear
WMM1175_p16!NK4alysates (Figure 2B). Importantly, the
interaction between BRG1 and p16!NK4a was also con-
firmed in WS-1 normal human dermal fibroblasts at pas-
sage 20, using a p16!NK4a_gpecific antibody (Figure 2C).

PRb pathway in human cell lines

To establish the role of BRG1 on p16!NK42 function we
selected six cancer cell lines, varying in their p16NK4a, pRb
and BRG1 status [12,16]. As shown in Figure 3 and Table
1, p16/NK4a expression was inversely related to pRb expres-
sion and only detected in the pRb-negative SAOS-2 oste-
osarcoma and C33A cervical cancer cells. All other cell
lines had detectable pRb and no p16!NK4a_ (Note, there is
a slight leakage of the ectopically introduced p16!NK4a in
the pl16-inducible WMM1175_p16!NK4a cells without
IPTG upon long exposure.) The BRG1 homologue, BRM
was expressed in all but the C33A cells and SW-13 adren-
ocortical carcinoma cells. Importantly, SW-13 and C33A
cells were also negative or extremely low for BRG1 expres-
sion levels. The H1299 lung cancer cells were deficient for
BRG1 expression, and all remaining cell lines had detect-
able levels of BRGI. It is also worth noting that the
HCT116 cells carry only a mutated, functionally impaired
BRG1 allele (BRG1leul163Pro) [12] CDK4 was expressed
strongly in all cell lines, while its homologue, CDK6 was
either absent or poorly expressed in the pRb negative
SAOS-2 and C33A cells and present in the remaining cells.

p 1 6/NK4a requires pRB to induce cell cycle arrest

To define the impact of BRG1 on p16/NK4a function we
transiently expressed either BRG1, p16!NK4a or both pro-
teins in this panel of six cell lines. The short-term expres-
sion of BRG1 alone had no effect on the cell cycle
distribution of the cell lines tested. As expected, neither
p16/NK4a glone nor p16!INK4a in combination with BRG1
promoted cell cycle arrest in cells deficient for pRb (SAOS-
2 and C33A). In contrast, introduction of p16INK4a
induced potent cell cycle arrest in all cell lines expressing
pRb (U208, H1299, HCT116, SW-13) even when the cells
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BRGI binds pl6'NK4ajn melanoma cells and normal
fibroblasts. A 50 pg of total cell lysates derived from unin-
duced (-) and induced (+) WMMI 175_p|6/NK4a cells and WS-
| fibroblasts (passage 20) were separated using a 15% SDS-
PAGE gel. Inmunoblots were probed for p|6/NK4aand f3-
actin as indicated. B WMMI | 75_p | 6/NK4a cells were induced
to express p|6/NK42 with 4 mM IPTG or mock treated for 72
hours. Immunoprecipitations were performed using a mouse
anti-p | 6NK42 antibody or a matched mouse IgG from nuclear
cell lysate, as indicated. Inmunoblots were probed for
endogenous BRGI and induced p | 6/NK4a ysing a mouse anti-
BRG] and rabbit anti-p16/NK42  respectively. C Endogenous
BRGI was co-immunoprecipitated with p16/NK4 from WS-|
normal dermal human fibroblasts grown to passage 20 as
detailed above.

lacked BRG1 (H1299) or carried a reported mutant form
of BRG1 (HCT116) [12]. Further, co-expression of BRG1
did not significantly enhance the p16NK4a induced cell
cycle arrest in the U20S, H1299 or HCT116 cells. Impor-
tantly even in SW13 cells, which lack both BRG1 and its
homologue BRM, p16/NK4aexpression alone induced a sig-
nificant cell cycle arrest and this was enhanced to some
extent by over-expressing BRG1 (Figure 4). These data
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Figure 3

pRb pathway proteins in cell lines. Expression of BRGI
and BRM was analyzed using 50 pg of nuclear cell lysates. All
other proteins were analyzed from 50 pg of total cell lysates.
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confirm that p16/NK4a-induced cell cycle arrest requires
intact pRb, but not BRG1.

p16/NK4a does not require BRGI to promote cell cycle
arrest or induce cell senescence

To thoroughly evaluate any functional interaction
between p16!NK42 and BRG1, we stably silenced BRG1 in
the inducible WMM1175_p16!NK4a cell model. These cells
were transfected with a silencing molecule specifically tar-
geting BRG1 or a non-specific (NS) silencing molecule
directed to the luciferase transcript. Two BRG1-silenced
clones, WMM1175_p16INK4a_giBRG1 W9 and X1, with >
95% reduction in BRG1 accumulation and two control
clones WMM1175_p16INK4a_gjcontrol E1 and X2, with
unaltered BRG1 expression, were selected for analysis. All
clones remained inducible for p16!NK4a expression (Figure
5A, B).

Silencing of BRG1 had no significant impact on the prolif-
eration rate or cell cycle distribution of the
WMM1175_p16!NK4a cell line. In the absence of BRGI,
p16INK4aretained the ability to inhibit the proliferation of
the WMM1175 cells (Figure 5C), and this was associated
with arrest in the G1-phase of the cell cycle with a con-
comitant S-phase inhibition (Figure 5D) that was main-
tained over the five-day induction period (data not
shown). Moreover, the silencing of BRG1 had no impact
on the ability of p16!NK4a to totally prevent outgrowth of
colonies upon low seeding density (Figure 5E).

BRG1 has been reported to induce senescence in SW-13
cells and in mesenchymal stem cells [7,19] and the role of
pl6INK4a jn initiating and maintaining senescence is
widely acknowledged (reviewed by Huschtscha & Reddel
[20]). We investigated the role of BRG1 in p1G6!NK4a.
induced senescence. The long term induction of p16NK4a
in WMM1175_p16!NK4a cells was not influenced by the
BRG1 status, caused pRb hypophosphorylation (Figure

6A) and induced senescence-like features in the
Table I: pRb pathway proteins in cell lines
WMMI 175-wtplé u20s Saos-2 HCTI16 H1299 C33A SWI3
BRGI + + + mutant low -
BRM + + + + + -
pRb + + - + + +
CDKé6 low + low low + +
CDK4 + + + + + + +
plé ¢) + + -
Expression of the indicated proteins is summarized with + or -. Mutant status of BRGI in HCT-116 cells has been reported [12].
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Figure 4

BRGI and pl6INK4ajn cell cycle regulation. Indicated
cell lines were transfected with MYC-pl6/NK4a FLAG-BRG
and/or a control vector plus GFP-spectrin. Cells were fixed
with 70% ethanol 48 hours post transfection and cellular
DNA was stained with propidium iodide. Percent S-phase
change of GFP-spectrin positive cells was calculated (percent
S-phase vector control - percent S-phase sample) x 100/per-
cent S-phase vector control.

WMM1175 cells as reported previously [18,21], (Figure
6B). These features included increased cell size and gran-
ularity, positive senescence-associated [-galactosidase
activity and the appearance of senescence-associated hete-
rochromatin foci. Formation of foci coincides with the
recruitment of pRb to E2F-responsive promoters and is
associated with the stable repression of E2F-target genes
[22]. This important marker of pRb activity was not
affected by BRG1 silencing. Similarly, BRG1 silencing did
not alter the build up of SA-B-galactosidase induced by
p16!INK4a (Figure 6B) or p16!NK4a induced changes in cell
size and granularity in the WMM1175 cells (Figure 6C),
the latter corresponds to senescence associated vacuolisa-
tion. This data confirms that cell cycle regulation and
induction of cell senescence by p16!NK4a does not require
BRGI1.

BRG] is lost in melanoma

To evaluate the role of BRG1 in melanomas, we examined
immunohistochemically stained paraffin sections from
archival paraffin-embedded tissue blocks of a series of pri-
mary and metastatic melanomas for expression of the
chromatin remodelling factor BRG1 and p16!NK4a (Figure
7). As presented in Table 2, BRG1 expression was undetec-
table in 26/38 of melanomas (68%), whereas its homo-
logue, BRM, was detected in 40/50 (80%) of melanoma
specimens. As expected, p16!NK4a was only detected in a
small proportion 20% (9/45) of these primary and meta-
static melanomas. Of 21 tumor samples with expression
data for p16'N42and BRG1 18 (86%) had lost at least one

http://www.molecular-cancer.com/content/8/1/4

of these proteins, predominantly p16!NK4a, and among
these were 10 tumors (48%) negative for both, while 3
samples 14% had retained expression of both p16INK4a
and BRG1. BRM and BRGI1 showed consistent nuclear
localisation in all samples, while p16!NK4a was found to
localise to the nucleus and cytoplasm. The proportion of
BRG1 expression was slightly higher in the metastatic
melanomas than in the primary melanomas, but, this did
not reach significance using a Mann-Whitney Wilcoxon
test. BRG1 and p16!NK42 were readily detectable in cul-
tured, normal, primary human melanocytes (data not
shown) and therefore our data imply that BRG1-loss has
an important role in melanoma development.

Discussion

The p16!NK4a tumor suppressor has a critical influence on
melanoma tumorigenesis. We have now shown that the
chromatin remodelling factor BRG1 is a novel binding
partner of p16/NK4agnd confirm this interaction in vivo.
More importantly, we show that loss of BRG1 occurs fre-
quently in primary and metastatic melanomas and pro-
pose that BRG1 may play an important role as a tumor
suppressor in this cancer.

We have also shown that p16!NK4a requires pRb, but not
BRG1 to promote cell cycle arrest. This differs from several
previous findings in the literature but agrees with others:
It has been suggested that the pRb-BRG1 interaction is
required for the pRb repression of E2F-target genes such as
cyclin E and cyclin A, and thereby cell cycle arrest. Accord-
ing to this hypothesis, cells lacking BRG1 would harbor
only inactive pRb, thus conferring resistance to p16!NK4a
induced growth arrest [5,16]. These findings differ from
those of Bultman et al. [23] who did not observe a func-
tional interaction between pRB and BRG1 in their murine
models and Kang et al. [7], who showed that the BRG1-
PRB interaction was not required for BRG1 induced cell
cycle arrest in SW-13 cells. In contrast to our work, Kang
et al. [7] used long-term BRG1 expression, which caused
growth arrest in SW-13 cells, and showed that BRG1
bound the p21Wafl promoter and upregulated its expres-
sion 3-7 days after BRG1 expression. This was sufficient to
induce cell cycle arrest and senescence independent of the
BRG1 ability to complex with pRb. In this study we have
clearly demonstrated that p16NK4a requires pRb, but not
BRG1, to promote cell cycle arrest. Our data is mainly
based on the thorough analysis of a well-defined
melanoma cell model, with inducible physiological rele-
vant expression levels of p16!NK4a and the use of highly
specific BRGI1-silencing molecules. In this model,
p16NK4ainduction promotes rapid G1-cell cycle arrest fol-
lowed by cellular senescence, and these functions were
not affected by silencing of BRG1.
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Figure 5

BRGI does not alter p16/NK4a cell cycle regulation. A 50 ug of nuclear lysates from WMMI 175_p|6INK42 clones with sta-
bly integrated siRNA targeting BRG| or a non-specific (NS) control siRNA were probed for BRGI and topoisomerase Il (Topo
1) as a loading control. B 50 pg of total cell lysates extracted from WMMI 175_p | 6/NK4a cells stably expressing either a BRGI -
specific siRNA or a non-specific (NS) siRNA molecule, as indicated, were treated with PBS (-) or IPTG (+) for 24 h and probed
for pl6NK42and B-actin. € Cell proliferation was determined by MTS assay. D A proportion of the IPTG/mock treated cells

were analyzed for changes in cell cycle distribution. Percent S-phase change was calculated (percent S-phase mock treated cells
— percent S-phase IPTG treated cells) X 100/percent S-phase mock treated cells. E The same clones were seeded at low den-
sity (103 cells/7.5 cm plate) and p|6/NK42 expression was induced with 4 mM IPTG or cells mock treated and colony forming

ability was assayed after 14 days.
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Figure 6

BRGI does not alter pl6'NK4a driven senescence. WMMI |75_p|6/NK4a cells, BRGI silenced (clone X1, left panel) or NS
(clone El, right panel), were exposed to 4 mM IPTG over a five-day period and analyzed by FACS analysis, Western blot and
imunocytostaining: A 50 pg of total cell lysate were immunoblotted and probed for p16/NK42, phospho-pRb (pRbSer807/811) and
as a loading control B-actin. B The accumulation of p16/NK42, the cell proliferation marker Ki67, chromatin condensation
(DAPI) and the appearance of SA-f-gal was analyzed by immunocytostaining in WMMI [ 75_p | 6!NK4a_ Enlarged images of cells
(indicated with arrows) show DAPI-stained chromatin foci. Histograms correspond to the average * s.d of at least two inde-
pendent induction experiments from a total of at least 500 cells. LM, light microscopy. C FACS analysis by Forward Scatter
(FSC) and Side Scatter (SSC) of clones demonstrate the senescence associated increase of cell size (FSC) and granularity (SSC)
upon p | 6INK4a induction.
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Figure 7

Immunohistochemistry of melanomas for BRM,
p16INK4a and BRG 1. Melanoma samples were stained for
pl6NK4aand BRGI with immunohistochemistry using DAB.
BRM was stained using red fluorescence. Positive staining
examples are presented in the right panel with no primary
antibody control from the corresponding region in the left
panel.

Chromatin changes, which involve chromatin remodel-
ling, are an important step in p16!NK4/pRb dependent
senescence [24]. It was recently shown that the BRG1
homologue, BRM, forms an initiating component of het-
erochromatin complexes during the senescence of
melanocytes [25]. BRG1 has also been implicated in
senescence of melanocytes, as it has been identified in the
SWI/SNF complex facilitating transcription in response to
IGFBP7, the latter itself being an important player in
oncogenic BRAF-induced senescence [26]. However, our
data show that p16!NK42 js able to promote senescence in
WMM1175 melanoma cells in the absence of BRG1 indi-

Table 2: BRGI is frequently lost in melanomas

BRM pl6INKda BRGI
Primary 83% (19/23) 21% (5/24)  28% (5/18)
Metastatic 78% (21/27) 19% (421)  35% (7/20)
Total 80% (40/50) 20% (9/45)  32% (12/38)

Immunohistological detection of BRGI, p16/NK4aand BRM in primary
and metastatic melanomas showing the proportion of samples with
detectable positive staining.

http://www.molecular-cancer.com/content/8/1/4

cating that the p16!NK4a/pRb senescence pathway does not
require BRG1.

As the catalytic component of the SWI/SNF chromatin
remodelling complex, BRG1 facilitates unwinding of
DNA helices bound to and wrapped around histone struc-
tures. The SWI/SNF chromatin remodelling complex can
be recruited by specific DNA binding molecules such as
transcriptional activators or repressors and directed to
specific DNA targets. For instance, BRG1 promotes p53
dependent transcription by interacting with this tumor
suppressor [27,28], while it functions as a co-repressor of
E2F dependent transcription by associating with the E2F
transcriptional repressor pRb [5]. Furthermore, BRG1 has
recently been reported to promote transcriptional activity
of the melanocyte specific transcription factor MITF-M
[29]. MITE-M plays an important role in melanocyte pro-
liferation and survival (reviewed by Goding) [30] and
activates the expression of p16!NK4a[31]. It is possible that
the p16!NK4a jpteraction with BRG1 modulates any one or
more of these functions. For example it is tempting to
speculate that p16NK4ainfluences MITF-M transcriptional
activity via its association with BRG1. This would create
an important feedback loop between MITF-M and
pl6INK4a We are currently investigating the impact of
p16INK4a on these BRG1 specific chromatin remodelling
functions.

Regardless of the function of the BRG1-p16!NK4a complex,
it is evident that BRG1 expression can be lost relatively
early in melanoma development, with a significant pro-
portion (> 70%) of primary melanomas showing no
detectable BRG1 expression, while BRM expression was
usually maintained in these tumors (< 20% loss). Overall,
the rate of BRG1 loss was high in melanomas and compa-
rable to that of p16!NkK4a[32], which suggests that selection
against BRG1 expression arises relatively early in
melanoma genesis. The fact that, additionally to the fre-
quent loss of either tumor suppressor, a high proportion
of melanomas show loss of both proteins correlates with
our data showing BRG1-independence of the p16!NK4a ce]]
cycle regulatory functions and this suggests BRG1 inde-
pendent and dependent functions of p16/NK4a, BRG1 is
proposed to be an important modulator of chromatin in
melanocytic cells. In particular, BRG1 promotes transcrip-
tional activity of the melanocyte specific transcription fac-
tor MITE-M [29], reduction of BRGI1 expression in
zebrafish embryos leads to a reduction in neural crest
derived cells including melanocytes [33] and thirdly we
found BRG1 expression in normal, primary human
melanocytes. Therefore we propose that BRG1 is a vital
melanoma associated tumour suppressor, which is fre-
quently lost in the initial stages of the disease.
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The identification of BRG1 as a potential tumor suppres-
sor in melanoma adds to the increasing evidence implicat-
ing the SWI/SNF chromatin remodelling complex in
tumor development. BRG1 mutations have been identi-
fied in small cell lung carcinomas [34] and loss of BRG1
expression or mislocalisation of BRG1 to the cytoplasm
has been associated with poor prognosis in this malig-
nancy [14,15]. Another study showed that 71% of neu-
roendocrine carcinomas of the cervix had lost BRG1
expression [13] and BRG1 has been implicated in breast
cancer through its role in estrogen receptor dependent
transcription [35], its interaction with the breast cancer
susceptibility gene BRCA1 [27] and because BRG1 hap-
loinsufficient mice are prone to mammary tumors [23].
Furthermore, BRG1 is often lost or mutated in various
tumor cell lines including cells derived from pancreatic,
ovarian, lung, brain and colon cancer [12]. In primary
melanoma, the chromosomal region of BRG1 (19p13.2)
is not deleted at high frequency [36], nevertheless, trans-
locations in this chromosomal region have been associ-
ated with the disease in three cases [37].

Conclusion

We have identified BRG1 as a novel binding partner of the
tumor suppressor p16NK4aand confirmed this interaction
in normal cells. Together with our immunohistologic data
confirming frequent BRG1 loss in primary melanomas,
this implicates BRG1 as an important tumor suppressor in
melanoma.

Methods

Yeast two-hybrid screen

The Matchmaker2 Gal4 yeast two-hybrid system (Clon-
tech, Mountain View, CA, USA) was used to screen for
p16INK4a bhinding partners in the Y190 yeast strain with
p16!NK4a cloned into the pAS2 vector in frame to the Gal4
binding domain and a human brain cDNA library cloned
into the pACT?2 vector in frame with the Gal4 transactiva-
tion domain (Clontech, Mountain View, CA, USA)
according to the manufacturers instructions.

Cell culture

U208, SAOS-2 (osteosarcoma), HCT116 (colon cancer),
NCI-H1299 (lung cancer, are referred to as H1299
throughout this manuscript), C33A (cervical cancer), SW-
13 (adrenocarcinoma), WS-1 (normal human fibroblasts)
and WMM1175_wtp16 (melanoma) cells were grown in
DMEM media with 10% foetal bovine serum and in case
of WMM1175_wtp16 cells this was supplemented with
250 pg/ml Hygromycin and 500 pg/ml geneticin (Invitro-
gen, Carlsbad, CA, USA). Transfections were performed
with FuGene (Roche, Mannheim, Germany).

http://www.molecular-cancer.com/content/8/1/4

Stable BRGI silenced p 1 6/NK4a jnducible WMMI I 75 clones
5 x 105WMM1175_wtp16 cells were transfected with 4 pg
of a BRG1 targeting siRNA (5'gatcc GCATGCACCAGATGC
ACAAgttcaagagaCTTGTGCATCTGGTGCATGttttttggaaa3')
cloned into the pSilencerPuro vector (Ambion, Austin,
Texas, USA) or a control siRNA, targeting the luciferase
gene, in the same vector supplied by Ambion. After selec-
tion with puromycin (2 pg/ml media) clones appeared
after 20 days and were expanded, maintained with DMEM
media including hygromycin, geneticin and puromycin
and tested for BRG1 silencing and p16!Nk4a inducibility.

Antibodies

Mouse anti-B-actin (AC-74, Sigma, Castle Hill, NSW, Aus-
tralia), mouse anti-Flag (M2, Sigma, Castle Hill, NSW,
Australia), rabbit anti p16!NK42 antibody (Western and
immunohistochemistry, N-20, SantaCruz, Santa Cruz,
CA, USA), mouse anti-p16!NK42 antibody (immunoprecip-
itation, 2B4D11, Zymed Laboratories, San Francisco, CA,
USA), mouse anti-BRG1 antibody (Western, G7, San-
taCruz, Santa Cruz, CA, USA), rabbit anti-BRG1 antibody
(immunohistochemistry, H-88, Santa Cruz, Santa Cruz,
CA, USA), rabbit anti-MYC (A14, SantaCruz, Santa Cruz,
CA, USA), Ki67 (MIB-1, Dako, Glostrup, Denmark), goat
anti-BRM (Western, N-19, Santa Cruz, Santa Cruz, CA,
USA), rabbit anti-BRM (immunohistochemistry, [38]),
mouse anti-CDK4 (C8218, Sigma, Castle Hill, NSW, Aus-
tralia), mouse anti-CDK6 (MS-451-PO, Neomarker,
Union City, CA, USA), rabbit anti-phosphorylated pRb
(Ser807/811, Cell Signalling, Boston, MA, USA), mouse
anti-pRb (G3-245, BD Pharmingen, Franklin Lakes, NJ,
USA), mouse anti-topoisomerase Il (Ab1, Oncogene, San
Diego, CA, USA),

Immunoprecipitation

24 hours post seeding U20S cells (2 x 10°¢), they were
transfected with 7 ug pCMV-Myc5b-p16 and either 10.5
pg pcDNA3-BRG1-Flag [39] or 10.5 ng pCMV-Flag5b vec-
tor (Promega, Madison, Wisconsin, USA). Cells were har-
vested 24 hours post transfection, lysed in IP-buffer (50
mM Tris pH7.4, 150 mM NaCl, 1 mM EDTA, 1% NP-40,
0.25% sodium deoxycholate, protease inhibitors (Com-
plete tablets, Roche, Mannheim, Germany)) and immu-
noprecipitation was performed with mouse-anti-Flag
antibody or a matched mouse IgG coupled to tosyl-acti-
vated Dynal beads (Dynal Biotech, Oslo, Norway) follow-
ing the manufacturers instructions. Proteins were
separated on a 5-15% gradient SDS-PAGE gel, transferred
to PVDF membranes (Millipore, Billerica, MA, USA) and
probed for FLAG-BRG1 and MYC-p16!NK4a with the
mouse-anti-FLAG antibody or a rabbit anti-p16!NK42 anti-
body.

For immunoprecipitations of endogenous BRGI1

WMM1175_wtp16 cells were induced to express p16/NK4a
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with 4 mM IPTG or mock treated for 72 hours; alterna-
tively passage 20 WS-1 human dermal fibroblasts were
used. Nuclear pellets were produced using low salt buffer
(10 mM HEPES pH 7.9, 10 mM KCl, 0.1 mM EDTA, 0.1
mM EGTA, 1 mM DTT) and lyzed in IP-buffer with pro-
tease inhibitors. 5 mg of nuclear lysate was used for
immunoprecipitation using a mouse anti-p16/NK4a anti-
body or a matched mouse IgG. Protein antibody com-
plexes were purified using protein-A-agarose (Santa Cruz,
Santa Cruz, CA, USA). Immunoblotting was performed as
described above, endogenous BRG1 was detected with a
mouse anti-BRG1 antibody.

Immunocytostaining

SW-13 cells were seeded at 10> cells on cover slips into 6-
well plates and transfected 24 hours post seeding with 1
png pCMV-MYC5b-p16 and 1.5 ug pcDNA3-BRG1-FLAG.
Cells were fixed with methanol:acetone (1:1) for one
minute, washed with PBS and probed with mouse anti-
FLAG and rabbit anti-MYC antibodies and secondary
Alexa Fluor 594 nm goat-anti-mouse and Alexa Fluor 488
nm goat anti-anti-rabbit antibodies (Invitrogen, Carlsbad,
CA, USA). Images were taken with a BX-51 microscope
and a SPOT camera and a FV1000 confocal microscope
(Olympus, Center Valley, PA, USA).

WMM1175_p16!NK4acells silenced for BRG1 or expressing
a control silencing molecule were seeded after 1, 3, 5 days
induction with 4 mM IPTG at 4 x 10% cells on cover slips
and fixed 8 hours later with 2% formaldehyde, 0.2% glu-
taraldehyde, 7 mM Na,HPO,, 1.5 mM KH,PO,, 140 mM
NaCl, and 2.6 mM KCl and stained for SA-B-galactosidase,
DAPI, Ki67, p16!NK4aand BRG1. Images were taken with a
BX-51 microscope and a SPOT camera (Olympus, Center
Valley, PA, USA).

Western blotting

50 pg total cell lysate or nuclear lysate was separated on
15% SDS-PAGE gels or 5-15% gradient SDS-page gels,
transferred to PVDF membranes (Millipore, Billerica, MA,
USA) and probed for B-actin p16!NK4a, BRG1, BRM, pRb,
CDKG6, phoshorylated pRb and p16!NK4a,

Cell proliferation assay

WMM1175_p16!NK4a cells silenced for BRG1 or expressing
a control silencing molecule were seeded at 103 cells per
well in 96 well plates. For each day one plate was assayed
for MTS levels using a CellTitre 96 Aqueous One Solution
Proliferation assay (Promega, Madison, Wisconsin, USA)
according to the manufacturer's protocol using a Victor?
1420 Multilable counter (Perkin Elmer).

Cell cycle distribution
105 cells were seeded per well into 6-well plates and 24
hours later transfected with 1 ug pCMV-MYC5b-p16 and/

http://www.molecular-cancer.com/content/8/1/4

or 1.5 ug pcDNA3-BRG1-FLAG or 2.5 pg pCMV-MYC5b
vector plus 250 ng pEGFPspectrin. Total transfected DNA
was adjusted to 2.75 pg with pCMV-MYC5b vector. Cells
were harvested 48 hours post transfection and fixed in
4°C 70% ethanol for at least 1 hour and stained with 50
pg/ml propidium iodide and 50 pg/ml RNasesA in PBS
and analyzed using a FACScalibur and ModFit software
(Becton Dickinson, Franklin Lakes, NJ, USA). Percent S-
phase change was calculated (percent S-phase vector con-
trol — percent S-phase sample) x 100/percent S-phase vec-
tor control.

WMM1175_wtpl6 cells expressing a siRNA targeting
BRG1 or a control siRNA molecule targeting luciferase
were induced for 1, 3 or 5 days with 4 mM IPTG or mock
treated. For each time point the cell cycle distribution was
determined as described above.

Immunohistochemistry

Paraffin-embedded formaldehyde fixed primary (Breslow
depth of invasion > 2 mm) or metastatic melanomas were
cut at 4 mm onto Superfrost Plus slides and dried at 60°C
for 1 hour. Sections were rehydrated through histolene
and ethanol, heated in antigen retrieval buffer (Dako,
Glostrup, Denmark) overnight at 70°C. Slides were
placed in 3% hydrogen peroxide for 10 min then blocked
for 1 hour with 50% normal goat serum (Serum Australis,
Tamworth, NSW, Australia) diluted in 1% Tween 20/tris
buffered saline (TTBS). Samples were incubated with pri-
mary antibodies for 1 hour at dilutions indicated. For
p16NK4a and BRG1 slides were incubated for 30 minutes
with biotinylated goat anti-rabbit (Dako, Glostrup, Den-
mark) diluted 1:400 in TBT (1%BSA in TTBS) and finally
for 30 minutes with biotinylated-HRP/streptavidin (Invit-
rogen, Carlsbad, CA, USA) diluted in TBT. Antibodies
were detected using 3,3'-diaminobenzidine tetrachloride
(DAB; Invitrogen, Carlsbad, CA, USA), counter stained
with Mayers Haemotoxylin (Sigma, Castle Hill, NSW,
Australia), dehydrated and mounted using Normount
(Fronine, Riverstone, NSW, Australia). For BRM, slides
were incubated for 1 hour with Alexa Fluor goat anti-rab-
bit 594 nm (Invitrogen, Carlsbad, CA, USA) diluted
1:1000 with DAPI (Sigma, Castle Hill, NSW, Australia)
diluted 1:2000 in TBT. Slides were washed then mounted
using 3% n-propylgallate/50% glycerol. Primary antibod-
ies used were mouse anti-p16 (1:200), rabbit anti-BRG1
(1:100) and rabbit anti-BRM1 (1:400). Sections were
scored for staining intensity as 0 (equal to control), 1
(very weak positive)), 2 (positive) and 3 (strong positive)
and the proportion of tumor tissue with positive staining
as 0 (none), 1 (< 10%), 2 (< 50%) and 3 (> 50%). Tumors
were considered to have detectable positive staining when
the (intensity score) x (proportion staining score) was > 1.
Only tumor samples with enough tissue for staining of at
least two of the proteins were included in the study.
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Appropriate negative and positive controls were used with
each batch of immunostaining. This study is covered by
the Sydney South West Area Health Service Ethics Review
Committee (RPAH Zone) Protocol No. X08-0155 &
HREC Ref. 08/RPAH/262 - "Histological and Immuno-
histological Analysis of Melanocytic Tumours".

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

TB conceived and designed the project, carried out the ini-
tial Y2H screen, participated in and supervised most
experimental work and drafted the manuscript. SH partic-
ipated with endogenous IPs and carried out most of the
senescence work. MD isolated and identified BRG1 from
Y2H candidate clones and confirmed BRG1-p16INK4a
interaction in human cells. LS participated in the design of
the study and carried out the immunohistochemistry. MF
carried out confocal microscopy. ED contributed her
expertise in Y2H work. RS was critically involved in the
immunohistochemistry  analysis. DN  contributed
resources and was involved in the design of the study. GM
was involved in the design of the study and the analysis.
RK was involved in the design of the study and the analy-
sis. HR participated in the senescence work and was criti-
cally involved in design and coordination of the study and
the analysis and helped to draft the manuscript. All
authors revised the manuscript and approved the final
version.

Acknowledgements

We thank Dr Mei Huang for providing the BRGI expression plasmid. This
study was supported by the University of Sydney Cancer Research Fund,
the Cancer Council NSWV, the Cancer Institute NSWV and the National
Health and Medical Research Council of Australia, NHMRC. HR is an
NHMRC RD Wright Fellow, SH is supported by a scholarship from the
German Academic Exchange Service, DAAD, and the Cancer Institute
NSW, RS is a Cancer Institute NSW Clinical Research Fellow and LS is a
Cameron Melanoma Research Fellow of the Melanoma and Skin Cancer
Research Institute, University of Sydney.

References

I.  Goldstein AM, Chan M, Harland M, Gillanders EM, Hayward NK, Avril
MF, Azizi E, Bianchi-Scarra G, Bishop DT, Bressac-de Paillerets B, et
al.: High-risk melanoma susceptibility genes and pancreatic
cancer, neural system tumors, and uveal melanoma across
GenoMEL. Cancer Res 2006, 66:9818-9828.

2. Sherr CJ, Roberts JM: CDK inhibitors: positive and negative
regulators of Gl-phase progression. Genes and Development
1999, 13:1501-1512.

3. Stiegler P, De Luca A, Bagella L, Giordano A: The COOH-terminal
region of pRb2/pl130 binds to histone deacetylase |
(HDACI), enhancing transcriptional repression of the E2F-
dependent cyclin A promoter. Cancer Research 1998,
58:5049-5052.

4. Muchardt C, Yaniv M: When the SWI/SNF complex remod-
els.the cell cycle. Oncogene 2001, 20:3067-3075.

5. Zhang HS, Gavin M, Dahiya A, Postigo AA, Ma D, Luo RX, Harbour
JW, Dean DC: Exit from G| and S phase of the cell cycle is reg-
ulated by repressor complexes containing HDAC-Rb-hSWI/
SNF and pRb-hSWI/SNF. Cell 2000, 101:79-89.

20.

21.

22.

23.

24.

25.

26.

http://www.molecular-cancer.com/content/8/1/4

Rao M, Casimiro MC, Lisanti MP, D'Amico M, Wang C, Shirley LA,
Leader JE, Liu M, Stallcup M, Engel DA, et al.: Inhibition of cyclin DI
gene by Brg-1. Cell Cycle 2008, 7:647-655.

Kang H, Cui K, Zhao K: BRG controls the activity of the retin-
oblastoma protein via regulation of p2I1CIPI/WAFI/SDI.
Mol Cell Biol 2004:1188-1199.

Hendricks KB, Shanahan F, Lees E: Role for BRGI in cell cycle
control and tumour suppression. Mol Cell Biol 2004:362-376.
Betz BL, Strobeck MWV, Reisman DN, Knudsen ES, Weissman BE: Re-
expression of hSNF5/INII/BAF47 in pediatric tumor cells
leads to G| arrest associated with induction of pl éink4a and
activation of RB. Oncogene 2002, 21:5193-5203.

Bultman §J, Gebuhr TC, Yee D, La Mantia C, Nicholson J, Gilliam A,
Randazzo F, Metzger D, Chambon P, Crabtree GR, Magnuson T: A
Brgl null mutation in the mouse reveals functional differ-
ences among mammalian SWI/SNF complexes. Molecular Cell
2000, 6:1287-1295.

Glaros S, Cirrincione M, Palanca A, Metzger D, Reisman DN: Tar-
geted knockout of BRGI potentiates lung cancer develop-
ment. Cancer Res 2008, 68:3689-3696.

Wong AKC, Shanahan F, Chen Y, Lian L, Ha P, Hendricks KB, Ghaffari
S, lliev D, Penn B, Woodland AM, et al.: BRG], a component of the
SWI-SNF complex, is mutated in multiple humantumour
cell lines. Cancer Res 2000, 60:6171-6177.

Kuo KT, Liang CW, Hsiao CH, Lin CH, Chen CA, Sheu BC, Lin MC:
Downregulation of BRG-1 repressed expression of CD44s in
cervical neuroendocrine carcinoma and adenocarcinoma.
Modern Pathology 2006, 19:1570-1577.

Fukuoka J, Fujii T, Shih JH, Dracheva T, Meerzaman D, Player A, Hong
K, Settnek S, Gupta A, Buetow K, et al.: Chromatin remodeling
factors and BRM/BRGI expression as prognostic indicators
in non-small cell lung cancer. Clin Cancer Res 2004,
10:4314-4324.

Reisman DN, Sciarrotta |, Wang W, Funkhouser WK, Weissman BE:
Loss of BRGI/BRM in human lung cancer cell lines and pri-
mary lung cancers: correlation with poor prognosis. Oncogene
2003, 63:560-566.

Strobeck MW, Fribourg AF, Puga A, Knudsen ES: Restoration of
retinoblastoma mediated signaling to Cdk2 results in cell
cycle arrest. Oncogene 2000, 19:1857-1867.

Singh M, Popowicz GM, Krajewski M, Holak TA: Structural ramifi-
cation for acetyl-lysine recognition by the bromodomain of
human BRGI protein, a central ATPase of the SWI/SNF
remodeling complex. Chembiochem 2007, 8:1308-1316.

Becker TM, Rizos H, Kefford RF, Mann GJ: Functional impairment
of melanoma-associated pl6(INK4a) mutants in melanoma
cells despite retention of cyclin-dependent kinase 4 binding.
Clin Cancer Res 2001, 7:3282-3288.

Napolitano MA, Cipollaro M, Cascino A, Melone MA, Giordano A,
Galderisi U: Brgl chromatin remodeling factor is involved in
cell growth arrest, apoptosis and senescence of rat mesen-
chymal stem cells. Journal of Cell Science 2007, 120:2904-291 1.
Huschtscha LI, Reddel RR: p16(INK4a) and the control of cellu-
lar proliferative life span. Carcinogenesis 1999, 20:921-926.
Haferkamp S, Becker TM, Scurr LL, Kefford RF, Rizos H: p1 6INK4a-
induced senescence is disabled by melanoma-associated
mutations. Aging Cell 2008, 7:733-745.

Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, Spector
DL, Hannon GJ, Lowe SW: Rb-mediated heterochromatin for-
mation and silencing of E2F target genes during cellular
senescence. Cell 2003, 113:703-716.

Bultman §J, Herschkowitz JI, Godfrey V, Gebuhr TC, Yaniv M, Perou
CM, Magnuson T: Characterization of mammary tumors from
Brgl heterozygous mice. Oncogene 2008, 27:460-468.

Adams PD: Remodeling of chromatin structure in senescent
cells and its potential impact on tumor suppression and
aging. Gene 2007, 397:84-83.

Bandyopadhyay D, Curry JL, Lin Q, Richards HW, Chen D, Hornsby
PJ, Timchenko NA, Medrano EE: Dynamic assembly of chroma-
tin complexes during cellular senescence: implications for
the growth arrest of human melanocytic nevi. Aging Cell 2007,
6:577-591.

Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR: Onco-
genic BRAF induces senescence and apoptosis through path-
ways mediated by the secreted protein IGFBP7. Cell 2008,
132:363-374.

Page 11 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17047042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17047042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17047042
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9823308
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9823308
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9823308
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11420722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11420722
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10778858
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10778858
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10778858
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18239461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18239461
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14729964
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14729964
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14673169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14673169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12149641
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12149641
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12149641
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11163203
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11163203
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11163203
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18483251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18483251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18483251
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11085541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11085541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11085541
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16998464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16998464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15240517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15240517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15240517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12566296 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12566296 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12566296 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10773875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10773875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10773875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17582821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17582821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17582821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11595726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11595726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17666433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17666433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17666433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10357768
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10357768
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18843795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18843795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18843795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12809602
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12809602
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12809602
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17637742
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17637742
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17544228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17544228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17544228
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17578512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17578512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17578512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18267069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18267069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18267069

Molecular Cancer 2009, 8:4 http://www.molecular-cancer.com/content/8/1/4

27. Bochar DA, Wang L, Beniya H, Kinev A, Xue Y, Lane WS, Wang W,
Kashanchi F, Shiekhattar R: BRCAI is associated with a human
SWI/SNF-related complex: linking chromatin remodeling to
breast cancer. Cell 2000, 102:257-265.

28. Xu Y, Zhang ], Chen X: The activity of p53 is differentially reg-
ulated by Brm- and Brgl-containing SWI/SNF chromatin
remodeling complexes. | Biol Chem 2007, 282:37429-37435.

29. delaSerna IL, Ohkawa Y, Higashi C, Dutta C, Osias J, Kommajosyula
N, Tachibana T, Imbalzano AN: The microphthalmia-associated
transcription factor requires SWI/SNF enzymes to activate
melanocyte-specific genes. | Biol Chem 2006, 281:20233-20241.

30. Goding CR: Mitf from neural crest to melanoma: signal trans-
duction and transcription in the melanocyte lineage. Genes
and Development 2000, 14:1712-1728.

31. Loercher AE, Tank EM, Delston RB, Harbour JW: MITF links differ-
entiation with cell cycle arrest in melanocytes by transcrip-
tional activation of INK4A. | Cell Biol 2005, 168:35-40.

32. Reed JA, Loganzo F, Shea CR, Walker GJ, Flores JF, Glendening JM,
Bogdany JK, Shiel MJ, Haluska FG, Fountain JW, Albino AP: Loss of
expression of the plé/cyclin-dependent kinase inhibitor 2
tumor suppressor gene in melanocytic lesions correlates
with invasive stage of tumor progression. Cancer Res 1995,
55:2713-2718.

33. Eroglu B, Wang G, Tu N, Sun X, Mivechi NF: Critical role of Brgl
member of the SWI/SNF chromatin remodeling complex
during neurogenesis and neural crest induction in zebrafish.
Developmental Dynamics 2006, 235:2722-2735.

34. Medina PP, Carretero J, Fraga MF, Esteller M, Sidransky D, Sanchez-
Cespedes M: Genetic and epigenetic screening for gene alter-
ations of the chromatin-remodeling factor, SMARCA4/
BRGI, in lung tumors. Genes Chromosomes Cancer 2004,
41:170-177.

35. Wang S, Zhang B, Faller DV: BRGI/BRM and prohibitin are
required for growth suppression by estrogen antagonists.
EMBO | 2004, 23:2293-2303.

36. Curtin JA, Fridlyand |, Kageshita T, Patel HN, Busam BC, Kutzner H,
Cho KH, Aiba S, Brocker EB, LeBoit PE, et al.: Distinct sets of
genetic alterations in melanoma. N Engl | Med 2005,
353:2135-2147.

37. Parmiter AH, Balaban G, Herlyn M, Clark WH, Nowell PC: A t(1,19)
chromosome translocation in three cases of malignant
melanoma. Cancer Res 1986, 46:1526-1529.

38. Glaros S, Cirrincione M, Muchardt C, Kleer CG, Michael CW, Reis-
man DN: The reversible epigentic silencing of BRM: implica-
tions for clinical targeted therapy. Oncogene 2007,
26:7058-7066.

39. Huang M, Qiang F, Hu Y, Ang C, Li Z, Wen Z: Chromatin-remod-
elling factor BRGI selectively activates a subset of inter-
feron-a-inducible genes. Nature Cell Biol 2002, 4:774-781.

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 12 of 12

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10943845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10943845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10943845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17938176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17938176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17938176
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16648630
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16648630
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16648630
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10898786 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10898786 
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15623583
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15623583
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15623583
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7796391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7796391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7796391
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16894598
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16894598
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15287030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15287030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15287030
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15141164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15141164
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16291983
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16291983
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3943110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3943110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3943110
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17546055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17546055
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12244326
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12244326
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12244326
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	BRG1 binds p16INK4a
	pRb pathway in human cell lines
	p16INK4a requires pRB to induce cell cycle arrest
	p16INK4a does not require BRG1 to promote cell cycle arrest or induce cell senescence
	BRG1 is lost in melanoma

	Discussion
	Conclusion
	Methods
	Yeast two-hybrid screen
	Cell culture
	Stable BRG1 silenced p16INK4a inducible WMM1175 clones
	Antibodies
	Immunoprecipitation
	Immunocytostaining
	Western blotting
	Cell proliferation assay
	Cell cycle distribution
	Immunohistochemistry

	Competing interests
	Authors' contributions
	Acknowledgements
	References

