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Abstract

Silencing of Fra-1, a component of the dimeric transcription factor, activator protein-1 (AP-1),
inhibits MRNA expression of c-met and c¢d44 in rat mesothelioma cells and is causally linked to
maintenance of the transformed phenotype. However, the mechanisms of Fra-| regulation and Fra-
| regulated gene expression in human malignant mesothelioma (MM) are unclear. We first show in
a panel of human MM cells that Fra-I mRNA expression in MM is complex and regulated by
extracellular signal-regulated kinase (ERKI, ERK2), Src, and phosphatidyl-inositol-3-kinase (PI3K)
pathways in a tumor-specific fashion. Cell lines with PI3K-dependent Fra-1 expression were SV40
positive and expressed the lowest basal Fra-| levels. Levels of Fra-l1 expression correlated with
amounts of CD44 expression that were greater in simian virus 40 negative (SV40-) MM cells. Using
dominant negative (dn), short hairpin (sh) and small interference (si) RNA constructs, we next
demonstrate that expression of CD44, the principal hyaluronic receptor in MMs, correlates with
Fra-expression in both simian virus 40 positive (SV40+) and SV40- MMs. Moreover, both Fra-1 and
CD44 expression are linked to cell migration in SV40- MM cells. Lastly, in contrast to normal lung
tissue, tissue microarrays revealed that Fra-1 was expressed in 33 of 34 human MMs, and that all
CD44+ tumors were SV40-. These results suggest that Fra-1 is associated with cell migration in

human MMs and that Fra-1 modulation of CD44 may govern migration of selected MMs.

Background

Malignant mesothelioma (MM) is an insidious tumor
associated historically with occupational exposure to
asbestos [1,2]. Recently, infection by simian virus 40
(SV40) has been implicated as a contributory factor in the
development of MMs [3,4] but these findings are contro-
versial [5-7]. The average survival of patients is less than 1
year after initial diagnosis of MM, and no successful treat-
ment options exist for the majority of patients [1,3]. These

pleomorphic tumors are unique in that they have a long
latency period (average of 30+ years) and various pathol-
ogies (epithelial, sarcomatous and mixed) that complicate
their diagnosis and may govern their prognosis [1,3].

Although the mechanisms of development of MM are
obscure, the initiation of signaling events after interaction
of mesothelial cells with asbestos fibers or infection by
SV40 may result in transactivation of genes governing cell

Page 1 of 14

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18096084
http://www.molecular-cancer.com/content/6/1/81
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Molecular Cancer 2007, 6:81

proliferation and other properties of neoplastic cells
[2,8,9]. The transcription factor, activator protein-1 (AP-
1) consists of members of the Jun (c-Jun, JunD, JunB) and
Fos (c-Fos, FosB, Fra-1, Fra-2) family of early response
protooncogenes [10,11] and is a major target of asbestos-
induced cell signaling via activation of mitogen activated
protein kinases (MAPK) [12,13].

In comparison to other Jun and Fos family members,
increases in Fra-1 expression by asbestos are protracted in
rodent lung epithelial [14] and pleural mesothelial cells
and are critical in maintenance of the malignant pheno-
type of rat MMs [15]. Moreover, cd44, which encodes the
principal hyaluronic acid receptor in a variety of cell types,
is a fra-1 regulated gene in rat MMs [16].

CD44 is a type I transmembrane glycoprotein (85-200
kDa) and functions as the major cellular adhesion mole-
cule for hyaluronic acid (HA), a component of the extra-
cellular matrix (ECM). CD44 is expressed in most human
cell types and is implicated in a wide variety of physiolog-
ical and pathological processes, including lymphocyte
homing and activation, wound healing, cell migration,
tumor cell growth, metastasis [17,18] and chemoresist-
ance [19]. The CD44 gene consists of at least 19 exons, of
which 12 can be alternatively spliced [18], and this differ-
ential gene expression through alternative splicing is
important to various physiological and pathological con-
ditions [20]. The most common isoform expressed in a
variety of cell types is CD44s (standard). The distribution
of the CD44 variants is usually restricted, and some vari-
ants are only expressed in certain tumor cells where their
expression can confer metastatic properties [21].

The CD44 hyaluronic acid receptor is upregulated in
human MMs [22], and increased hyaluronic acid in pleu-
ral fluid and serum is used both as a diagnostic and prog-
nostic indicator of MM [23-27]. In a previous study, it was
found that MM cell lines that expressed the highest
amount of CD44 receptor showed increased proliferation
and haptotactic migration when stimulated with low
molecular weight hyaluronic acid [28]. Furthermore, the
use of a monoclonal antibody against CD44 inhibited
proliferation by 12-40% and migration by 10-35% in the
MM cell lines that were studied [28]. The goal of studies
here was to elucidate cell signaling pathways leading to
transactivation of CD44 by Fra-1 and their functional
ramifications on migration of both SV40+ and SV40-
human MM cells. We first established that Fra-1 expres-
sion is inducible by serum and is heterogeneous in differ-
ent MM cells when modulated by inhibitors of the P13K,
Src or ERK1/2 pathways. Levels of Fra-1 correlated with
CD44 protein levels that were higher in SV40- MMs. The
functional significance of Fra-1-dependent CD44 expres-
sion was determined in high CD44-expressing SV40- MM
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cells using small hairpin (sh) RNA interference constructs.
These experiments showed that inhibition of Fra-1 or
CD44 significantly curtailed MM cell migration. More
importantly, Fra-1 overexpression was observed in 33 of
34 human MMs in tissue arrays and all CD44+ tumors
were SV40-.

Results

Inhibition of PI3K, Src or the ERKI/2 pathway diminishes
Fra-1 expression, transactivation and protein levels in
human MM cells in a tumor-specific manner

We first focused on whether heterogeneous pathways of
Fra-1 regulation occurred in human MM cells using inhi-
bition of upstream signaling cascades. In Figure 1A, we
observed that the PI3K inhibitor, LY294002 (LY 20 pM),
caused significant reduction of Fra-1 mRNA levels in 3 of
the 4 MM lines initially examined, whereas addition of
AG1478 (AG 10 pM), an inhibitor of EGFR phosphoryla-
tion, had no effects on Fra-1 expression. Two of the 4 MM
lines showed inhibition of Fra-1 expression after pretreat-
ment with PP2 (10 uM) or PD98059 (PD, 30 uM), respec-
tively, suggesting additional pathways of Fra-1
modulation in some MMs. In MM3 cells in which Fra-1
mRNA levels were diminished significantly only after
inhibition of the PI3K pathway, transactivation of Fra-1
dependent gene expression (Figure 1B) and protein levels
(Figure 1C) were also inhibited selectively by LY294002
(20 uM). In accordance with data presented in Figure 1A,
pre-addition of the EGFR kinase inhibitor, AG1478 (10
puM) did not affect Fra-1 protein levels (Figure 1C). In Fig-
ure 1D, we also show using an EMSA super-shift assay that
inhibition of the PI3K pathway by LY294002 (10 and 20
uM) causes reduced expression of Fra-1 in the AP-1 com-
plexes of these cells in a dose-related fashion.

Levels of Fra-1 and CD44 expression are greater in SV40-
human MM cells

Western blot analyses were performed on a panel of 7 MM
cell lines at near confluency to determine possible correla-
tions between expression of these proteins in control cells
and with addition of serum (+ lanes) for 4 h (Figure 2).
Fra-1 was inducible in all MMs after addition of serum. In
the 3 SV40 + cell lines, both Fra-1 and CD44 protein were
markedly reduced in comparison to SV40- cell lines in the
presence or absence of serum.

Levels of Fra-1 and modulation of its upstream regulators
are associated with CD44 expression levels

Here we examined levels of endogenous CD44 in SV40+
and SV40- MM lines after addition of LY294002 (Figure
3). These studies revealed that the PI3K inhibitor
LY294002 diminished CD44 protein in a dose-related
fashion in the SV40+ line, but not in the SV40- MM lines.
The Src inhibitor, PP2, did not affect CD44 expression in
the SV40+ MM line, but decreased CD44 expression in the
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ERK1/2, Src and PI3K regulation of Fra-1 expression in MM cell lines is tumor line-specific. A. RT-QPCR showing Src, ERK /2,
and PI3K-dependent decreases in Fra-1 in MM, Src and ERK/2-dependent decreases of Fra-l1 in MM2, and PI3K-dependent
decreases in Fra-1 in lines MMI, MM3 and MM4. B. Luciferase assays show PI3K-dependent Fra-1 promoter activation in MM3
cells. C. Western blot analysis of Fra-1 shows inhibition by the PI3K inhibitor, LY294002 at 20 pM. D. EMSA shows a dose
dependent decrease in Fra-| in the AP-1 complex after treatment of the MM3 line with the PI3K inhibitor, LY294002 at 10 and

20 uM * = P < 0.05 in comparison to untreated control (0).

SV40- MM line (Figure 3A). CD44 protein was decreased
after addition of the PD98059 MEK1 inhibitor and in a
SV40- cell line transformed with a dn-Fra-1 construct (Fig-
ure 3B). However, CD44 depletion was not increased syn-
ergistically after PD98059 or LY294002 was added to the
dnFra-1 stable cell line (Figure 3B). These results show the
complexity of Fra-1 regulation in MM and suggest that
Fra-1, Src, ERK1/2-and PI3K are also modulators of CD44
expression in different MM lines. CD44 promoter analysis
does not suggest the direct participation of Fra-1 in CD44
expression (data not shown).

To determine a role of Fra-1 in CD44 expression, we next
developed a shFra-1 construct and verified in both an
SV40+ and SV40- MM line that CD44 expression was
reduced (Figure 4A). We further showed that shFra-1 in

the SV40- line reduced CD44 expression (red) using
immunochemistry and CSLM, whereas the SV40+ line
had low basal levels of CD44 (Figure 4B). The efficiency
of the shFra-1 construct and a shCD44 construct for inhi-
bition of CD44 expression in functional assays below is
depicted in Figure 4C using semi-quantitative PCR in a
SV40- MM line.

shFra-1 and shCD44 constructs inhibit motility of MM
cells

Two Fra-1 and CD44 expressing SV40- MM lines (MM1,
MM2) and one SV40+ MM cell line (MM3) were used to
demonstrate that Fra-1 and CD44 were causally linked to
cell migration. In Figure 5A, migration was compared in
stable MM1 lines transfected with shFra-1, shCD44, or the
empty vector (EV) control. These studies showed that after
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MMs with high basal Fra-1 expression have also higher CD44 expression. Western blots show constitutive levels of Fra-|
(three bands show different levels of phosphorylation), CD44, and levels of o.-Tubulin (control for protein loading) in confluent
cells maintained for 24 h in serumless medium or after 4 h with the addition of 10% FBS (columns +).
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Figure 3

CD44 expression is dependent on Fra-| and the pathways that control Fra-1 expression. (A) Western blot showing the effect
of the PI3K and Src inhibitors in the CD44 expression of an SV40+ and SV40- cell line. (B) Western blots showing that CD44

expression in the SV40- MM line follows the pattern of its Fra-1 expression. The use of a dominant negative construct for Fra-
| (dnFra-1) decreases CD44 expression, but not further decreases are observed after PD98059 or LY294002 is added to the

dnFra-1 stable cell line.
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Figure 4

Use of shRNA constructs to knock-down Fra-1 confirm Fra-1-dependent CD44 expression in MMs. A. Western blots of SV40-
(MM1) and SV40+ (MM3) lines showing empty vector (EV) controls or RNAi shFra-1 constructs. B. Inmunofluorescence image
showing CD44 (red) levels MM cell lines. C. Agarose gels on an SV40- cell line showing the efficiency of the RNAI constructs
(shFra-1 and shCD44) on knockdown of CD44 and Fra-1 measured by a semi-quantitative RT-PCR reaction and using GAPDH as

a control.
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Figure 5

Fra-1 and CD44 are critical to MM cell migration. Wound assays showed that in the SV40- cell lines MMI (panel A) or MMé
cell line (panel B) shfra-1 and shCD44 transfected cells showed less migration than empty vector (EV) controls. * = P < 0.05 in

comparison to 24 h controls.
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addition of serum for 24 h, numbers of migrating cells in
the shFra-1 or shCD44 cell lines were significantly
decreased (p < .05) in comparison to the MM1 (EV) cells.
These results were confirmed using shFra-1 transformed
MM2 and MM2 (EV) stable cell lines (Figure 5B). In Fig-
ure 5C, no migration was detected in stable MM3 lines
transfected with shFra-1 or the empty vector (EV).

shFra-| constructs reduce hyaluronic acid uptake of MM
cells

CD44 is known to bind hyaluronic acid (HA), and is also
thought to contribute to HA internalization. The binding
of HA to CD44 stimulates cytoskeleton-mediated tumor
cell migration [29]. In Figure 6 we show that the uptake of
BODIPY FL hyaluronic acid (green) is decreased in SV40-
MM cells transfected with shFra-1 (Fra-1 expression is
shown in red) compared to MM cells transfected with
empty vector (EV). Moreover, BODIPY FL hyaluronic acid
did not get internalized in the SV40+ MM line.

Tissue arrays demonstrate that Fra-1 is overexpressed in
the majority of MMs

We have shown previously that endogenous levels of Fra-
1 are increased in human and rat MM cell lines as com-
pared to normal rat mesothelial cells [15]. To confirm this
in human MMs, tissue arrays containing normal lung (Fig-
ure 7A), and MMs (Figure 7B) were examined by multi-
fluorescence approaches using antibodies for Fra-1 (red),
phosphorylated (p)-ERK1/2 (blue) and SYTOXgreen
(green) to detect nuclei. The images in Figure 7A and 7B
are split into an upper portion showing Fra-1 expression,
and a lower portion showing triple fluorescence studies
for detection of p-ERK1/2 (blue), Fra-1 (red) and SYTOX-
green (green). In comparison to normal lungs (negative
control), 33 out of 34 MMs stained positively for Fra-1
with different intensities. On a scale of 0-3 (0 = no expres-
sion, 1 = low expression, 2 = medium expression and 3 =
high expression) using a blind coding system, ~3% MMs
showed no Fra-1 immunoreactivity (score of 0), 29% were
scored 1, 27% were scored 2 and 41% were scored 3. Fra-
1 immunolocalization in MMs was either nuclear (41%),
mainly nuclear with some cytoplasmic staining (32%),
entirely cytoplasmic (6%), mainly cytoplasmic with some
nuclear staining (18%) or negative (~3%). As shown in
Figure 7 (lower panel), increased p-ERK1/2 immunoreac-
tivity was observed in approximately 30% of tumors, and
its localization was mainly cytoplasmic.

Tissue arrays demonstrate that SV40 T-antigen expression
in MM cells correlates with CD44- status

Using a similar tissue microarray set as used for Fra-1
expression above, we performed dual fluorescence studies
on MMs using antibodies for SV40 T-antigen (blue/
nuclear) and CD44 (red) (Figure 8). Of the 34 MMs, 17
(50%) were SV40+ and 8 (24%) were CD44+. Moreover,

http://www.molecular-cancer.com/content/6/1/81

A.

SV40-
B.

SV40+

Figure 6

Immunofluorescence image shows greater uptake of BOD-
IPY FL hyaluronic acid by MMs with higher Fra-1 expression
levels (SV40-) (A). Internalization of the BODIPY FL HA
probe (green) was visualized by fluorescence confocal micro-
scopy. This internalization is reduced in the SV40+ line with
low basal Fra-1 (red) expression (B) or those with high basal
Fra-1 expression after Fra-1 knock-down (right panel).

all SV40+ tumors were CD44-. Of the 17 SV40- tumors
(50%), 9 (26%) were CD44-.

A side by side comparison of the Fra-1 array with the
SV40/CD44 array showed that Fra-1 localization was pri-
marily nuclear for all tumors with some cytoplasmic local-
ization in CD44- tumors (Table 1).

Discussion

The AP-1 family member, Fra-1, is up-regulated in several
tumors, including stomach [30], esophageal [31], squa-
mous cell carcinomas [32], thyroid [33,34], and breast
tumors [32]. Although Fra-1 plays an important role in
cell transformation and is upregulated by cigarette smoke,
mitogens and phorbol ester tumor promoters [33-43], lit-
tle is known about how this important protein is regu-
lated in human tumors. Moreover, the functional
ramifications of its expression and its mechanisms of
action on individual tumor types are unclear.

Fra-1 expression and its activation by the ERK1/2 pathway
have been well documented in several systems including
rat MM cells [15]. More recently, gene profiling studies
revealed that Fra-1 was an AKT-inducible gene in prostate
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Normal Lung

Figure 7
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Mesotheliomas (MM)

Tissue microarray slide showing that Fra-1 staining (intensity score of -3 compared to 0 as observed in 3 normal lungs) is
expressed in the majority of human mesotheliomas (MM), (42/43). Images in A and B show immunostaining of Fra-| (red) in the
upper panel. Bottom panels show merged images of Fra-1, p-ERK1/2 and nuclear staining (SYTOX green).

cancer cells and vascular smooth muscle cells [36,39] and
was a PI3K-dependent gene in human bronchial epithelial
cells [43] and MM cells [38]. Here we present evidence
that Fra-1 mRNA expression is complex in human MMs,
involving activation of the ERK1/2, PI3K, and Src path-
ways in a tumor cell-specific manner. In contrast, levels of
Fra-1 in MMs were not modified by pre-addition of an
inhibitor of EGFR phosphorylation (AG1478) although it
is known that EGFR phosphorylation leads to ERK1/2
activation in rodent mesothelial [13] and alveolar epithe-
lial cells [44]. Moreover, both matrix metalloproteinase/

EGFR/MAPK [45] and PI3K regulated AKT independent
signaling pathways regulate Fra-1 induction by cigarette
smoke [43].

We previously reported that increases in Fra-1 expression
in rat mesotheliomas were causally linked to genes gov-
erning cell motility and invasion (cd44 and met) [16].
Other investigators also have reported that AP-1 mediated
invasion of transformed fibroblasts requires increased
expression of CD44 [46]. We hypothesize that the
increased expression of Fra-1 in the AP-1 complex causes

Table I: Cell localization of Fra-1 compared to SV40 and CD44 status in human MMs.

SV40/CD44 Status

Fra-1 localization

Nuclear (¥) Cytoplasmic None Total

-/- 5(56) 3(33) 1(11) 9

-+ 8(100) 0 0 8

+- 12(71) 5(29) 0 17
++ 0 0 0 0

Total | 10 9 34
(*) = % of samples in the specific SV40/CD44 category.
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Figure 8

Examples of human MM in tissue microarrays co-stained
using antibodies for SV40 T-antigen (blue/nuclear) and CD44
(red). Of the 34 MMs in the array, approximately 50% were
SV40+, and of these SV40+ tumors (~100%) were CD44-. Of
the 17 SV40- tumors, approximately 53% were CD44+ (all
CD44+ tumors in the tissue array). A. Sample panel of SV40-
, CD44+ tumors. B. Sample panel of SV40+, CD44- tumors.
The arrow indicates nuclear SV40 T-antigen staining.

the activation of target genes that influence malignancy
and invasion of human MMs. Here we present evidence
that Fra-1 activation is through multiple survival path-
ways and that its expression governs human mesotheli-
oma cell migration partially via indirect modulation of
CD44 expression.

In human MM cell lines and tumors, the degree of consti-
tutive Fra-1 expression is tumor line-dependent. The
localization of Fra-1 in all tumors was primarily nuclear,
but some cytoplasmic localization could be observed in
CD44- tumors. Although the nuclear localization of any
transcription factor is of critical importance for its func-
tion in downstream gene regulation, the cytoplasmic
localization of Fra-1 could also have some impact in its
function. Simultaneous nuclear and cytoplasmic localiza-
tion of Fra-1 has been reported in breast malignancies
[47], although its functional significance was unexplored.

We show here that low basal Fra-1 and CD44 levels corre-
lated with SV40 positivity in MM cell lines and could be
upregulated upon stimulation with serum. Previous stud-
ies have demonstrated that SV40 large T antigen can acti-
vate the PI3K pathway in different cell types [48,49], and,
in line with these observations, we have shown that
SV40+ MM cells have higher AKT activity [50,51]. Moreo-

http://www.molecular-cancer.com/content/6/1/81

ver, SV40+ MMs were more susceptible to killing when the
PI3K pathway was inhibited. These studies suggest that
SV40 positivity of MMs may render a survival advantage.
However, CD44 does not contribute to the migration of
SV40+ MM cells which may depend upon multiple mech-
anisms including voltage-gated sodium channels [52],
expression of the EphA2 receptor [53], MAPK-regulated
MMPs [54-56], and integrin or ECM composition and
synthesis [57].

The presence and role of SV40 in human tumors is still
very controversial, but SV40 T-antigen or DNA has been
found in human MMs [5,58]. Results here suggest that
SV40 is a contributor to the heterogeneity of migration
responses found in human MMs.

The role of other Fra-1-dependent genes and signaling
pathways should be explored in prevention and therapy
of MMs of both SV40+ and SV40- MMs.

Methods

Human mesothelioma (MM) cell lines

Human pleural mesothelioma cell lines were isolated
from patients at autopsy (from Dr. Michele Carbone, Uni-
versity of Hawaii, Honolulu, HI (MM3, MM4, MM7), and
Dr. Luciano Mutti (Maugeri Foundation, Pavia, Italy)
(MM1, MM6), or from surgical debulking of MMs from
Dr. Harvey Pass (New York University, NY, NY) (MM2).
The cell line MM5 (#CRL-2081) was obtained from the
ATCC (Manassas, Virginia). All MM cell lines were tested
for the mRNA expression of large and small T/t-antigen by
PCR before each experiment. The MM1, MM2, MM5, and
MMG6 lines were negative for SV40 large T-antigen (SV40-
), whereas MM3, MM4 and MM7 were SV40+. Cells were
maintained in frozen stocks and propagated in DMEM/
F12 medium (GIBCO BRL, NY) containing 10% fetal
bovine serum (FBS), hydrocortisone (100 ng/ml), insulin
(2.5 pg/ml), transferrin (2.5 pg/ml), and selenium (2.5
ng/ml) (Sigma, St Louis, MO).

Small molecule inhibitors and chemicals

Stock solutions of all inhibitors were diluted in dimethyl
sulfoxide (DMSO) and used at effective nontoxic concen-
trations as reported previously: The MEK1/2 inhibitor,
PD98059, at 30 uM [15]; the EGFR inhibitor, AG1478, at
10 uM [13]; the PI3K inhibitor, LY294002, at 10 and 20
UM [59]; and the Src inhibitor, PP2, at 10 uM [44]. All
chemicals were obtained from Calbiochem (LaJolla, CA).
Control groups of cells also received DMSO (0.1%) in
medium.

Western blots analyses

Nearly confluent MM cells were washed 3 x with cold
phosphate-buffered saline (PBS), scraped from culture
plates, and collected by centrifugation at 14,000 rpm for
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1 min. The pellet was resuspended in lysis buffer [20 mM
Tris (pH 7.4), 1% Triton X-100, 10% glycerol, 137 mM
NaCl, 2 mM EDTA, 25 mM B-glycerophosphate, 1 mM
Na;VO,, 2 mM pyrophosphate, 1 mM PMSF, 10 pg/ml
leupeptin, 1 mM DTT, 10 mM NaF, 1% aprotinin], incu-
bated at 4°C for 15 min, and centrifuged at 14,000 rpm
for 20 min. Protein concentrations were determined using
a Bio-Rad assay (Bio-Rad, Hercules, CA). Twenty pg of
protein in sample buffer [62.5 mM Tris-HCI (pH 6.8), 2%
sodium dodecyl sulfate (SDS), 10% glycerol, 50 mM
dithiothreitol, 0.1% w/v bromophenol blue] was resolved
by electrophoresis in 10% SDS-polyacrylamide gels, and
transferred to nitrocellulose using a semi-dry transfer
apparatus (Ellard Instrumentation, Ltd., Seattle, WA).
Blots were incubated in blocking buffer [Tris-buffered
saline (TBS) containing 5% nonfat dry milk plus 0.1%
Tween-20 (Sigma)] for 1 h, washed 3 x for 5 min each in
TBS/0.1% Tween-20, and incubated at 4° C overnight with
antibodies specific to CD44 and Fra-1 at a dilution of
1:500 (Santa Cruz Biotechnology Inc., Santa Cruz, CA).
Blots were then washed 3 x with TBS/0.1% Tween-20 and
incubated with a specific peroxidase-conjugated second-
ary antibody at a dilution of 1:5,000 (Amersham Pharma-
cia Biotech, Piscataway, NJ) for 1 h. After washing blots 3
x in TBS/0.1% Tween-20, protein bands were visualized
with the LumiGlo enhanced chemiluminescence detec-
tion system (Kirkgaard and Perry Laboratories, Gaithers-
burg, MD) and quantitated by densitometry [44]. Blots
were reprobed with an antibody to o-Tubulin in a dilu-
tion 1:1,000 (Santa Cruz Biotechnology, Santa Cruz, CA)
or B-Actin at a dilution of 1:5,000 (Abcam Inc, Cam-
bridge, MA) to validate equal loading between lanes [15].

Luciferase Assay

Cells were transiently co-transfected with 2 ng reporter
plasmid, human Fra-1 promoter-luciferase (-861/+32)
(kindly obtained from Dr Sekhar Reddy, Johns Hopkins
University, Baltimore, MD) and renilla (0.5 pg) using
lipofectamine 2000 (Invitrogen, Life Technologies, Grand
Island, NY) according to the manufacturer's instructions.
After 24 h, cells were switched to 0.5% FBS-containing
medium before exposure to different agents. After expo-
sure to LY294002 (20 uM) or DMSO as a control diluent
(with samples N = 3), total cell extracts were prepared and
assayed for luciferase and renilla activity (Luciferase Assay
System; Promega Corp., Madison, WI) using a luminom-
eter (Berthold Technologies, Lumat, Germany). Luciferase
activity was expressed as the ratio of luciferase to renilla
and then normalized with respect to the control.

Electrophoretic mobility shift assays (EMSA)

Electrophoretic gel mobility shift assays (EMSA) were
used to assess binding of AP-1 to DNA and composition
of AP-1 complexes. Nuclear extracts were prepared and
analyzed as described by Ramos et al.[15]. The amount of
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protein in each sample was determined using the Bio-Rad
protein assay (Bio-Rad, Hercules, CA). For supershift
assays, nuclear extracts were incubated with antibodies to
Fra-1 (Santa Cruz, CA) for 15 min at room temperature
prior to addition of labeled oligonucleotide. Gels were
quantitated using a Bio-Rad phosphoimager (Bio-Rad,
Hercules, CA).

Chromatin immunoprecipitation (ChIP) assays

MM cells (5 x 107) were starved in medium containing
0.5% FBS overnight and then stimulated with 10% FBS for
3 h. ChIP was performed using a commercially available
kit (AVIVA Systems biology, San Diego, CA). Briefly, chro-
matin was crosslinked by adding formaldehyde (1%) to
culture medium for 15 min and sonicated. A fraction of
the soluble chromatin was saved for measurement of total
chromatin input. The soluble chromatin was precleared
and then was immunoprecipitated with 3 pg of Fra-1 anti-
bodies (Santa Cruz Biotechnologies), 18 h at 4°C, and the
immune complexes were absorbed with protein A/G
beads. Immunoprecipitated purified DNA was analyzed
by semi-quantitative PCR and densitometry was used to
quantify the PCR results. The CD44 promoter was ana-
lyzed using primers: forward 5'-tttacagcctcagcagagc-3' and
reverse 5'-ggaagttggctgcagttttt-3", which yield a 184-bp
DNA product.

Real Time Quantitative PCR

Total RNA (1 pg) was reverse-transcribed with random
primers using the Promega AMV Reverse Transcriptase kit
(Promega, Madison WI USA.) according to the recom-
mendations of the manufacturer. To quantify gene expres-
sion, we amplified the cDNA by TagMan Real Time Q-
PCR using the 7700 Sequence Detector (Perkin Elmer
Applied Biosystems, Foster, CA). Reactions contained 1 x
TagMan Universal PCR Master Mix, 900 nM of forward
and reverse primers and 200 nM of TagMan-probes. Ther-
mal cycling was performed using 40 cycles of 95°C for 15
s and 60°C for 1 min. Original input RNA amounts were
calculated with relative standard curves for both the
mRNAs of interest and the hypoxanthine phosphoribosyl
transferase (HPRT) control. Duplicate assays were per-
formed with RNA samples isolated from at least 2 inde-
pendent experiments. The values obtained from cDNAs
and HPRT controls provided relative gene expression lev-
els for the gene loci investigated. The primers and probe
sequences used are presented in Table 2.

Transfection techniques and constructs

RK7-Fra-1Azip, a dominant negative Fra-1 (dnFra-1) con-
struct with deletion of the leucine zipper responsible for
the dimerization function of Fra-1, was obtained from Dr.
M. Busslinger (Research Institute of Molecular Pathology,
Vienna, Austria) and cloned into pcDNA3 (InVitrogen,
San Diego, CA) before transfection using electroporation.
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Table 2: Primers and probes (FAM/TAMRA labeled) for Real
time Q-PCR assays.

Oligo Name Primers and Probes

FRAI-F CTGTGCTTGAACCTGAGGCA

FRAI-R GGTGAAAGGAGTTAGGGAGGGT

FRAI-P TGCACACCCCCACACTCATGACC

HPRT-F AAGCTTGCTGGTGAAAAGG

HPRT-R AAACATGATTCAAATCCCTGA

HPRT-P TGTTGGATTTGAAATTCCAGACAAGTTTGTT
Briefly, cells were grown to 80-90% confluence,

trypsinized, counted, and resuspended at 3 x 10° cells/ml
at room temperature. An aliquot of the cell suspension
(400 pl) was mixed with 10 pg of plasmid DNA (expres-
sion or control plasmids) and electroporated at 280 V and
850 pF capacitance. Cells were immediately plated in
fresh growth medium in 35 mm culture dishes and
allowed to recover overnight. Following an overnight
recovery, cells were selected for neomycin resistance using
200 pg/ml G418 (Sigma). Colonies surviving G418 selec-
tion were expanded and tested for the presence of Fra-1 as
an indicator of plasmid activity. The Fra-1 and CD44 RNA
interference (RNAi) duplexes were constructed from
sequence information about mature mRNA extracted
from the NIH genetic sequence database (GenBank®). The
open frame region from the cDNA sequence of exon 2 of
the Fra-1 gene, and exon 5 (common exon to all splice
forms) of the CD44 gene. The siRNA sequences targeting
Fra-1 corresponded to the 230-250 coding region relative
to the first nucleotide of the start codon, and the sequence
targeting CD44, corresponded to the 480-500 coding
region relative to the first nucleotide of the start codon.
The sequences were BLAST-searched (NCBI database)
against EST libraries to ensure the specificity of the siRNA
molecule. The designed oligonucleotides were inserted
and structured as follows: BamHI-sense-loop-antisense-
HindIII small hairpin RNA (shRNA) in the expression vec-
tor pSilencer 3.1 H1-neo siRNA (Ambion). The vector was
transfected using Lipofectamine 2000 (Invitrogen) as rec-
ommended by the manufacturer. Cells were immediately
plated in fresh growth medium in 35 mm culture dishes
and allowed to recover overnight. Following an overnight
recovery, cells were selected for neomycin resistance using
200 pg/ml G418 (Sigma St. Louis, MO). Colonies surviv-
ing G418 selection were expanded and tested for the pres-
ence of mRNA levels of Fra-1 and CD44 using 27 cycles of
PCR at an annealing temperature of 57°C (Fra-1 forward
primer: agtcaggagctgcagtgga and reverse primer: ctgct-
gctactcttgegatg; CD44 forward primer: aagacatctaccccag-
caac and reverse primer: ccaagatgatcagccattctgg and
GAPDH control forward primer: cgggaagcttgtgatcaatgg
and reverse primer: ggcagtgatggcatggactg).
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Cell motility assay

Twelve-well plastic plates were coated with 1-2 mm isot-
onically prepared type 1/1I collagen (Vitrogen 100. Cohe-
sion, PaloAlto, CA) as recommended by the
manufacturer, incubated at 37°C for 1 h to promote gela-
tion, and dried in a laminar flow hood overnight. The dry
film was then rinsed with sterile water to remove salts and
re-hydrate the film. Cells were seeded on the collagen-
coated plates with complete medium as described above,
and grown until confluent. Cells were maintained in
serumless medium for 48 h before each assay. Control
experiments were performed where cell replication was
inhibited 2 h prior to treatment with 1 ng/ml aphidicolin
to account for cell movement due to cell growth. After
treatment for 1 h with the different inhibitors, a wound
was made on the coverslips using a 100 pl plastic tip, and
a small 2-mm? area was marked with a template for fur-
ther observations using phase contrast microscopy
(Olympus M081, Olympus Industrial America Inc.) After
complete medium was added, the migration of cells then
was examined at 8, 24, and 48 h. A final count of cells that
moved into the marked area that exhibited a spreading
morphology (thin, long axis) was performed at 24 h, and
the relative cell motility was estimated as a % of the area
covered by cells over the total area.

Hyaluronic acid uptake assay

Receptor-mediated internalization of BODIPY FL dye-
labeled hyaluronic acid derivative was assayed as
described previously [60]. Briefly, cells were grown in
glass coverslips, and then treated with BODIPY FL HA
conjugate probe (Molecular Probes, Carlsbad, CA, now
Invitrogen) at 100 pg/ml for 2 h. Unbound probe was
removed by washing 3 x with phosphate buffered saline
(PBS). Cells were fixed with 3% paraformaldehyde for 10
min at room temperature and washed again with PBS.
Then the slides were nuclear counterstained with DAPI (5
pg/ml solution) (Molecular Probes, Carlsbad, CA). Cover-
slips were mounted onto slides with AquaPolyMount
(Polysciences Inc., Warrington, PA). The sections were
viewed with a BioRad MRC 1024 Confocal Scanning Laser
Microscope (BioRad, Hercules, CA), and images were cap-
tured in sequential mode using Lasersharp 2000 software.

Immunohistochemistry

Human MM tissue arrays consisting of 2 mm representa-
tive areas of resected MM (N = 34) and normal lung tissue
(N = 2) were obtained from Dr. Pass (New York Univer-
sity, NY, NY). Arrays and other samples containing forma-
lin-fixed, paraffin-embedded samples were deparaffinized
in xylene (2 x 15 min) and rehydrated in a graded ethanol
series (95% to 50%). Slides were rinsed in water and
placed in 1 x DAKO antigen retrieval solution (DakoCy-
tomation, Glustrup, Denmark) and incubated at 95-
99°C for 40 min. Slides then were washed 2 x for 5 min
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in 1 x PBS, and blocked with 50 pl of normal goat serum
(Jackson ImmunoResearch Laboratories Inc., West Grove,
PA) diluted in 950 pl PBS for 30 min in a humidified
chamber at room temperature. A cocktail of polyclonal
anti-rabbit Fra-1 antibody (R-20) (Santa Cruz Biotechnol-
ogy Inc., Santa Cruz CA) diluted 1:100 and anti-mouse
phosphorylated-p42/p44 (p-ERK1/2) (Cell Signaling
Technology, Beverly, MA) diluted 1:100 in 1% BSA in PBS
was applied to each slide and incubated overnight in a
humidified chamber at 4°C. Sections then were washed in
PBS and incubated for 30 min at room temperature in the
dark with a secondary antibody cocktail [AlexaFluor goat
anti-rabbit 568 (red), and AlexaFluor goat anti-mouse
647 (far red = blue) (Molecular Probes, Eugene, OR)]. Fol-
lowing a final wash in PBS, sections were counter-stained
with SYTOX green (1:1,000 in PBS) or DAPI (5 pg/ml)
(Molecular Probes, Eugene, OR), to detect nuclei, washed
1x in PBS, and mounted on glass slides using AquaPoly/
Mount (Polysciences Inc., Warrington, PA). A negative
control tissue omitting incubation with the primary anti-
body was included in each run.

A second set of arrays were deparaffinized as described
above and double-stained with antibodies to SV40 T-anti-
gen (Pab 101)(Santa Cruz Biotechnology Inc., Santa Cruz
CA) and CD44 (Zymed/Invitrogen, Carlsbad, CA) as
described previously [61]. The sections were viewed with
a BioRad MRC 1024 Confocal Scanning Laser Microscope
(BioRad, Hercules, CA), and images were captured in
sequential mode using Lasersharp 2000 software. In addi-
tion to qualitative observations for staining, localization
and extent, slides were semi-quantitatively scored for
intensity on a scale of 0 to 3 using a blind coding system
(data not shown).

Statistical analyses

In all experiments, duplicate or triplicate determinations
were conducted for each group per time point. Experi-
ments were performed in duplicate. Results were evalu-
ated by one-way analysis of variance using the Student-
Newman-Keuls procedure for adjustment of multiple
pairwise comparisons between treatment groups. Differ-
ences with p values < .05 were considered statistically sig-
nificant.

Abbreviations
AP-1: Transcription factor, Activator protein-1;

ERK: Extracellular signal-regulated kinase;
HA: Hyaluronic acid;

MM: Malignant mesothelioma;
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SV40: Simian virus 40 negative (SV40-) and positive
(SV40+);

PI3K: Phosphatidyl-inositol-3-kinase;
siFra-1: small interference RNA for Fra-1;

shFra-1: Expression vector for the small hairpin RNA
directed towards Fra-1.
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