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Abstract
Background: δ-Catenin is a unique member of β-catenin/armadillo domain superfamily proteins
and its primary expression is restricted to the brain. However, δ-catenin is upregulated in human
prostatic adenocarcinomas, although the effects of δ-catenin overexpression in prostate cancer are
unclear. We hypothesized that δ-catenin plays a direct role in prostate cancer progression by
altering gene profiles of cell cycle regulation and cell survival.

Results: We employed gene transfection and small interfering RNA to demonstrate that increased
δ-catenin expression promoted, whereas its knockdown suppressed prostate cancer cell viability.
δ-Catenin promoted prostate cancer cell colony formation in soft agar as well as tumor xenograft
growth in nude mice. Deletion of either the amino-terminal or carboxyl-terminal sequences
outside the armadillo domains abolished the tumor promoting effects of δ-catenin. Quantitative
RT2 Profiler™ PCR Arrays demonstrated gene alterations involved in cell cycle and survival
regulation. δ-Catenin overexpression upregulated cyclin D1 and cdc34, increased phosphorylated
histone-H3, and promoted the entry of mitosis. In addition, δ-catenin overexpression resulted in
increased expression of cell survival genes Bcl-2 and survivin while reducing the cell cycle inhibitor
p21Cip1.

Conclusion: Taken together, our studies suggest that at least one consequence of an increased
expression of δ-catenin in human prostate cancer is the alteration of cell cycle and survival gene
profiles, thereby promoting tumor progression.

Background
Tumor progression is the result of loss of balance in cellu-
lar functions including cell growth, adhesion, division
and apoptosis. Among the many oncogenes and tumor
suppressors, cell-cell junction associated proteins, such as

β-catenin and adenomatous polyposis coli (APC), con-
tribute to cancer development by disrupting the E-cad-
herin based cell-cell junction, as well as interfering with
cell proliferation, altering karyotype, and reducing apop-
tosis [1,2].
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δ-Catenin, or NPRAP (neural plakophilin related arma-
dillo protein)/Neurojungin, is an adhesive junction asso-
ciated protein [3,4], which was initially identified as a
neural specific protein [5,6]. δ-Catenin belongs to the
p120ctn subgroup in the armadillo/β-catenin superfamily
[5,7]. While β-catenin and p120ctn are ubiquitously
expressed in the body, δ-catenin distribution is principally
restricted to the brain in healthy individuals. However, it
has become increasingly clear that δ-catenin is expressed
in a variety of cancers of peripheral tissues, including
breast, prostate, and esophageal tumors [8,9]. Recently,
we showed that δ-catenin is upregulated in over 80% of
prostatic adenocarcinomas, and its expression is corre-
lated with increasing Gleason scores [9]. An increased
expression of δ-catenin is accompanied by reduced E-cad-
herin and p120ctn in primary prostatic adenocarcinomas,
and the forced overexpression of δ-catenin in cultured
prostate cancer cells can induce the redistribution of E-
cadherin and p120ctn [9]. While it is established that cell-
cell junction proteins, such as E-cadherin, β-catenin, APC,
and p120ctn, are involved in cell adhesion and motility as
well as cancer cell growth [1,2,10,11], it is not clear
whether δ-catenin overexpression exerts any effects on
prostate cancer cells.

In this study, we tested the hypothesis that δ-catenin plays
a direct role in prostate cancer cell growth by altering gene
profiles of cell cycle regulation and cell survival. We dem-
onstrated, for the first time, that δ-catenin overexpression
promotes anchorage-independent prostate cancer cell
growth and tumor xenografts in nude mice. We deter-
mined that the ability of δ-catenin overexpression to pro-
mote prostate tumor xenograft growth is dependent on
the amino- (NH2) and carboxyl- (COOH) terminal
sequences flanking the armadillo repeat domains. In addi-
tion, quantitative RT2 Profiler™ PCR arrays revealed a wide
range of gene alterations involved in cell cycle and sur-
vival regulation. These findings support the notion that at
least one consequence of an increased δ-catenin expres-
sion in prostate cancer development is the alteration of
cell cycle and survival gene profiles, thereby promoting
tumor progression.

Results
-Catenin overexpression promotes prostate cancer cell 
growth in culture
Our previous studies showed that δ-catenin expression is
very weak in normal prostatic glandular epithelial cells
but is remarkably increased in prostatic adenocarcinoma
[9]. Screening for prostate cancer cell lines overexpressing
δ-catenin, we found that δ-catenin expression was moder-
ately increased in CWR22Rv-1 and PC-3 cells when com-
pared to non-cancer prostate epithelial cells PZ-HPV-7 but
remained very low in LNCaP and DU145 cells [12]. There-
fore, CWR22Rv-1, derived from a recurrent human pros-
tate cancer xenograft [13,14], and PC-3 cells, derived from

a bone metastasis of prostatic adenocarcinoma [15], were
chosen to test the hypothesis that the increase or decrease
in δ-catenin expression affect prostate cancer cell growth,
respectively.

We transfected δ-catenin cDNA with EGFP fusion into
CWR22Rv-1 cells (Fig 1A). The stable cell lines were estab-
lished by G418 selection followed by cell sorting to enrich
for GFP emitting cell populations. This method allowed
for the establishment of cell culture that contained almost
100% δ-catenin overexpressing cells. While vector trans-
fected cells showed clear monolayer cell morphology (Fig
1A, a), δ-catenin overexpressing cells tended to form clus-
ters (Fig 1A, d). This result was reminiscent of the disrup-
tion of cell monolayer morphology in MDCK kidney
epithelial cells overexpressing δ-catenin [3]. Vector trans-
fected cells, with GFP as the transfection marker uni-
formly distributed in the cells (Fig 1A, b; see insert),
displayed E-cadherin at the cell-cell junction (Fig 1A, c; see
insert). However, δ-catenin overexpression at the cell-cell
junction (Fig 1A, e; see insert) showed disrupted E-cad-
herin distribution (Fig 1A, f; see insert).

A number of studies showed that disrupted cell-cell junc-
tion can alter cell growth [10,11]. To investigate the effects
of δ-catenin expression in prostate cancer cells, we exam-
ined the growth property of CWR22Rv-1 cells stably over-
expressing δ-catenin or stably suppressing δ-catenin
expression (Fig 1B). To determine if the endogenous δ-cat-
enin expression plays an important role in cell growth,
stable cell lines expressing small hairpin RNAs (shRNAs)
specific for δ-catenin gene were established and confirmed
by Western blots (Fig 1B, a). Compared with vector trans-
fected cells, δ-catenin overexpression showed a significant
increase in cell numbers (Fig 1B, b, compare δ-catenin
with vector). Compared with vector transfected cells, two
independent shRNAs against different δ-catenin sequences
reduced viable cell numbers (Fig 1B, b, compare vector 1
and 2 with shRNA 1 and 2).

To determine if the growth promoting effects of δ-catenin
expression also applies to other cancer cell types, we
examined PC-3 prostate cancer cells and NCI-H1299 cells
derived from a human lung carcinoma [16]. Similarly,
viable cell numbers were significantly increased in PC-3
and NCI-H1299 cells stably overexpressing δ-catenin (Fig
1B, c and 1B, d). These observations indicated that δ-cat-
enin expression is important for cancer cell growth in cul-
ture.

-Catenin promotes the anchorage-independent growth of 
CWR22Rv-1 cells in soft agar and tumor xenografts in 
nude mice
To investigate whether δ-catenin overexpression promotes
the anchorage-independent growth of prostate cancer
cells, we performed soft agar assays. Following the plating
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δ-Catenin expression is important for viable prostate cancer cell growthFigure 1
δ-Catenin expression is important for viable prostate cancer cell growth. A. Establishment of stable CWR22Rv-1 
cells overexpressing δ-catenin and its effects on epithelial cell morphology. CWR22Rv-1 cells, showing epithelial morphology 
(a) when transfected with pEGFP as vector control (b), display expression of E-cadherin at the cell-cell junction (c). δ-Catenin 
overexpressing CWR22Rv-1 cells (e) interfere with the epithelial monolayer (d) and disrupt E-cadherin expression at the cell-
cell junction (f). Bar, 30 μm. Inserts: selective higher magnification images for (b), (c), (e) and (f), respectively. Bar, 25 μm. B. δ-
Catenin overexpression promotes, while its knockdown suppresses prostate cancer CWR22Rv-1 cell growth. a. Western blot 
analysis shows that the increased expression of δ-catenin in cells transfected with δ-catenin cDNA and reduced expression of 
δ-catenin in cells transfected with δ-catenin shRNA. Anti-actin staining is used as a loading control, and the molecular weight 
markers (kDa) are on the left. b. δ-Catenin shRNA transfection reduces viable cell numbers while δ-catenin overexpression by 
δ-catenin cDNA transfection increases viable cell numbers. Vector 1 and 2: pRS-GFP and pEGFP, respectively. shRNA 1 and 
shRNA 2: shRNA against δ-catenin sequences 1 and 2, * P < 0.05. c and d. δ-Catenin overexpression promotes cancer cell 
growth in PC-3 (c) and NCI-H1299 (d) cells. Inserts: Western blots showing PC-3 (c) and NCI-H1299 (d) cells with (+) or 
without (-) stable δ-catenin overexpression. Anti-actin staining is used as a loading control, and the molecular weight markers 
(kDa) are on the left.
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of δ-catenin transfected and vector transfected CWR22Rv-
1 cells in 0.6% top agar, cell colonies were scored after 1,
2, 3 and 4 weeks of incubation, respectively. The colony
number of δ-catenin overexpressing cells increased more
than 2 fold when compared to that of vector transfected
cells during 1, 2 and 3 weeks (Fig 2A, compare δ-catenin
with vector). The colony number as well as the colony size
was decreased in both δ-catenin overexpressing cells and
control cells by the 4th week, consistent with the literature
that colony formation decreases after prolonged incuba-

tion [17]. This analysis revealed that δ-catenin overexpres-
sion promoted colony formation in soft agar.

To determine whether δ-catenin overexpression promotes
tumor growth in vivo, we examined the effect of δ-catenin
expression on the growth of CWR22Rv-1 tumor xenograft
in nude mice. δ-Catenin overexpressing cells produced
significantly larger tumors than that of the vector trans-
fected cells (Fig 2B, n = 19). The volume of tumors derived
from δ-catenin transfected cells increased steadily two

δ-Catenin expression mediated anchorage-independent prostate cancer cell colony formation and tumor xenograft growth replies on the NH2- and COOH-terminal sequences outside armadillo domainsFigure 2
δ-Catenin expression mediated anchorage-independent prostate cancer cell colony formation and tumor 
xenograft growth replies on the NH2- and COOH-terminal sequences outside armadillo domains. A. Soft agar 
assays showing that full length δ-catenin, but not its NH2- or COOH-terminal truncation mutants, promotes CWR22Rv-1 cell 
colony formation in vitro. Stable cells expressing vector control, full-length δ-catenin, ΔN280 and ΔC207 were plated in soft 
agar. Colonies were counted under the phase contrast light microscope in 1, 2, 3, and 4 weeks after they were plated. Results 
were derived from five independent experiments, each in duplicate. * P < 0.05. B. δ-Catenin overexpression promotes 
CWR22Rv-1 cells to grow tumors in nude mice. Shown here is a representative pair of tumor bearing mice expressing control 
vector and δ-catenin, respectively (n = 19). C. Full-length δ-catenin, but not its NH2- or COOH-terminal truncation mutants, 
promotes tumor xenograft growth in nude mice. Male athymic nude mice were inoculated subcutaneously with either the vec-
tor, full-length δ-catenin, ΔC207 or ΔN280 and were then allowed to grow for 5 weeks. Each week, the tumor volumes were 
measured and compared to each other. * P < 0.05. D. Fluorescent light microscopy showing the tumor cell morphology (a and 
c) and GFP positive CWR22Rv-1 cells expressing vector alone (b) and overexpressing δ-catenin (d). Bar, 50 μm.
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weeks after inoculation and was nearly 2 fold when com-
pared to that of tumors from control cells (Fig 2C, com-
pare δ-catenin with vector). Similar results were observed
when PC-3 and NCI-H1299 cells overexpressing δ-catenin
were used for inoculating the nude mice (data not
shown). Examination of tumor histology under fluores-
cent light microscopy showed that the majority of tumor
volume contained green fluorescent cells, confirming that
the tumors were indeed the result of proliferation and
growth of inoculated CWR22Rv-1 vector transfected cells
(Fig 2D, a and 2D, b) or cells overexpressing δ-catenin (Fig
2D, c and 2D, d), respectively.

The tumor promoting effects of -catenin relies on the 
NH2- and COOH-terminal sequences outside the 
armadillo domains
While the armadillo domains of δ-catenin showed consid-
erable homology to other β-catenin/armadillo family pro-
teins, the NH2- and COOH-terminal sequences flanking
the armadillo repeat units are quite different among the
different members of the family [5,7]. Therefore, we trans-
fected δ-catenin cDNA with NH2-terminal (ΔN280) or
COOH-terminal (ΔC207) deletions (Fig 3A, top panel)
and established the respective cell lines showing stable
expression (Fig 3A, bottom panel). While GFP protein was
diffusely distributed in the nucleus and cytoplasm in
CWR22Rv-1 cells (Fig 3B, a), full-length δ-catenin (Fig 3B,

b), arrow) and ΔN280 (Fig 3B, c, arrow) were similarly
localized at the cell-cell junction. However, ΔC207 was
not associated with cell-cell junctions and remained
mainly cytoplasmic (Fig 3B, d, arrow). This result was con-
sistent with ΔC207 distribution in NIH3T3 cells and in
neurons [18,19]. When their growth in soft agar was com-
pared, it became clear that compared to full-length δ-cat-
enin, both ΔN280 and ΔC207 did not promote colony
formation in soft agar (Fig 2A). In fact, ΔC207 showed sig-
nificant inhibition of forming cell colonies as compared
to vector transfected cells (p < 0.05). Similarly, ΔN280 and
ΔC207 did not show tumor promoting effects in nude
mice (Fig 2C), although ΔN280 and ΔC207 did not show
statistically significant inhibition of tumorigenesis when
compared to vector control. These results supported the
notion that δ-catenin sequences outside the armadillo
domains are important for its tumor promoting activity.

-Catenin promotes the entry of mitosis in CWR22Rv-1 
cells
To investigate if the effect of δ-catenin overexpression on
the increase in viable cell number was to increase mitosis,
we conducted experiments to compare the mitotic index
of δ-catenin expressing cells with that of vector transfected
cells. Cells entering mitosis show intense chromosomal
staining with Hoechst 33258 dye highlighting different
phases of cell division (Fig 4A, insert). Percentages of cells

A. Establishment of stable CWR22Rv-1 cells overexpressing full-length, ΔN280 and ΔC207 δ-catenin cDNAsFigure 3
A. Establishment of stable CWR22Rv-1 cells overexpressing full-length, ΔN280 and ΔC207 δ-catenin cDNAs. 
Top panel, schematic illustration of full-length, ΔN280 and ΔC207 δ-catenin cDNAs. Bottom panel, western blots showing the 
stable expression of full-length, ΔN280 and ΔC207 δ-catenin protein in CWR22Rv-1 cells. Molecular weight markers are 
shown on the left. B. GFP fluorescent images of CWR22Rv-1 cells stably expressing vector (a), fill-length δ-catenin (b, arrow 
points to cell-cell junction), ΔN280 (c, arrow points to cell-cell junction) and ΔC207 (d, arrow points to cytoplasmic distribu-
tion). Bar, 50 μm.
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showing clear mitotic figures over the total number of
cells were counted as mitotic index. This analysis showed
that CWR22Rv-1 cells overexpressing δ-catenin had a sig-
nificantly higher mitotic index (Fig 4A), consistent with
increased entry to mitosis.

To independently confirm the increased mitotic index in
δ-catenin overepressing cells, we analyzed phosphor-
ylated histone-H3 immunolocalization (Fig 4B). Histone-
3 is increasingly phosphorylated when cells pass G2 phase
and enter mitosis. Control, vector transfected CWR22Rv-

1 cells showed 3 ± 0.20% cells with phosphorylated
hisotne-H3 immuoreactivity (Fig 4B, a and 4B, b, arrows),
whereas δ-catenin overexpressing cells showed a 7 ±
0.32% phosphorylated histone-H3 activity (Fig 4B, c and
4B, b, arrows), supporting the notion that more δ-catenin
overexpressing cells entered mitosis.

-Catenin overexpression alters gene profiles of cell cycle 
and survival
To further explore the potential molecular mechanisms
underlying the δ-catenin mediated increase in prostate
cancer cell viability, we investigated the gene expression
patterns of cell cycle and survival. Compared to vector
transfected cells, δ-catenin overexpression led to changes
in a number of genes in these pathways. Notably, cell
cycle regulatory genes such as cyclin D1 (CCND1) and
cdc34 (CDC34), activation of which promotes G1 to S
transition [20], showed more than a 2-fold increase (Fig
5A). Bcl2L1 (BCL2L1), the long isoform of Bcl2 involved
in anti-apoptotic activation [21], increased by 3.84 fold.
CSF2 (colony stimulating factor 2)/GM-CSF (granulate-
macrophage colony stimulating factor), involved in
tumor metastasis to the bone [22], showed a 3.34-fold
increase (Fig 5A). ITGA7 (integrin α7) increased by 6.15
fold whereas other cell adhesion and matrix genes such as
COL16A1 (collagen 16), ITGB3 (integrin β3), MMP14,
MMP15 and CTGF (connective tissue growth factor), each
showed increases over 2 fold. One unique biochemical
property within prostate epithelial cells is their depend-
ence on glycolysis for energy production. HK2 (Hexoki-
nase 2), involved in the increased rate of glycolysis seen in
rapidly growing cancer cells [23], was increased 2.2-fold
(Fig 5A). To confirm the validity of RT2 Profiler™ PCR
Array, we selected cyclin D1, Bcl2L1, and HK2 genes to fur-
ther study their changes in expression by real-time PCR
(Fig 5B). Cyclin D1 showed an over 3-fold increase in
expression, Bcl2L1 expression increased 1.5-fold, and HK2
turned in an over 2-fold increase in expression, in line
with the array results (Fig 5A).

We also selected several protein markers to evaluate their
potential involvement in the regulation of cell growth by
δ-catenin overexpression. For example, while the total
expression level of histone-H3 was similar in both vector
and δ-catenin transfected cells (Fig 5C), histone-H3 phos-
phorylation was clearly elevated in δ-catenin overexpress-
ing cells when compared to control cells, which supports
the immunofluorescent light microscopic observations of
increased mitotic activity in δ-catenin overexpressing cells
(Fig 4B). Although Erk1/2 expression did not show any
changes, the expression of survivin, a member of the
inhibitor-of-apoptosis family known to be overexpressed
by cancer cells, was increased in δ-catenin overexpressing
CWR22Rv-1 cells when compared to control cells (Fig
5C). Cell cycle inhibitor p21Cip1 is a downstream effector

δ-Catenin expression promotes the entry of mitosisFigure 4
δ-Catenin expression promotes the entry of mitosis. 
A. Mitotic index of cells expressing vector alone as a control 
and cells overexpressing δ-catenin. Mitotic index is given as 
the percentage of cells entering mitosis determined by 
Hoechst staining. Insert: mitotic cells (arrows) showing 
strong Hoechst staining. B. Immunofluorescent light micros-
copy showing increased mitotic activity in δ-catenin express-
ing cells (c and d) in comparison to control vector 
transfected cells (a and b). Mitotic activity is determined as 
the number of GFP positive, transfected cells (a and c) 
intensely reactive with anti-phosphorylated histone H3 (p-
Histone H3, b and d). Arrows: examples of GFP positive, 
transfected cells immunoreactive for phosphorylated histone 
H3. Bar, 100 μm; Bar in the insert, 5 μm.
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of p53 mediated cell cycle interruption [24,25]. However,
p21Cip1 expression in δ-catenin overexpressing cells was
reduced when compared to vector transfected cells (Fig
5C). These results indicated that the effects of δ-catenin on
cell viability could also be due to reduced cell death, in
addition to an increased mitotic activity.

Discussion
β-Catenin/armadillo superfamily proteins are expressed
in cells of all major tissue types including epithelial cells.
They play important roles in cancer with some of its mem-
bers as oncogenes while others act as tumor suppressors
[1,2]. δ-Catenin (gene designation as CTNND2), however,

Changes in gene profiles of CWR22Rv-1 cells expressing δ-catenin when compared to that of cells expressing vector aloneFigure 5
Changes in gene profiles of CWR22Rv-1 cells expressing δ-catenin when compared to that of cells expressing 
vector alone. A. RT2 Profiler™ PCR Array. CWR22Rv-1 cells with or without δ-catenin overexpression were subject to RT2 

Profiler™ PCR arrays of apoptosis and cell cycle. Left panel shows the schematic illustration of one of the array outcomes. 
Right panel shows selected genes revealing over 2-folds upregulation. B. Selective, single real-time PCR analyses to compare 
RNA expression of cyclin D1, Bcl2L1 and HK2 in CWR22Rv-1 cells with or without δ-catenin overexpression. C. Changes in 
protein expression in CWR22Rv-1 cells with (+) or without (-) δ-catenin overexpression. Cells were lysed and proteins were 
separated by SDS-PAGE followed by Western blots using antibodies against proteins indicated on the right. After the blots 
were exposed using chemiluminence, the same blot was re-probed using mouse anti-actin to demonstrate protein loading con-
trol. Molecular weight markers in kDa are indicated on the left.
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is a unique member of the family because it is primarily
expressed in the central nervous system of normal individ-
uals. However, δ-catenin is now well established as being
overexpressed in prostate cancer [9,26].

The frequently increased expression of the neuronal pro-
tein δ-catenin in peripheral prostate cancer tissue raised
important questions such as what mechanisms are in
place in cancer to result in a high level of δ-catenin expres-
sion. δ-Catenin gene amplification was observed in cervi-
cal cancer [27] and bladder cancer [28]. Transcription
factor Pax6 was found to play an important role for regu-
lation of δ-catenin expression in developing eye and cen-
tral nervous system [29]. Recently, we showed that the
ectopic overexpression of E2F1 and Pax6 positively upreg-
ulates δ-catenin expression in prostate cancer cells [12].
Furthermore, increased translation efficiency by somatic
mutations in the 5'-untranslated region of δ-catenin was
observed in prostate cancer patients [30], further support-
ing the hypothesis that cancer cells implement multiple
mechanisms to upregulate δ-catenin expression to
advance tumor progression. In this study, we provided the
first evidence that δ-catenin is capable of promoting the
expansion of prostate cancer cells, altering gene profiles of
prostate cancer cell cycle regulation and survival.

Regarding cell proliferation and colonization, earlier stud-
ies evaluating MDCK cells transfected with δ-catenin
showed that there were no significant differences between
MDCK cells expressing δ-catenin and control cells [3].
Interestingly, ectopic expression of δ-catenin in NIH3T3
fibroblast cells inhibited cell division and induced cellular
processes with branches [18]. However, δ-catenin overex-
pression in pheochromocytoma (PC12) cells increased
cell proliferation and promoted neurite outgrowth when
treated with nerve growth factor [31]. These studies, in
addition to our current findings, suggest that δ-catenin
effects on cell growth are context dependent. It is possible
that preneoplastic cells may not tolerate high levels of sta-
ble δ-catenin expression, such as in MDCK cells [3],
NIH3T3 cells [18], and mammary epithelial cells [32]. We
have also failed to develop stable cell lines using PZ-HPV-
7 (non-cancer human prostate epithelial origin) and
NL20 (non-cancer human lung epithelial origin) cells
(Zeng and Lu, unpublished data). However, in tumor
cells, such as PC12, CWR22Rv-1, PC-3 and NCI-H1299,
stable cell lines with δ-catenin overexpression were not
only successfully produced, but also showed increased cell
viability, suggesting that δ-catenin does not transform
normal cells but promotes cancer cell expansion.

The armadillo repeating units reveal the most significant
homology among β-catenin superfamily proteins, while
the sequences flanking the armadillo domain are quite
variable [5,7]. This feature is consistent with the hypothe-
sis that sequences outside the armadillo domains play

important regulatory roles to characterize each different
member. δ-Catenin interacts with classical cadherins
through the armadillo domains, and the NH2- or COOH-
terminal sequences on their own do not localize to cell-
cell junctions [3]. In addition, the deletion of COOH-ter-
minal 207 amino acids abolished the δ-catenin mediated
process extension in NIH3T3 cells and compromised the
roles of δ-catenin in promoting dendrite outgrowth in
neurons [18,33,34]. Removing the NH2-terminal 280
amino acids also remarkably altered the effects of δ-cat-
enin on 3T3 cell morphology [18]. In our present study,
we showed that while the full-length δ-catenin promoted
prostate cancer cell colony formation in soft agar and
tumor xenograft growth in nude mice, δ-catenin with the
deletion of either NH2-terminal 280 amino acids or
COOH-terminal 207 amino acids lost its ability to pro-
mote tumor development. These studies underscore the
importance of these sequences outside the armadillo
domain to the functions of δ-catenin in cancer.

Gene profiling can provide initial indications of what may
be the potential molecular pathways that δ-catenin
employs to contribute to tumor progression. We identi-
fied a number of genes that displayed changes in expres-
sion when δ-catenin is overexpressed in prostate cancer
cells. Several of these genes, such as cyclin D1, cdc34,
Bcl2L1, and HK2, are especially interesting. Both cyclin
D1 and cdc34 are involved in G1 to S transition, and
Bcl2L1 is a long isoform of Bcl2 which protects cells from
undergoing apoptosis [21]. HK2 phosphorylates glucose
to produce glucose-6-phosphate, thus committing glucose
to the glycolytic pathway. Expression of HK2 has been
indicated in rapidly growing cancer cells [35,36]. Never-
theless, we still do not know how an increased δ-catenin
expression affects these pathways in prostate cancer devel-
opment. Our future studies will dissect the signaling
events to determine the mechanisms by which δ-catenin
employs to promote prostate cancer cell growth and
tumor progression.

Conclusion
This study is the first to demonstrate the effects of δ-cat-
enin overexpression in prostate cancer cells. We show that
these effects rely on the δ-catenin domains outside arma-
dillo repeating sequences, providing future direction for
investigating the molecular basis of δ-catenin mediated
prostate cancer development. Our studies suggest that an
increased expression of δ-catenin in human prostate can-
cer permits the alteration of cell cycle and survival gene
profiles, which may advance tumor progression.

Methods
Materials
Mouse anti-δ-catenin and p21Cip1 were from BD Bio-
sciences (Palo Alto, CA). Rabbit anti-cyclin D1 were from
Santa Cruz Biotech (Santa Cruz, CA). Mouse anti-actin,
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histone-H3, and rabbit anti-Erk1/2 and survivin were
from Cell Signaling (Boston, MA). Rabbit anti-phosphor-
ylated histone-H3 (Ser 10) was obtained from Upstate
Biotech (Lake Placid, NY). Unless otherwise indicated all
chemicals were from Sigma (St. Louis, MO).

Cell Culture and Transfection
CWR22Rv-1 and PC-3, as well as NCI-H1299, were
obtained from ATCC and cultured in RPMI 1640 medium
(Invitrogen, Carlsbad, CA) supplemented with 10% fetal
bovine serum (FBS). All cultures were maintained at 37°C
with 5% CO2 until they were used for further experimen-
tal analyses.

To produce stable δ-catenin overexpressing cell lines, full
length, NH2-terminal deleted (ΔN280), or COOH-termi-
nal deleted (ΔC207) δ-catenin cDNA with or without
pEGFP fusion [18] was transfected using FuGENE 6
(Roche Scientific, Gaithersburg, MD). CWR22Rv-1, PC-3
and NCI-H1299 cells transfected with pEGFP (Clontech,
Palo Alto, CA) were used as a vector control. Stable cell
lines transfected with untagged δ-catenin were established
by selection using 250 μg/ml G418. For selection of
pEGFP- -catenin transfected cells, cells were first selected in
G418 containing medium. Then, pEGFP- -catenin trasn-
fected cells were further selected by GFP-based cell sorting
using a FACS Vantage (BD Biosciences). The stable cell
lines were maintained in RPMI 1640 medium containing
G418.

shRNA and Western Blot Analysis
δ-Catenin gene specific shRNA constructs (gene sequence
accession number NM 001332) used in this study were
from Origene Technologies, Inc (Rockville, MD). They
were as follows: shRNA1, 5'-ggatggagtaggacctcttccagact-
gtg-3', shRNA2, 5'-ctcacgctttgtttactctcttcatccgt-3', and a
negative control shRNA pRS-GFP plasmid. CWR22Rv-1
cells were transfected with shRNA specific to δ-catenin
gene using Lipofectamine 2000 (Invitrogen) and co-trans-
fected with pGFP. Following transfection, the medium
was replaced by RPMI 1640 with G418 for selection. The
G418 resistant cells were further sorted using GFP as a
marker to enrich for shRNA expressing cells.

To determine δ-catenin knockdown efficiency, cultured
cells were lysed in 10 mM HEPES, pH 7.3, 150 mM NaCl,
2 mM EDTA, 1% Triton X-100, 0.5% deoxycholate, 0.2%
SDS with protease inhibitor cocktails (Radioimmunopre-
cipitation buffer, RIPA). Insoluble materials were
removed by centrifugation. The lysates were mixed with
sample buffer and equal protein amounts were loaded
onto gels for SDS-PAGE and Western blot analysis. After
proteins were transferred to nitrocellulose membranes
(PGC Scientifics, Frederick, MD), anti-δ-catenin and anti-
actin immunoreactivities were revealed by antibody

immunoblotting using enhanced chemiluminescence
(Amersham Life Science, Piscataway, NJ) for detection.

Cell Growth and Mitotic Index
Stably transfected cells were seeded and counted after 6
days in culture using a hemacytometer in at least three
independent experiments. Trypan blue exclusion was
used to determine viable cells for counting. To determine
mitotic index, cells were either stained with Hoechst
33258 or immunostained with anti-phospho-histone H3.
Following the incubation with Cy3™-conjugated affinity
purified secondary antibody (Jackson Laboratory, West
Grove, PA), the coverslips were mounted using Antifade.
At least 300~500 cells in 10 randomly selected fields were
counted to determine mitotic figures or cells intensely
labeled with anti-phosphorylated histone H3. Statistical
analysis was performed using MS Excel and SigmaPlot
(SPSS Science, Chicago, IL). Student t-tests or one-way
ANOVA were conducted and p-values were assigned. The
significance level was set at 0.05.

Colony Formation in Soft Agar
A soft agar colony formation assay was performed using
six-well plates. Each well contained 1% agar in 2× RPMI
1640 medium as the bottom layer and 0.6% agar in 2×
RPMI 1640 medium as the top layer. 5,000 cells were
plated into the top layer. The plates were incubated in a
humidified incubator with 5% CO2 in air at 37°C. Colo-
nies were stained with 0.04% Crystal violet and counted
in 20 randomly selected fields. The number of colonies
was plotted as the mean ± SD.

Prostate Tumor Xenograft Growth in Nude Mice
Male, athymic nude (nu/nu) mice (Charles River Lab,
Wilmington, MA) were obtained and used at 4–8 weeks of
age. Animals were kept under pathogen free conditions
according to the guidelines of East Carolina University
Animal Use Protocol. Animals were given subcutaneous
injections of 4 ×106 CWR22Rv-1 cells in RPMI 1640
medium plus cold Matrigel (BD Biosciences) or PC-3 cells
in RPMI 1640 medium without Matrigel into the dorsal
flank of nude mice. Once xenografts became established,
their size was measured with a caliper once a week. The
tumor volume was calculated by the formula: length ×
width × height × 0.5236 [37]. At the end of each experi-
ment, animals were sacrificed and resulting final tumor
volumes were determined.

Histological Examination and Immunofluorescent Light 
Microscopy
Five-micrometer sections were prepared from the tumors
in nude mice and placed onto charged glass slides. They
were stained with Hematoxylin. For visualization of EGFP
or EGFP-δ-catenin expressing cells in nude mice, 5 μm sec-
tions were prepared and fixed in 4% paraformaldehyde.
Page 9 of 11
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They were analyzed under the Zeiss Axiovert inverted flu-
orescent light microscope equipped with MetaMorph
imaging software.

Protein Expression Analyzed by Western Blots
Cells were lysed in RIPA buffer with protease and phos-
phatase inhibitor cocktails, and subjected to protein solu-
bilization and SDS-PAGE analysis. Proteins were western
blotted using anti-Erk1/2 (1:1000), anti-p21Cip1, anti-sur-
vivin (1:1000), anti-histone H3 (1:1000), and anti-phos-
phorylated histone H3 (1:1000). Anti-actin (1:5000) was
used as a loading control. Following appropriate second-
ary antibody incubations, the blots were developed using
enhanced chemiluminescence.

RT2 Profiler™ PCR Array and Real-time PCR
CWR22Rv-1 cells with or without δ-catenin overexpres-
sion were re-plated in RPMI 1640 media supplemented
with 10% FBS and 0.25% G418 at 37°C in a 5% CO2
atmosphere. After 2 days, the total RNA was isolated using
RNeasy Mini kit (Qiagen). The single strand cDNA from
2–3 μg total RNA was synthesized using RT2 first strand kit
(SABioscience). Real-Time PCR was performed according
to the User Manual of RT2 Profiler PCR array system
(SABioscience) using SYBR Green PCR Master Mix in an
iCycler iQ Multicolor Detection System (Bio-Rad). Three
selected PCR arrays, including pathways of apoptosis
(Catalog No. PAHS-012A) and cell cycle (Catalog No.
PAHS-020A) were repeated three times and the data were
analyzed using Excel-based PCR Array Data Analysis Tem-
plates (SABioscience). Additional real-time PCR analyses
were performed to compare RNA expression of cyclin D1,
Bcl2L1 and HK2 between control vector transfected cells
and that of δ-catenin overexpressing cells. For these exper-
iments, the primer set for cyclin D1 was 5'-AGAAGCTGT-
GCATCTACACCGACA-3' (forward) and 5'-
TGGAGGGCGGATTGGAAATGAACT-3' (reverse), the
primer set for BcL2L1 was 5'-GTCGCATTGTGGCCTTTT-
TCTCC-3' (forward) and 5'-AGCTGCGATCCGACTCAC-
CAATAC-3' (reverse), while the primer set for HK2 was 5'-
GCCTTCGGGGACAATGGATGC-3' (forward) and 5'-TCT-
GCTTGCCGGGGTTGAGTG-3' (reverse).
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