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Abstract

Background: Acute lymphoblastic leukemia (ALL) is the most common hematological malignancy affecting children.
Despite significant progress and success in the treatment of ALL, a significant number of children continue to relapse and
for them, outcome remains poor. Therefore, the search for novel therapeutic approaches is warranted. The aim of this
study was to investigate the AMP activated protein kinase (AMPK) as a potential target in childhood acute lymphoblastic
leukemia (ALL) subtypes characterized by non-random translocation signature profiles. We evaluated the effects of the
AMPK activator AICAR on cell growth, cell cycle regulators and apoptosis of various childhood ALL cells.

Results: We found that treatment with AICAR inhibited cell proliferation, induced cell cycle arrest in Gl-phase, and
apoptosis in CCRF-CEM (T-ALL), NALMé (Bp-ALL), REH (Bp-ALL, TEL/AMLI) and SupBI15 (Bp-ALL, BCR/ABL) cells.
These effects were abolished by treatment with the adenosine kinase inhibitor 5'-iodotubericidin prior to addition of
AICAR indicating that AICAR's cytotoxicity is mediated through AMPK activation. Moreover, we determined that
growth inhibition exerted by AICAR was associated with activation of p38-MAPK and increased expression of the cell
cycle regulators p27 and p53. We also demonstrated that AICAR mediated apoptosis through the mitochondrial pathway
as revealed by the release of cytochrome C and cleavage of caspase 9. Additionally, AICAR treatment resulted in
phosphorylation of Akt suggesting that activation of the PI3K/Akt pathway may represent a compensatory survival
mechanism in response to apoptosis and/or cell cycle arrest. Combined treatment with AICAR and the mTOR inhibitor
rapamycin resulted in additive anti-proliferative activity ALL cells.

Conclusion: AICAR-mediated AMPK activation was found to be a proficient cytotoxic agent in ALL cells and the
mechanism of its anti-proliferative and apoptotic effect appear to be mediated via activation of p38-MAPK pathway,
increased expression of cell cycle inhibitory proteins p27 and p53, and downstream effects on the mTOR pathway, hence
exhibiting therapeutic potential as a molecular target for the treatment of childhood ALL. Therefore, activation of AMPK
by AICAR represents a novel approach to targeted therapy, and suggests a role for AICAR in combination therapy with
inhibitors of the PI3K/Akt/mTOR pathways for the treatment of childhood in ALL.
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Background

AMP activated protein kinase (AMPK) is a highly con-
served heterotrimeric serine/threonine protein kinase that
regulates the intracellular ratio of AMP to ATP, and it is
activated under conditions that deplete cellular ATP and
hence increase AMP levels [1-3]. Therefore, the AMPK cas-
cade is a sensor of cellular energy status that is activated by
multiple stimuli such as metabolic stresses including
ischemia, hypoxia and glucose deprivation, environmen-
tal stresses like heat shock, oxidative and osmotic stress
[4,5]. It is also activated by various pharmacological
agents including respiratory chain inhibitors (actinomy-
cin D, nitric oxide), ATP synthase inhibitors (oligomycin),
mitochondrial uncouplers (dinitrophenol), TCA cycle
inhibitors (arsenite), biguanides (metformin) and nucle-
osides (adenosine analogue AICAR) [6-9]. The AMPK
pathway is also implicated in the regulation of cell cycle
and cell proliferation and it has recently been determined
that its activation by AICAR results in pro-apoptotic effect
[10-12].

Acute lymphoblastic leukemia (ALL) is the most common
hematological malignancy affecting children and adoles-
cents [13]. Significant advances in our understanding of
the biology and molecular genetics of ALL have led to the
identification of molecularly defined subgroups impor-
tant for therapy stratification and prognosis [14]. Despite
significant progress and success in the treatment of ALL, a
significant number of children continue to relapse and for
them, outcome remains poor [14]. Likewise, the outcome
for others who are diagnosed with chemotherapy resistant
phenotypes continues to be poor. In this context, child-
hood ALL continues to be a major cause of cancer related
mortality in children and adolescents and therefore, novel
treatment strategies are needed. During recent years, novel
targeted and molecular agents have been introduced in
the treatment of hematological malignancies in adults
[15], but the experience with these agents in pediatric
leukemia remains minimal. Our data presented herein,
supports the role of AMPK and its downstream pathways
as a suitable target for molecular therapies in childhood
ALL. The recognition of this pathway's physiological
importance in terms of cell cycle regulation, cell prolifera-
tion, survival and apoptosis is highlighted by recent
reports in prostatic and breast carcinomas, as well as glio-
mas, among others [16,17].

The anti-proliferative and pro-apoptotic activity of AMPK
have been linked to the tumor suppressor genes LKB1 (a
serine/threonine protein kinase formerly identified as
STK11) and TSC2 tuberous sclerosis complex 2)
[6,18,19]. LKB1 mutations result in Peutz-Jeghers syn-
drome, which leads to predisposition to cancers of the
colon, pancreas, breast, and other sites [20-22]. Mutations
of LKB1 typically occur in the catalytic domain, leading to
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loss of its kinase activity [23]. TSC2 forms a complex with
TSC1 and inhibits mMTOR mammalian target of rapamy-
cin), leading to inhibition in protein synthesis and nega-
tive regulation of cell size and growth [24]. Mutations of
TSC1-TSC2 cause tuberous sclerosis, a condition associ-
ated with hamartomatous polyps in multiple tissues and
an increased risk of cancers [25].

Structurally, AMPK consists of a catalytic (o) and two reg-
ulatory subunits ( and y), each subunit having at least
two isoforms [1,26]. AMPK activation requires a confor-
mational change induced by AMP binding to the o and y
subunits, which in turn allows its phosphorylation/activa-
tion by the upstream protein kinase LBK1 [6,27,28]. The
conformational change required for AMPK activation can
also be induced by compounds that act as AMP analogs
and therefore under conditions that do not involve
changes in the ratio of AMP/ATP. AICAR, a nucleoside
widely used as AMPK activator, is converted inside the cell
to its mono-phosphorylated form ZMP (5-amino-4-imi-
dazolecarboxamide ribotide), and as such behaves as an
AMP analogue capable of activating AMPK upstream of
LKB1 [9]. AICAR mediated AMPK activation has been
reported to inhibit cell proliferation and cell cycle pro-
gression via inhibition of the PI3K/Akt pathway and the
cell cycle regulatory proteins p21, p27 and p53 [16].

In the present study we have investigated the effect of
AMPK activation by AICAR on the proliferation, cell cycle
progression and apoptosis of various childhood ALL cell
models characterized by non-random translocation signa-
ture profiles, and representing chemotherapy sensitive
and resistant phenotypes [29-32]. AICAR-mediated AMPK
activation was found to be a proficient cytotoxic agent in
ALL cells and the mechanism of its anti-proliferative and
apoptotic effect appear mediated via activation of p38-
MAPK pathway, increased expression of cell cycle inhibi-
tory proteins p27 and p53, and downstream effects on the
mTOR pathway, hence exhibiting therapeutic potential as
a molecular target for the treatment of childhood ALL.

Materials and methods

Materials

RPMI 1640 medium was obtained from Mediatech, Inc.
(Herndon, VA). Iscove's modified Dulbecco medium
(IMDM) and fetal bovine serum (FBS) were obtained
from GIBCO/Invitrogen (Carlsbad, CA). AICAR was pur-
chased from Toronto Research Chemicals (Ontario, Can-
ada). Iodotubericidin and SB 202190 were obtained from
Calbiochem (San Diego, CA). CellTiter 96 Aqueous One
Solution Cell Proliferation Assay kit was purchased from
Promega (Madison, WI). [3H]|Thymidine ribotide
([3H]TdR) was purchased from Amersham Biosciences
(GE Healthcare, Piscataway, NJ). The Propidium Iodide
(PI)-RNase Staining kit was obtained from BD Pharmigen
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(Franklin, NJ). The enhanced chemiluminescence (ECL)
detecting reagent was from Amersham Biosciences. Pri-
mary antibodies against p21, p27, and p53 were pur-
chased from Santa Cruz Biotechnology, Inc. (Santa Cruz,
CA). Antibodies against phosphospecific as well as pan-
Akt, AMPK and p38-MAPK were obtained from Cell Sign-
aling (Beverly, MA).

Childhood ALL Cell Lines

The following childhood ALL cell lines were used in this
study: CCRF-CEM (T-lineage ALL), NALMG6 (B-lineage
precursor Bp-ALL), REH (Bp-ALL expressing the TEL/
AML1 fusion protein) as representative of a chemotherapy
sensitive phenotype, and SupB15 (Bp-ALL expressing the
BCR/ABL fusion protein) as a model of a chemotherapy
resistant phenotype. CCRF-CEM, REH and SupB15 cells
were obtained from ATCC (Rockville, MD), NALMG6 cells
were purchased from DSMZ (Braunschweig, Germany).

Tissue Culture

The childhood ALL cell lines CCRF-CEM, NALMG6 and
REH were maintained in RPMI 1640 medium supple-
mented with 10% FBS and antibiotics as described else-
where [33]. SupB15 cells were maintained in IMDM
medium with 20% FBS. All cells were grown at 37°C and
5% CO, atmosphere, and all drug treatments were done
in the presence of serum.

Cell Proliferation Assay

Cell growth and viability were assessed using the tetrazo-
lium compound [3-(4,5-dimethylthiazol-2-yl)-5-(3-car-
boxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium
inner salt] (MTS) (Promega). Briefly, 0.5 x 10° cells/well
of each cell lines were plated and incubated for 18 - 24 h
with or without AICAR at various concentrations. Next, 20
pl of MTS solution was added to each well and cells were
incubated for an additional 2 to 4 h, after which, absorb-
ance at 490 nm was determined using a microplate reader
as a reflection of MTS reduction by viable cells. Values
were expressed as a percentage relative to those obtained
in untreated controls.

Thymidine Incorporation Assay

Proliferation of cells was also determined by [3H]|thymi-
dine ribotide ([3H]TdR) incorporation into DNA. Each
cell line was plated at a density of 0.25 x 106 cells/well,
and cells were incubated for 18-24 h with or without
AICAR at various concentrations and then exposed to 37
kBq/ml [methyl-3H|thymidine for 6 h. Suspension cell cul-
tures were harvested using a cell harvester (Packard instru-
ment Co., Meriden, CT), and radioactivity was measured
using a 1450 microbeta liquid scintillation counter (Perk-
inElmer Life Sciences).
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Flow Cytometry Assessment of Cell Cycle

Cells were cultured in 6-well plates and treated with
AICAR prior to assessment of cellular DNA content by
flow cytometry. Following treatment, cells were washed
with PBS, and 1.0 x 106 cells were resuspended in 100 pl
of PBS, and 5 ml of 70% ethanol were added slowly, while
under continuous vortexing, for fixation overnight. Subse-
quently, cells were washed, and suspended in 500 pl of PI/
RNase solution and cell cycle progression was determined
by flow cytometry (BD Biosciences FACSCalibur flow
cytometer) using the Modfit LT software.

Apoptosiss DNA Ladder Gel Assay

Ten million purified ALL cells were obtained by centrifu-
gation after exposure to 0.1 to 1.0 mM AICAR for 48 h.
Cells were lysed in 0.5 ml of 20 mM Tris (pH 7.4), 0.4 mM
EDTA, 0.25% Triton X-100 (American Bioanalytical, Nat-
ick, MA). After 15 min of incubation at room temperature,
nuclei were removed by centrifugation at 14,000 rpm
(RCF = 16,000). The supernatant was transferred to a new
tube and nuclear DNA was precipitated overnight at -
20°C using 55 pl of 5 M NaCl and 550 pl of isopropanol.
After centrifugation at 14,000 rpm for 10 minutes, the pel-
let was washed with 70% ethanol and resuspended in 20
pl of 10 mM Tris (pH 8.0), 1 mM EDTA, and 0.1 mg/ml
RNase. The DNA preparations were separated by 1.6%
Tris borate EDTA agarose gel electrophoresis and visual-
ized by ethidium bromide staining.

Immunoblot

After stipulated incubation times in the presence or
absence of AICAR, cells were harvested, washed with PBS,
and sonicated in 50 mM Tris-HCl (pH 7.4) containing
protease inhibitors (1 mM phenylmethylsulfonyl fluo-
ride, 5 pg/ml aprotinin, 5 pg/ml antipain, 5 pg/ml pepsta-
tin A, and 5 pg/ml leupeptin). Proteins (50 pg/lane) were
resolved by SDS-PAGE and transferred onto nitrocellulose
membranes. The membranes were blocked for 1 h in 5%
nonfat dry milk in TTBS (20 mM Tris, 500 mM NaCl, and
0.1% Tween 20, pH 7.5) and incubated overnight in pri-
mary antibody (p21, p27, p53, AMPK, p38-MAPK, Akt, B-
actin, ata 1:2000 dilution) containing 5% nonfat dry milk
for non-phospho antibodies and containing 5% albumin
for phospho-antibodies (P-Akt, P-AMPK, P-p38-MAPK, at
a 1:1000 dilution). The blots were washed four times (5
min) with TTBS and incubated for 45 min at room tem-
perature with the respective horseradish peroxidase-con-
jugated secondary antibody (1:5000). The blots were
washed three times in TTBS and once in 0.1 M PBS (pH
7.4) at room temperature, and protein expression levels
determined using the ECL detection kit (Amersham Bio-
sciences). The relative integrated density value (IDV) of
each immunodetected band was determined using the
ChemiDoc XRS digital imaging system with the Quantity
One 1-D Analysis Software Version 4.6.3 (Bio-Rad Labo-
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ratories, Inc., Hercules, CA). The IDV data were normal-
ized to B-actin levels and expressed relative to control.

Statistical Analysis

Multiple comparisons of cell proliferation, and number of
viable cells (%) were assessed by one-way ANOVA fol-
lowed by the Newman-Keuls multiple comparison test.
Individual comparisons were achieved using one-tailed,
unpaired t test according to the Graph Pad PRISM soft-
ware version 2 (GraphPad Software, Inc., San Diego, CA).
The data were expressed as mean + SEM.

Results

AICAR induces growth inhibition in ALL cells via AMP-
activated protein kinase (AMPK)

We investigated the effect of AICAR on the growth of
CCRF-CEM, NALMS6, REH, and SupB15 ALL cells. REH
and SupB15 cell lines were used as models for B-precursor
ALL sensitive and resistant phenotypes, respectively. Cells
were treated with various concentrations of AICAR (0.25
to 1.0 mM) for 24 h, and growth was examined by
[*H]thymidine uptake assays. As shown in Figure 1,
AICAR inhibited the growth of CCRF-CEM, NALM6, and
REH in a dose-dependent manner at all doses studied (p <
0.001, cells treated with AICAR wvs. untreated/control
cells). SupB15 cells, which harbor the BCR/ABL transloca-
tion, were relatively resistant to lower concentrations of
AICAR, but exhibited significant growth inhibition when
treated with higher concentrations of AICAR (p < 0.001,
cells treated with 0.5 to 2.0 mM AICAR vs. untreated/con-
trol cells).

To investigate whether the anti-proliferative effect of
AICAR on ALL cells is mediated via AMPK activation, the
phosphorylation of AMPK was examined. AICAR induced
the phosphorylation of AMPK in a dose-dependent man-
ner in CCRF-CEM, NALM6, and REH cell lines (Figure
2A). The highest effect on AMPK activation was observed
with REH cells, which express the TEL/AML1 fusion pro-
tein (139 fold in cells treated with 0.5 mM AICAR as com-
pared to untreated/control cells). Again, in SupB15 (BCR/
ABL) cells, AMPK activation by AICAR was seen at higher
concentrations (1.0 and 2.0 mM) than those required to
induce AMPK phosphorylation in the other cell lines
tested. To confirm that the anti-proliferative effects
observed in ALL cells resulted from AICAR induced activa-
tion of AMPK, we used the adenosine kinase inhibitor
iodotubericidin (Iodo). This compound blocks AMPK
activation by preventing the intracellular conversion of
AICAR to its active metabolic form, ZMP [34]. The CCRF-
CEM, NALM6, REH, and SupB15 cells were pretreated
with iodotubericidin (0.1 pM) for 30 min prior to the
addition of AICAR (0.25 mM with the exception of 1 mM
for SupB15), and cell proliferation was measured after 18
h with the tetrazolium (MTS) reduction assays. As shown
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Figure |

AICAR treatment inhibits proliferation of human childhood
leukemia ALL cells. The ALL cell lines CCRF-CEM (T-line-
age), NALMé6 (Bp-lineage), REH (Bp-ALL expressing the TEL/
AMLI fusion protein), and SupBI5 (Bp-ALL expressing the
BCR/ABL fusion protein) were treated for 24 h with various
concentrations of AICAR (0.25 — 2 mM), and cell growth
analyzed by thymidine ribotide ([3H]TdR) incorporation into
DNA. The results are expressed as percentage of [3H]thymi-
dine uptake (%) relative to control values (mean + SEM, n =
3). #, p < 0.001 for AICAR-treated cells vs. control.

in Figure 2B, pre-treatment with iodotubericidin resulted
in abrogation of the anti-proliferative activity of AICAR in
all ALL cell lines studied, while no effect was seen in
untreated controls or cells treated with iodotubericidin
alone (p < 0.001, cells treated with AICAR vs. IODO +
AICAR). Taken together, these results indicate that the
anti-proliferative activity of AICAR in ALL cells is medi-
ated by P-AMPK.

AICAR-induced regulation of cyclin dependent kinase
inhibitors leads to cell cycle arrest and AMPK activation
dependent apoptosis in ALL cells

To examine cell cycle progression of ALL cells during treat-
ment with AICAR, we exposed cells to AICAR for 48 h
prior to flow cytometry analysis. Treatment with AICAR at
0.5 mM resulted in increased of CCRF-CEM, NALMG6, and
REH cells arrested in G1-phase (Figure 3). For SupB15
cells, higher concentrations of AICAR (> 1 mM) were
required to induce similar arrest in G1-phase. To further
investigate the effect of AICAR induced cell cycle arrest in
Gl-phase, we examined the expression of specific cell-
cycle inhibitors such as the cyclin-dependent kinase (cdk)
inhibitors p21 and p27, which bind to cyclin-cdk com-
plexes and inhibit the progression of cell cycle [35]. We
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Figure 2

The anti-proliferative effect of AICAR on ALL cells is medi-
ated via activation of AMPK. (A) Western blot analysis of
phosphorylated AMPK (P-AMPK, Thr172) expression in
CCRF-CEM, NALM6, REH, and SupBI5 cells treated with
various concentrations of AICAR (0 — 2.0 mM). Total protein
was extracted from AICAR-treated cells and AMPK and P-
AMPK were immunodetected using specific antibodies. Equal
amounts of protein (50 pg) were loaded per lane as con-
firmed by B-actin level. Density value of P-AMPK bands were
normalized to level of AMPK and expressed relative to con-
trol. (B) Cell proliferation assays of ALL cells treated for 18
h with AICAR alone (0.25 mM for CCRF-CEM, NALMé,
REH, and 1.0 mM for SupB15), the adenosine kinase inhibitor
iodotubericidin alone (lodo, 0.1 uM), or both agents together
(lodo + AICAR). Growth inhibition was determined using
the tetrazolium (MTS) reduction assay. Values are expressed
as a percentage relative to those obtained with untreated
control cells (mean + SEM). Data are representative of at
least three independent experiments. #, p < 0.001 for AICAR
vs. lodo + AICAR.

also examined the expression of p53, one of the major cel-
lular checkpoint proteins [36]. As shown in Figure 4,
AICAR induced the expression of the cip/kip protein cdk
inhibitor p27 in CCRF-CEM, NALM6, REH, and SupB15
cells in a dose-dependent manner, but had little or no
effect on the expression of the cell-cycle protein inhibitor
p21 (Figure 4). In addition, AICAR induced the expression
of the tumor suppressor gene p53 suggesting a role for
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Figure 3

AICAR treatment induces cell cycle arrest in Gl-phase in
ALL cells. DNA content of CCRF-CEM, NALM6, REH, and
SupBI15 ALL cells untreated (Control) or treated with
AICAR (0.5 and 2.0 mM) for 48 h was measured by fluores-
cence-activated cell sorting (FACS) using propidium iodide
staining. The panels represent distribution of cells (%) in GI-,
S-, and G2-phase of the cell cycle obtained from FACS analy-
sis. Data are representative of at least three independent
experiments and values are expressed as mean + SEM.

p53 in the AMPK signaling pathway. As expected, no
change was observed in the level of B-actin gene expres-
sion in both untreated- and treated-cells.

We then tested if the growth inhibition and cell cycle
arrest induced by AICAR in ALL cell lines led to apoptosis.
For this, the ALL cells were treated with 0.1 up to 2.0 mM
AICAR for 48 h and nuclear DNA fragmentation was
assessed. As shown in Figure 5A, treatment with 0.5 mM
AICAR consistently induced DNA fragmentation in CCRF-
CEM, NALM6, and REH cells, while for SupB15 cells
higher concentrations were required (>1 mM). We also
evaluated the expression of two apoptotic regulatory pro-
teins, cytochrome C and caspase 9 [37], in CCRF-CEM
and NALMG6 cells following treatment with 0.5 mM
AICAR. In both cell lines, AICAR resulted in increased lev-
els of cytochrome C release and caspase 9 cleavage (Figure
5B). This effect was blocked by addition of the adenosine
kinase inhibitor iodotubericidin (Figure 5B, lodo +
AICAR). On the other hand, cells treated with 0.1 pM
iodotubericidin alone (Iodo) exhibited levels of cyto-
chrome C and caspase 9 comparable to untreated cells
(Control). These phenotypes of apoptosis observed in
CCRF-CEM and NALMG6 upon treatments with AICAR cor-
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Figure 4

AICAR induces upregulation of the p53 and the cyclin
dependent kinase inhibitor p27 in ALL cells. Western blot
analyses of p53, p27, and p2| were done using cell extracts
from CCRF-CEM, NALM6, REH, and SupBI5 cells treated
with the indicated concentrations of AICAR (0 — 2 mM) for
48 h. Equivalent amount of proteins (50 pg) were separated
by SDS-PAGE and immunodetected with antibodies against
p53, p27, and p21. Membranes were stripped and reprobed
with anti-B-actin antibody to confirm equal amount of pro-
teins loaded in all lanes. Density value of each band was nor-
malized to their respective B-actin level and expressed
relative to control (untreated). The data shown are repre-
sentative of 3 experiments producing similar results.

related with activation of P-AMPK (Figure 2A). Therefore,
these results suggest that apoptosis induced by AICAR-
activation of AMPK in ALL cell lines is mediated via the
mitochondrial pathway.

Anti-proliferative action of AICAR on ALL cells is
associated with downstream AMPK-dependent activation
of p38-MAPK

Involvement of mitogen-activated protein Kkinases
(MAPKs) is one of the most relevant aspects in the regula-
tion of cell cycle and apoptosis [38,39]. In order to inves-
tigate if MAPKs were involved in the anti-proliferative
activity of AICAR, we determined the phosphorylation
levels of p38-MAPK in ALL cells following treatment with
AICAR. This was done by Western blot analysis of protein
extracts obtained from CCRF-CEM, NALMG6, REH, and
SupB15 cells treated with 0.25 mM AICAR for 2, 4, 8, and
24 h. Figure 6A shows that AICAR induced phosphoryla-
tion of p38-MAPK in a time dependent manner. The
involvement of p38-MAPK in AICAR mediated cytotoxic-
ity was further examined using the p38-MAPK inhibitor
SB 202190 [40,41]. ALL cells were pretreated with 10 uM
SB 202190 for 30 min before the addition of 0.25 mM
AICAR, and cell proliferation was measured after 18 h
using cell proliferation assays. Pretreatment of ALL cells
by SB 202190 prevented the proliferation arrest caused by
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AICAR-activation of AMPK mediates apoptosis in ALL cells
via the mitochondrial pathway. (A) DNA fragmentation
assay. CCRF-CEM, NALMé, REH, and SupBI5 cells were
treated for 48 h with increased concentrations of AICAR (0
— 2 mM), and nuclear DNA was analyzed by electrophoresis
on a |.6% Tris-Borate-EDTA agarose gel. (B) Western blot
analysis of cytochrome C and caspase 9 expression in CCRF-
CEM and NALM6 cells treated for 48 h with 0.5 mM AICAR
alone, 0.1 puM iodotubericidin alone (lodo), or both agents
together (lodo + AICAR). Equal amount of loaded protein
(50 pg) was confirmed by immunoblotting with anti-f3-actin
antibody. The data shown are representative of 3 experi-
ments.

AICAR in all cell lines studied (p < 0.05, AICAR vs. SB +
AICAR) (Figure 6B, SB + AICAR) whereas treatments with
10 uM SB 202190 alone (SB) or 0.1% DMSO (Control)
had no effect on cell growth. Therefore, our results
strongly suggest that phosphorylation of p38-MAPK (P-
p38-MAPK) is an important step towards inhibition of
cell proliferation associated with AICAR treatment in ALL
cells.
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Figure 6

Anti-proliferative action of AICAR on ALL cells is associated
with downstream AMPK-dependent activation of p38-MAPK.
(A) CCRF-CEM, NALM6, REH, and SupB15 ALL cells treated
with 0.25 mM AICAR for the indicated times (0 — 24 h) were
analyzed by Western blot for phosphorylated p38-MAPK
protein (P-p38-MAPK, Thr180/Tyr182). -actin was used as a
loading control. Density value of each band was normalized
to their respective f3-actin level and expressed relative to
control (untreated). (B) Cell proliferation assays of CCRF-
CEM, NALM6, REH, and SupB15 cells treated with 0.25 mM
AICAR alone, 10 uM of the p38-MAPK inhibitor SB 202190
alone (SB), or both agents together (SB + AICAR). The cell
proliferation values are expressed as a percentage relative to
those obtained with untreated control cells (mean + SEM, n
= 3). Data are representative of at least three independent
experiments. *, p < 0.01 for AICAR vs. SB + AICAR; #, p <
0.05 for AICAR vs. SB + AICAR.

In order to investigate the sequence of events of AMPK
and p38-MAPK activation in ALL cells following treat-
ment with AICAR, we first determined whether phospho-
rylation of p38-MAPK required activation of AMPK by
AICAR using the specific AICAR inhibitor iodotuberici-
din, and thereafter evaluated the effect of the p38-MAPK
inhibitor SB 202190 on AMPK activation. We reasoned
that if activation of AMPK was required for induction of P-
p38-MAPK, blocking its activation should result in non-
phosphorylation of p38-MAPK and therefore reversal of
the anti-proliferative effect. Indeed, pre-treatment of
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CCRF-CEM and NALMG6 cells with 0.1 mM iodotuberici-
din (Iodo) prior to AICAR treatment (0.25 mM) blocked
phosphorylation of p38-MAPK (Figure 7A, lodo +
AICAR), whereas treatment with 0.1% DMSO (Control)
or iodotubericidin alone had no influence on the level of
P-p38-MAPK. As expected, treatment with AICAR
increased the level of P-p38-MAPK by 7.2- and 2.9-fold in
CCRF-CEM and NALMG cells, respectively, when com-
pared to control (Figure 7A). Conversely, pre-incubation
of CCRF-CEM and NALM6 cells with SB 202190 (10 uM)
prior to AICAR treatment did not inhibit AMPK activation
(Figure 7B, SB + AICAR). Expression of P-AMPK level was
similar between AICAR- and SB + AICAR-treated cells
(2.1- and 2.4-fold in CCRF-CEM, and 2.0- and 2.3-fold in
NALMG6 cells). These data indicate that activation of
AMPK is required for phosphorylation of p38-MAPK in
AICAR-treated ALL cells.

AICAR treatment in ALL cells results in activation of Akt

It has been shown that AMPK also regulates the mTOR
pathway through activation of TSC2 [24]. Since TSC2 is
also regulated by Akt, a key downstream regulator of the
PI3K pathway that is important for cell growth, prolifera-
tion, and survival [42,43], we investigated the role of
PI3K/Akt signaling on AICAR-mediated AMPK activation.
For this, we evaluated the level of phosphorylated Akt (P-
Akt) protein in CCRF-CEM, NALM6, REH, and SupB15
ALL cells treated with 0.5 mM AICAR using Western blot.
As shown in Figure 8, cells treated with increasing concen-
trations of AICAR exhibited higher levels of P-Akt as com-
pared to untreated/control cells, and this effect was dose-
dependent. This result suggests that activation of the cell
survival PI3K/Akt signaling pathway may be used as com-
pensatory survival mechanism against AICAR mediated

cytotoxicity.

The anti-proliferative activity of AICAR is enhanced by the
addition of the mTOR inhibitor rapamycin in ALL cells

Based on the observation that Akt is activated following
AICAR treatment in ALL cells, we hypothesized that inhi-
bition of the PI3K/Akt pathway through inactivation of
mTOR using rapamycin should enhance the cytotoxic
activity of AICAR. To test this hypothesis, we treated the
ALL cells lines CCRF-CEM, NALM6, and REH with 0.25
mM AICAR alone, 1 nug/ml rapamycin alone (Rapa), or a
combination of both agents (rapamycin and AICAR) for
24 h. For SupB15 cells, a higher concentration of AICAR
was used (1 mM). As seen in Figure 9, treatment of the
cells with AICAR as single agent resulted in 40-50%
growth inhibition, while rapamycin alone inhibited 20-
30% of growth as compared to untreated cells. Combina-
tion of the two agents significantly increased the level of
growth inhibition by 60-80% in all four ALL cell lines
tested (p < 0.005). These results indicate that targeted ther-
apy using combination of drugs that target both the AMPK
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Activation of AMPK is required for phosphorylation of p38-
MAPK in AICAR-treated ALL cells. (A) Immunoblot of p38-
MAPK phosphorylation (P-p38-MAPK, Thr180/Tyr182) and
B-actin (loading control) expressed in CCRF-CEM and
NALMS cells treated with 0.1% DMSO (Control), 0.5 mM
AICAR alone, 0.1 mM iodotubericidin alone (lodo), or both
agents together (lodo + AICAR). (B) Phosphorylation status
of AMPK (P-AMPK, Thr172) from CCRF-CEM and NALMé6
cells incubated with either 0.5 mM AICAR alone, 10 uM SB
202190 alone (SB) or both inhibitors together (SB + AICAR).
Level of B-actin was used as loading controls. Density value
of each band was normalized to their respective -actin level
and expressed relative to control. The immunoblots shown
are representative of 3 independent experiments, which pro-
duced similar results.

signaling and the PI3K/Akt/mTOR pathway may be a use-
ful strategy in childhood ALL.

Discussion

In the present study we demonstrated that AMPK activa-
tion by AICAR induces growth inhibition, G1-phase cell
cycle arrest and apoptosis in childhood ALL cell lines. Our
data indicate that growth inhibition and apoptosis are
directly mediated by AMPK activation and that induction
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Figure 8

AICAR treatment on ALL cells results in activation of Akt.
Western blot analysis depicting the level of phosphorylated
Akt protein (P-Akt, Ser473) in CCRF-CEM, NALMé6, REH,
and SupB15 cells were treated for 24 h with various concen-
trations of AICAR (0 — 0.5 mM). B-actin was used as control
for the amount of proteins loaded per lane. Density value of
each band was normalized to their respective B-actin level
and expressed relative to control (untreated). The immunob-
lots shown are representative of at least 3 independent
experiments.

of G1 cell cycle arrest in ALL cells involves phosphoryla-
tion of p38-MAPK and upregulation of the cdk inhibitor
p27 and p53 (see proposed model Figure 10). Further-
more, treatment of ALL cell lines with AICAR led to the
phosphorylation of Akt and activation of the PI3K/Akt/
mTOR pathway, and that combination of AICAR and the
mTOR inhibitor rapamycin resulted in increased cytotox-
icity compared to treatment with each agent alone.

Multiple studies have demonstrated that a key function of
AMPK is regulation of the intracellular energy balance.
This is supported by AMPK's activation in response to low
levels of ATP [1,2]. AMPK activation in turn results in
phosphorylation of multiple downstream targets to
switch off ATP-consuming (fatty acid and cholesterol syn-
thetic pathways) pathways and to turn on ATP-generating
pathways (glycolysis and fatty acid oxidation) [5]. The
end result is protein synthesis, cell growth, proliferation
and survival. Several observations support this role of
AMPK in cancer cells [44,45]. Indeed, many cancers have
increased expression of enzymes that are inhibited by
AMPK, such as FAS and mTOR [17,46]. Paradoxically,

Page 8 of 12

(page number not for citation purposes)



Molecular Cancer 2007, 6:46

CCRF-CEM

HH.H : %Hﬂiﬂ

Control AICAR Rapa+ Rapa Control AICAR Rapa+ Rapa
AICAR  (1pg/ml) AICAR  (1pgimi)

NALM6

Cell Proliferation (%)
Cell Proliferation (%)

SupB15

REH
100
80
60 60 #
40 # | 40
sl T 1 R ||
0+ T T T 1 0 T T T

Control AICAR Rapa+ Rapa Control AICAR Rapa+ Rapa
AICAR  (1pg/ml) AICAR  (1pg/ml)

Cell Proliferation (%)
Cell Proliferation (%)

Figure 9

The anti-proliferative activity of AICAR is enhanced by the
addition of the mTOR inhibitor rapamycin in ALL cells.
CCRF-CEM, NALM6, REH, and SupBI5 ALL cells were incu-
bated for 24 h with either AICAR alone (0.25 mM for CCRF-
CEM, NALMSé, REH, and 1.0 mM for SupB15), | ng/ml
rapamycin alone, or a combination of both drugs (Rapa +
AICAR) and cell proliferation determined using the tetrazo-
lium (MTS) reduction assays. The cell proliferation values are
expressed as a percentage relative to those obtained with
untreated control cells (mean + SEM, n = 3). #, p < 0.005 for
AICAR vs. Rapa + AICAR.

when activated pharmacologically, AMPK is able to
induce apoptosis in various tumor cell types [10,16]. Two
tumor suppressors gene products have been identified as
the upstream activator and downstream effector of AMPK,
namely LKB1 and TSC2, respectively [6,18,19]. A small,
but emerging, body of literature demonstrates that AMPK
activation is capable of inhibiting growth in cancer cell in
vitro [16,17,47]. The mechanisms responsible for these
opposing effects of AMPK activation are yet to be fully
understood but the anti-proliferative and pro-apoptotic
effect of AMPK has been shown to be mediated via the
negative regulation of mTOR by LKB1 [48]. Others have
also reported that AMPK's growth inhibitory properties
are mediated by various other mechanisms, including
inhibition of de novo fatty acid synthesis and p70S6K
mediated inhibition of protein synthesis, inhibition of
cell cycle progression by p21, and attenuation of PI3K and
Akt pathways [17].

Although advances in the treatment of children with ALL
have resulted in survival rates approaching 90% for all
subtypes combined, outcome for patients diagnosed with
resistant phenotypes and for those who relapse continues
to be dismal [29-32]. Consequently, ALL continues to be
a leading cause of cancer related death in children and
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Proposed mechanism of action for AICAR in human leukemia
ALL cells. After crossing the cell membrane, AICAR is
metabolized by the adenosine kinase (AK) to its active
mono-phosphorylated form ZMP (AMP analogue) which acti-
vates AMPK. The activated AMPK will signal to multiple
downstream targets impinging on cell growth, cell prolifera-
tion, and cell survival. In ALL cells, induction of AMPK by
AICAR increases the levels of p53, the cdk inhibitor p27, and
the p38-MAPK leading to inhibition of cell proliferation, cell
arrest in Gl-phase, and apoptosis. In addition, P-AMPK acti-
vates TSC2 reducing the level of mTOR, an important regu-
latory factor of the PI3K/Akt pathway necessary for cell
proliferation [24]. As a cell survival mechanism, the level of
Akt is increased to overcome the reduction in mTOR
attempting to restore or promote cell growth. AICAR, 5-
Aminoimidazole-4-Carboxamide- | --4-Ribofuranoside; AK,
adenosine kinase; AMPK, AMP activated protein kinase; PI3K,
phosphatidylinositol 3-kinase; Akt, proteinase kinase B; TSC,
tuberous sclerosis complex; mTOR, mammalian target of
rapamycin; MAPK, mitogen-activated protein kinase.

Cell Growth, Cell Proliferation, Cell survival

adolescents, underscoring the need to discover new targets
and develop novel treatment strategies for patients with
this disease [14]. Our results suggest that AMPK is one
such target, and that its activation by the nucleoside
AICAR is an efficient strategy to induce apoptosis in child-
hood ALL cells. AICAR induced growth inhibition as
determined by [3H]thymidine incorporation assays in a
dose dependent manner in all ALL cell lines studied. Fur-
ther, AICAR was also capable of inducing growth inhibi-
tion in those ALL cell lines representative of more resistant
phenotypes, such as CCRF-CEM (T-ALL) and SupB15
(BCR/ABL positive Bp-ALL), even though higher concen-
trations of AICAR were required to inhibit the latter cell
type. Although AMPK-independent effects have been
reported for AICAR [17], our data demonstrate that its
growth inhibitory effects were mediated via phosphoryla-
tion of AMPK as confirmed by the ability of the adenosine
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kinase inhibitor iodotubericidin to reverse the cytotoxic
effects of AICAR.

AMPK activation by AICAR has also been reported to
induce cell cycle arrest in cancer cell culture models [16].
It has been shown that AMPK activation induces the
expression of wild-type p53 and p21 in rat hepatoma cells
[16]. Most reports indicate AMPK activation induces
apoptosis by increasing the phosphorylation of p53 at
Ser15 [49-51]. The upstream activator of AMPK has also
been implicated in increasing the concentration of p21
when transfected in LKB1-deficient A549 lung adenocarci-
noma cells [52]. Others have reported cell cycle arrest in
S-phase after AMPK activation by AICAR using C6 glioma
and U87MG astrocytic cell lines [16]. Our data are consist-
ent with these reports, as AICAR induced cell cycle arrest
in G1-phase in all lymphoid leukemia cell lines we exam-
ined, including the BCR/ABL positive cell line SupB15.
Although we also observed an increase in p53 expression
leading to cell cycle arrest in these cell lines, no consistent
change in the level of p21 expression was detected. In con-
trast, our data demonstrate increased expression of
another cell cycle regulatory protein, p27. The TSC pro-
teins tuberin and hamartin are known to be positive regu-
lators of the cyclin dependent kinase p27 and tuberin
(TSC2) has been reported to protect the ubiquitin-
dependent degradation of p27 [53,54]. In addition, it has
been shown that tuberin can affect p27 localization as
p27 is translocated to the nucleus [55,56]. Our data also
demonstrate increase phosphorylation of the mitogen-
activated protein kinase p38-MAPK. Several reports indi-
cate that activation of p38-MAPK results in inhibition of
the cell cycle at the G1/S boundary, such as it was seen in
ALL cells after AICAR mediated activation of AMPK (and
increased P-p38-MAPK). The exact mechanism leading to
p53 and p27 mediated cell cycle arrest in ALL cell line fol-
lowing activation of AMPK is not fully understood and it
is currently under investigation in our laboratory.

AICAR induced phosphorylation of AMPK triggered apop-
tosis in all cell lines studied, although higher concentra-
tions of AICAR were required for SupB15 cells. Both
cytochrome C release and caspase 9 cleavage were
observed in NALM6 and CCRF-CEM cells treated with
AICAR, and co-incubation with the inhibitor of AICAR
metabolism to its activated form ZMP, iodotubericidin,
was able to block these apoptotic effects. While others
have reported concomitant inhibition of the PI3K/Akt
pathway after exposure to AICAR [16], we consistently
observed increase phosphorylation of Akt in ALL cell lines
treated with AICAR. It is known that AMPK and Akt have
opposite regulatory effects on the mTOR pathway [57].
Activated AMPK via its downstream effector TSC2 nega-
tively regulates mTOR, leading to apoptosis, while Akt
promotes activation of the mTOR pathway [24,43]. We
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interpreted the consistent activation of Akt in ALL cell
lines after AICAR induced AMPK activation as a poten-
tially compensatory pro-survival mechanism. Therefore,
we hypothesized that targeting the mTOR pathway while
simultaneously activating AMPK should result in
increased cytotoxicity. Indeed, our data demonstrate that
the combination of AICAR and rapamycin resulted in
additive growth inhibitory effects in all ALL cell lines stud-
ied. These results suggest simultaneous activation of
AMPK and inhibition of the PI3K/Akt/mTOR pathway is
an attractive combination targeted therapy for the treat-
ment of childhood ALL leukemia, and may be active in
the treatment of resistant phenotypes.
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